
DESIGN OF DISTRIBUTED MANUFACTURING SYSTEMS USING UML AND PETRI NETS

B. Bordbar, L. Giacomini and D.J. Holding

Department of Electronic Engineering, School of Engineering, Aston University,
Aston Triangle, Birmingham B4 7ET, UK

Tel: Tel: +44 (0)121 359 3611 Fax: +44 (0)121 359 0156
e-mail: {B.Bordbar,L.Giacomini,D.J.Holding}@aston.ac.uk

Abstract: This paper describes the design of a supervisory control system for a distributed
manufacturing process, which forms part of a wider manufacturing system. The focus of the paper
is on the design of a verifiable discrete event controller using a UML based method. The approach
adopted involves (i) using Petri net models instead of conventional Statecharts to provide analytic
Dynamic Models; and (ii) using compositional Petri net techniques to synthesise the
Interconnection Model. The model of the complete controller can be then analysed and verified
using Petri net theory. The approach is demonstrated by application to a prototype packaging
machine. Copyright 2000 IFAC

Keywords: Discrete-event dynamic systems, Petri-nets, Object modelling techniques,
Manufacturing systems

1. INTRODUCTION

Recent advances in computer technology have
resulted in a widespread use of Discrete-Event
Dynamic Systems or DEDSs in manufacturing,
robotics, traffic management, logistics, and computer
and communication networks (Cassandras, 1999).
DEDSs require complex control systems (Ramadge
and Wonham, 1987) to ensure correct and optimal
operation. To model complex DEDSs, researchers
have developed bottom up, top down and hybrid
synthesis techniques. However, these approaches
concentrate on functional abstraction, and have
produced incomplete specifications and designs
(Firesmith, 1993). In order to facilitate the design of
complex systems, produce more understandable
designs and specifications, facilitate the transition
between design and implementation and to enable
software re-use, several researchers including Booch
et al. (1999), Douglass (1999), have advocated a
paradigm shift towards object oriented (OO)
techniques.

The Unified Modelling Language (UML), originally
a methodology for software designers, is the most
recent product generated by the aggregation of
previous generation Object Oriented methodologies
(Booch et al., 1999). UML takes the designer
through the design life cycle, starting from the
description provided by users or experts down to the
final software product. It preserves convergence and
clarity in design by prescribing a set of steps that
generate an evolving model of the system, and
facilitate the rigorous examination of this model.
Thus, the application of UML by different people
with different skills results in comparable and highly
portable final designs.

UML consists in a set of nine main graphs or charts
with explanatory comments that can be expressed in
a formal way or in plainspoken language. These fall
into two categories, static aspect diagrams and
dynamic aspect diagrams, and the designer can
choose quite freely to use a subset of them. In UML

the dynamics of objects are described using a form
of state diagram known as a Statechart (Harel,
1987). Concurrent or distributed systems are
formed by creating parallel State Charts that are
inter-connected and synchronised using interaction
diagrams.

Although Statecharts are very popular and are well
supported by implementation tools, they currently
lack analytic capabilities and thus software tools
cannot ensure the functional consistency of the
overall design. Conventionally the behaviour of such
designs is investigated using process considerations,
such as completeness arguments (Levenson, 1995)
and are demonstrated by simulation. However, to
facilitate analysis, any system described by a State
Chart can be replaced by an analytic representation
such as Process Algebras, Automata, or Petri nets.
Among the alternatives, Petri nets have a graphical
approach that is easy to understand (Murata, 1989)
and they are more effective in describing concurrent
and asynchronous systems. Petri net theory can be
used to analyse DEDS characteristics such as
synchronisation, concurrency, conflicts, resource
sharing, precedence relations, event sequences, non-
determinism and system deadlocks (Desrochers and
Al-Jaar, 1995). Also Petri nets, unlike state diagrams,
are modular, and larger nets can be formed by simply
merging places or transitions.

In this paper, to enhance analytic capabilities we
shall improve our model by substituting the State
Chart representation of dynamic models with a Petri-
net. The paper also presents a method of
synthesising coordination and synchronisation logic
for distributed or large scale designs using Use Case
information and compositional Petri net techniques.
The approach is demonstrated by application to a
manufacturing system comprising a prototype
packaging machine.

2. UML BASED DESIGN

2.1 Use Case and Class diagrams.

The UML design procedure (Booch et al., 1999)
starts with the study of the Use Cases which are
detailed written descriptions of ‘what the objectives
are’ and 'how the job is carried out'. Studying the use
cases enables the designer to recognise different 'key
agents' of the system (Objects in UML terminology).

Considering common features and operations of key
agents, objects are extrapolated into collections
called Classes. Classes can be organised in a graph
(or a collection of graphs), to build a 'class diagram',
that describes the static relationship between the

classes. The classes are represented graphically by
rectangular boxes accomodating lists of attributes and
operations and are connected together by lines or
links that can be either of association type or of
generalisation type. An association is a structural
relationship that specifies the connection between
one or more members of the classes. A
generalisation is a relationship between a general
class and a derived class, i.e. one defined from
another class by means of inheritance. The operations
defined in the class diagram include all the services
that can be requested from an object to effect the
behaviour. For the manufacturing system
applications we have in mind, the system can be
arranged in such a way that all the synchronisation
issues can be expressed in terms of Boolean
attributes of the involved classes.

2.2 Petri Net Dynamic Model.

The dynamic model describes behavioural aspects of
the object classes, in the sense that they describe the
sequence of operations that occur without regard for
what the operations do, what they operate on, or how
they are implemented. To improve the representation
and facilitate analysis of the UML dynamic model, in
this paper the dynamic model is represented by a
Petri net. For general information regarding Petri
nets, we refer to Murata (1989). Generally, the Petri
Net of a class is formed by using a place to represent
each Boolean attribute and a transition for each
operation that changes the attributes values. A token
in a place means that the attribute value is set to true
(false otherwise).

2.2 Graph of Desirable States (GDS) and
Compositional Petri Net.

The process of compositional synthesis is not an ad-
hoc procedure. Simply decomposing the Use Case
diagrams into a bag of rules that are imposed on the
objects ignores the important sequence information
and will over constrain the model.

To maintain the precedence relationships and attain
the synchronisation objectives specified in the Use
Case we construct a directed graph, which we shall
refer to as the Graph of Desirable States (GDS),
which enumerates all desirable states and their
relationships. The GDS maps the Use Case
information into the Petri net domain, i.e. the
sentences in the Use Case are translated in sets of
rules in terms of places and transitions. The word
“desirable” reflects the facts that the graph embraces
all we expect the system to do, and any unwanted or
undesirable behaviour is prohibited by identifying

(for the design of constraint or inhibition logic) all
enabled transitions that lead to undesirable
behaviour.

2.3 The Graph of Desirable States

Let us assume that our system is made of m objects.
For each object a Petri net is instantiated. Assume
that Γ denotes the part of the Use Case dealing with
the synchronisation of n of the above components
into an overall system (typically, the objects are
synchronised two at a time, until the compositional
approach encompasses the whole system).

Assume that (N1, m
1
0), …, (Nn, m

n
0), where mi

0, i=1,
…, n, denote the initial markings, are bounded and
live Petri Nets, representing object instances of these
n components of the system. A proportion of the
information provided by Γ has already been captured
in the body of the dynamics of the Petri nets (N1,
m1

0), …, (Nn, m
n
0). Let R∞(Ni, m

i
0) denotes the set

of all reachable markings of the Petri Net (Ni, mi
0).

For each mi ∈ R∞(Ni, m
i
0), let enabled(mi) denote the

set of all enabled transitions of Ni under the marking
mi. Each node of GDS is labelled by a (n + 1)-tuple
of the form a = (m1, … , mn, U) where m1, … , mn

are reachable markings of the components N1, …, Nn

and U is the set (possibly empty) of undesirable
enabled transitions under m1, … , mn, as derived from
the use case Γ. Thus U is a subset of of enabled(m1)
∪ … ∪ enabled(mn). For the node labelled with a =
(m1, … , mk, U) we shall write m(a) = (m1, … , mk)
and U(a) = U.

The GDS can be generated as follows. Consider the
set E0 of all transitions enabled under initial marking
m1

0, …, mn
0. From the above, a possibly empty

subset U0, of the transitions (or more properly their
associated actions) are undesirable. Create the first
node, which shall be referred to as the initial node,
and label it with a0 = (m1

0, … , mn
0, U0). From this

node start firing each of the desirable transitions E0\
U0, to obtain another set of nodes each with their
marking and a set of undesirable transitions. Put arcs
connecting node a0 and the newly created ones
labelling them with t, where t is the name of the
corresponding firing transition. The procedure is
repeated for each of the new nodes created.
The GDS captures the behaviour expected from the
composite net. For example, starting and ending in
the same node of GDS represents a cyclic phases of
the system. The GDS will also reveal problems with
a design: for example, if there is a node a of GDS
with no output then our design of the system expects
a deadlock, which is anomalous.

Remark: The algorithm creates at most αn2nβ nodes,
where α is the maximum number of reachable states
of components and β is the maximum number of
enabled transitions under different markings. Notice
that each subset of the set of enabled transitions can
be potentially a non-desirable set of transitions.

2.4 Connecting the components Petri nets

Consider the task of interconnecting together the
Petri net dynamic models (N1, m

1
0), …, (Nk, m

n
0) to

create a composite Petri net (N, m0) with the desired
coordination and synchronisation as described in the
Use Case. The composition is performed using
standard Petri net techniques (Juan et al., 1998) and
the information in the GDS concerning desirable and
undesirable transitions. For example, an almost
general rule applicable when we want to prevent a
transition tk in Petri Net Nj from firing under a
certain marking mi

k in Petri Net Ni, a new place is
added and connected as input/output to the transition
tk. The place is also connected to transitions in Petri
net Ni in such a way that, when the transitions give
rise to the marking mi

k, the token is removed. The
firing of the transitions moving out of the marking
mi

k will put the token back in the place (see figure 1).

Fig. 1

Although, the composition process is straightforward
for a GDS in which for ∀ a, b nodes, m(a) = m(b) ⇒
U(a) = U(b), in other cases, significantly, the
sequence information must be used to distinguish the
states in the compositional process. When the
composite Petri net is complete, it can be analysed
using to Petri net theory to ensure that it is deadlock-
free, live and bounded. The method is illustrated in
the following example.

3 APPLICATION TO A PRODUCTION
LINE PROCESS

The approach is demonstrated by considering the
design of a controller for a simplified production line
comprising loosely-coupled independently-driven
mechanisms as shown in figure 2. The major
components of the system are controlled individually
and independently and perform motion profiles
corresponding to different tasks. Supervisory

Nj Ni

tk

B_go

B_wrap
B_exit

B_out

B_start

B_new

B_wait

B_ab

.
F_out

F_dp

F_go

F_wrap

F_exitF_start

F_new

F_wait

F_ab

.

(discrete event) control is to be used to synchronise
the components.

Fig. 2. Production Line.

The wrapping system of figure 2 is made of 4
objects: the belt, the foil roll unwinding device (film),
the welder, the cutter. The product (JOB) and the foil
that carries a printed tag (TAG) are identified with
their supports, i.e. the belt and the film, respectively.
JOB and TAG are displaced with respect to the belt
and film. Let us examine the Belt Use Cases. When
the JOB arrives (new JOB) in the proximity of a
decision point sensor (dp), the state of the TAG is
evaluated. If the TAG is at decision point the
wrapping can take place (go). However, if the TAG is
still outside the wrapping area, the JOB will stop,
waiting for the TAG to arrive at its decision point
(abort operation). When the TAG arrives (new TAG),
the JOB is restarted (start leading to the wrapping
state). When JOB and TAG are both in the wrapping
state, the packaging foil is formed into a tube via a
funnel, and a longitudinal sealing roller welds the two
edges of the film together. The tube is sealed between
packs by a lateral sealer (welder) and the wrapped
product exits from the wrapping area (exit leading to
the state out). The sealed products are then separated
by a cutting machine (cutter) to produce individually
packaged products, and the whole cycle restarts.

Similar dynamic models have been derived for the
Film (TAG), Welder and Cutter. The welder and
film, and film and cutter, are synchronised by
applying a heuristic similar to the one between the
belt and film.

3.1 The class diagram

The description in Section 3 plays the role of the Use
Case for the production line of figure 2. The
underlined terms represent the classes: Film, Belt, the
Welder, and Cutter. The product to be wrapped,
JOB, is identified with the belt. The printed film and
the motor driving the unwinding are also identified
with the Film object. The terms in bold typeface are
the attributes of the classes (for the Belt, B_dp,
B_wait, B_wrap, B_out; F_dp and similarly for the

class Film). The terms in italic typeface are the
operations of the class. As an example, for the Belt:

B_new() { B_out=False; B_dp=True;}
B_ab() { B_dp=False; B_wait=True;}
B_go() { B_dp=False; B_wrap=True;}
B_go() { B_wait=False; B_wrap=True;}
B_exit() { B_wrap=False; B_out=True;}

The class diagram for the production line of figure 2
is shown in figure 3, without the attributes/operations
lists.

Fig. 3. Class diagram.

3.2 Synthesising Petri net model

For conciseness, we will focus on the interaction and
synchronisation of the Belt and Film. First Petri nets
are derived for each of the classes by assigning one
place to each attribute and one transition to each
operation. The Use Case description of the dynamics
of each object is then used to construct the Petri net
dynamic model. Specifically, places associated with
attributes that an operation sets to False (or True)
form inputs (or outputs) of the associated transition.
In this particular application, the dynamic models of
the classes are all structured in the same way as
shown in figure 4 (a)-(b).
The initial marking for each instantiated object is
obtained by considering the initial state of the
corresponding components of the production line.
The system starts with B_out and F_out.

 (a) Belt (b) Film
Fig. 4. Petri Net for the classes Sensor and Belt.

The GDS for the mutual synchronisation of Belt and
Film. The next stage in the compositional process is
designing the synchronisation logic that enforces the
mutual synchronisation heuristic for the Belt and
Film, as defined in Section 3. To do this, we make
use of the discursive Use Case provided in Section 3,
and the Petri Nets of the components, to generate the
GDS, using the procedure described in Section 2.4.
For example, starting with (B_out, F_out) we will
have a set of enabled transitions enabled: B_new and
F_new. From the Use Case, since no JOB or TAG

Film

Belt WelderCutter

are yet present, none of the two transitions is
undesired, therefore U = ∅. Let us put two arrows
labelled with B_new and F_new coming out of the
current state. We then examine the Use Case and
each arc in turn. Let us suppose, that JOB arrives
first, i.e. B_new fires. This generates a new marking
(B_dp, F_out) and set of enabled transitions { B_ab,
B_go, F_new} . From the Use Case, if the JOB is at
decision point but the TAG is still out of scope, then
we want to decelerate the Belt, until complete rest if
needed. Thus the transition B_go is undesirable: U =
{ B_go} . Proceeding in this way the GDS of figure 5
is built, and contains all the information about the
dynamics of the two co-operating subsystems.

Co-ordination and synchronisation. For the GDS in
figure 5, let us examine the set of undesirable
transitions one by one. For example, B_new is not
allowed to fire if and only if the marking is (B_out,
F_wrap). This is achieved adding the place SP1,
which is always marked except when F_wrap is
marked (in fact its token is removed from the firing
of F_go or F_start and F_exit replaces it). The same
applies to F_new.

Fig. 5. GDS.

Similarly, B_ab is always an undesirable transition
except when F_wrap is marked, therefore a double-
sided arc between F_wrap and B_ab is added (and
the same applies to F_ab). Also, B_exit is not desired
before F_wrap gets marked (for the wrapping to take
place the places F_wrap and B_wrap should be both
marked), therefore place SP6 is added with an arc to
B_exit; it is marked by the firing of F_go or F_start.
Similarly SP4 is added for F_exit. Finally, B_go
and B_start should fire as soon as F_dp is marked,
therefore SP5 is added. SP2 is added to enable F_go
and F_start as soon as B_dp is marked.

All this results in the Petri of figure 6; this graph is
live and bounded and has the reachability graph
shown in figure 7. The reader can notice the strong
similarity with the graph of desirable case, figure 5.

4. IMPLEMENTATION

To demonstrate the design a continuous system
simulation of the Film-Belt subsystem has been
implemented using Matlab (vers. 5.3). To
demonstrate the discrete event system involved using
Stateflow: the reachability graphs of the component
Petri nets were used as specifications for the design
of Statechart components and interconnection of the
Petri nets was modelled in using global variables
which are updated when a transition takes place. The
Simulink model is shown in figure 8 and the full
state-chart is shown in figure 9. The belt and film

.B_out

B_dp

B_go

B_wrap
B_exitB_start

B_new

B_wait

B_ab

.
F_out

F_dp

F_go

F_wrap

F_exitF_start

F_new

F_wait

F_ab

.

SP5

SP2

.

SP6

SP3

SP4

SP1

Fig. 6. Petri Net for the discrete part of the
production line.

B_out F_out SP1 SP3

B_dp F_out SP1 SP2 SP3

B_wait F_out SP1 SP2 SP3

B_wait F_dp SP1 SP2 SP3 SP5

B_wrap F_dp SP1 SP2 SP4

B_out F_dp SP1 SP3 SP5

B_wrap F_wrap SP4 SP6

B_out F_wrap SP3 SP4

B_out F_wait SP1 SP3 SP5

B_dp F_dp SP1 SP2 SP3 SP5

B_dp F_wrap SP3 SP5 SP6

B_wait F_wrap SP3 SP5 SP6

B_wrap F_out SP1 SP2

B_wrap F_wait SP1 SP2 SP4

B_dp F_wait SP1 SP2 SP3

B_new F_new

B_exitF_exit

B_start

B_start

B_go

B_go

B_go

B_new F_abB_ab F_new

F_new

F_go

F_go

B_new

F_start

F_start

F_exitB_exit

F_go

Fig. 7. Reachability graph for the petri net in figure.

(B_out, F_out); ∅

(B_dp, F_out); { B_go}

(B_wait, F_out); { B_start}

(B_wait, F_dp); { F_ab}

(B_wrap, F_dp);{ F_exit, F_ab}

(B_out, F_dp); { F_go}

(B_wrap, F_wrap); ∅

(B_out, F_wrap); { B_new}

(B_out, F_wait); { F_start}

(B_dp, F_dp); { F_ab; B_ab}

(B_dp, F_wrap);{ B_ab; F_exit}

(B_wait, F_wrap); { F_exit}

(B_wrap, F_out); { F_new}

(B_wrap, F_wait); { B_exit}

(B_dp, F_wait); { B_ab}

B_new F_new

B_exitF_exit

B_start

B_start

B_go

B_go

B_go

B_new F_abB_ab F_new

F_new

F_go

F_go

B_new

F_start

F_start

F_exitB_exit

F_go

systems are in two parallel sections (indicated by the
dashed smoothed box). The StateFlow states of the
Film and Belt during a typical synchronisation
operation are shown in figure 10.

Ext.torque1

Ext.torque2

load 1 pos
load 2 pos

Out3
load 1 v el
load 2 v el

Subsystem

In1

In2

In3

In4

Out1

Out2

SubSystem3

In1Out1

Sensor_Film1

In1Out1

Sensor_Film

Multiport
Switch3

Multiport
Switch2

Multiport
Switch1

-K-

Gain1

-K-

Gain

0

Constant7

0

Constant6

-0.03

Constant5

-0.15

Constant4

-1

Constant3

0

Constant2

1

Constant1

1

Constant

b_dp

f _dp

v alf

v alb

beltref

f ilmref

blown

wasted

Chart

In1

In2

Pos

Vel

Belt

5 CONCLUSIONS

This paper has presented an integrated approach to
UML for modelling and analysing discrete event
controllers for real-time manufacturing systems. It
has shown that Petri-net theory can be used to
improve the representation and analysis of the
dynamic model of such systems, making the design
engineer more confident that the model accurately
represents the system. It has also shown that UML
use case information and compositional Petri net
techniques can be used to design the coordination and
synchronisation logic for large scale or compositional
systems. Moreover, composite Petri-net model can
be used to implement a controller based on current
supervisory control theory. The technique has been
illustrated by its application to a wrapping machine
that forms part of a larger production line.

ACKNOWLEDGEMENTS

This work was supported by EPSRC (UK) Grant
GR/L31234.

REFERENCES

Booch, G., J. Rumbaugh and I. Jacobson (1999). The
Unified Modeling Language User Guide.
Addison Wesley.

Cassandras, C.C. and S. Lafortune (1999).
Introduction to Discrete Event Systems. Kluwer
Academic Publishers.

Plant
Belt 1

B_out/
during: b_state=1

B_dp/
during: b_state=2

B_wait/
during: b_state=3

B_wrap/
during: b_state=4

[(valb−heldb)*(valb−heldb)>border && sp6]/...
{beltref=1;b_dp1=0;sp3=1;sp6=0;}

[(valb−heldb)*(valb−heldb)>border]/...
{blown=blown+1;
beltref=1;}

[b_dp && sp1]/{heldb=valb;b_dp1=1;}

[!f_dp&&f_dp1]/{sp1=0;sp4=1;}

[!f_dp&&!f_dp1]/{beltref=2;}

[f_dp1]/{
beltref=1;sp1=0;sp4=1;}

Film 2

F_out/
during: f_state=1

F_dp/
during: f_state=2

F_wait/
during: f_state=3

F_wrap/
during: f_state=4

[(valf−heldf)*(valf−heldf)>border && sp4]/...
{f_dp1=0;sp1=1;sp4=0;newbar;}

[(valf−heldf)*(valf−heldf)>border]/...
{wasted=wasted+1;
filmref=1;}

[f_dp && sp3]/{heldf=valf;f_dp1=1;}

[b_dp1&&!b_dp]/{sp3=0;sp6=1;}

[!b_dp1&&!b_dp]/{filmref=2;}

[b_dp1]/...
{filmref=1;sp3=0;sp6=1;}

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

F
ilm

 s
ta
te

t[sec]

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

B
el
t s

ta
te

t[sec]

Arrival of first TAG

Arrival of first JOB Arrival of next TAG and JOB

Desrochers, A.A. and R.Y. Al-Jaar (1995).
Applications of Petri Nets in Manufacturing
Systems. IEEE Press.

Douglass, B.P. (1999). Doing Hard Time.
Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns. Addison
Wesley.

Firesmith, D.G. (1993). Object Oriented
Requirement Analysis and Logical design: A
Software Engineering Approach. Wiley.

Harel, D. (1987). Statecharts: A Visual Formalism for
Complex Systems. Science of Computer
Programming, 8, pp. 231--274.

Juan, E.Y.T., J.J.P. Tsai and T. Murata (1998).
Compositional verification of concurrent systems
using Petri-net-based condensation rules. ACM
Trans. on Programming Languages and
Systems, 20(5), pp. 917--979.

Levenson, N.G. (1995). Safeware, Systems safety
and Computers. Addison Wesley.

Murata, T. (1989). Petri Nets: properties, analysis
and applications, Proceedings of the IEEE,
77(4), pp. 541-580.

Ramadge, P.J. and W.M. Wonham (1987).
Supervisory control of a class of discrete event
processes. SIAM Journal on Control &
Optimization, 25(1), pp. 206-230.

Fig. 8. Simulink scheme.

Fig. 9. Stateflow chart.

Fig. 10. States of Film and Belt in the chart: 1=_out,
2=_dp, 3=_wait, 4=_wrap.

