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Abstract

The paper reports the use of sliding mode control in the
design of a hybrid controller for a distributed system
with complex and reschedulable task sequences. The
approach is demonstrated using a system comprising
two loosely-coupled independently-driven mechanisms
(or components) which take the form of a pair of cou-
pled inverted pendulums. A sliding mode controller
is designed for each pendulum mechanism to provide
stabilization and profiled motion control. Then, to ac-
complish a sequence of tasks, a supervisory system is
developed using compositional methods and is mod-
elled and analysed using controlled Petri nets. It is
shown that using an appropriate coordination strat-
egy it is possible to achieve a stability envelope for the
composite system which is greater than that of the in-
dividual components. The function and performance
of the system are demonstrated by simulation.

1 Introduction

The control of sets of independently driven mecha-
nisms, from a simple conveyor belt to a sophisticated
robotic manipulator, is traditionally dealt with in a
continuous time/continuous state environment. When
these mechanisms are used in a real environment, such
as a production line, they have to be co-ordinated and
synchronised with eah other and are required to per-
form sequences of tasks. The control engineer conven-
tionally copes with these requirements by embedding
tests (discrete event decision which switch between reg-
ulators or reference trajectories) inside the continuous
controller. Verification of the functionality of the over-
all controller is often left to extensive simulation.

In recent years, much research has been carried out on
the concepts of hybrid systems and hybrid control [3],
with the objective of developing an integrated approach
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to the discrete event and continuous parts of such sys-
tems. The need is to combine the study of the contin-
uous domain stability /controllability with the study of
the intended discrete domain functionality, such as the
supervisory control of tasks sequences.

In this paper, we start by analysing the static and dy-
namic continuous domain behaviour of each of these
components of a distributed in isolation and design
individual sliding mode controllers for set-point reg-
ulation. We then identify conventional switching deci-
sions governing the modes and set-points of the con-
tinuous control. Through a process of abstraction we
make these decisions an explicit part of the discrete
event or supervisory layer, so that they can be mod-
elled and analysed using discrete event methods such
as Automata or Petri nets [2, 5, 6].

The paper describes a design study which explores
the hybrid control of a distributed system comprising
linked inverted pendulums arranged in a production-
line style. Section 5.4 describes the development of
a supervisory control system for two loosely intercon-
nected pendulum mechanisms and associated product-
transfer manipulators using Petri net techniques. The
Petri net model of the composite system was then anal-
ysed using Petri net techniques to verify the behaviour
of the system. Finally, the analysis is extended to ex-
amine the effect of severe disturbances, such as those
which might cause a pendulum to move into an unsta-
ble state (falling or toppling) and which, unless con-
trolled, might cause a ‘domino-effect’ instability in the
second component. It is shown that using an appro-
priate decision and coordination strategy it is possible
to achieve a stability envelope for the composite sys-
tem which is greater than that of the individual com-
ponents. Moreover, the reachability graph of the Petri
net can be backtracked to identify behaviour (and asso-
ciated physical parameters) that leads to hazards such
as livelock (caused by a deadly mutual embrace of the
two inverted pendulums).



x distance of mass X from vertex O
y distance of mass Y from vertex O
a angle between the two rails (fixed)
6 angle between OG and OO’

L length of the rails (fixed)

Figure 1: The triangular frame

2 Introduction to the design problem: an
inverted pendulum

Consider an inverted pendulum formed by a rotating
triangular frame and two balance weights, as shown
in Fig. 1. The triangle is assumed isosceles and to lie
in the vertical plane. The triangular frame can rotate
freely about an axis through the origin O. The mass
of the frame is considered to be concentrated in the
centre of mass of the triangle. The two balance masses
X and Y can move along the sides of the frame: we
will call these two sides ‘rails’. The movement of X
and Y along the rails changes their centre of mass and
thus the balance of the triangular frame system. The
triangle system is in equilibrium if it is at rest and the
effective centre of mass of the frame, X and Y lies on
the vertical line OO’ (Fig. 1).

Applying the Euler-Lagrange procedure, and taking
into consideration some simplyfing assumptions such
as the absence of friction and damping terms, the fol-
lowing equations have been derived:

i = % + 26 — gcos (9 - %) (1)

j = % + yb% — gcos (0 + %) (2)

6 = ﬁw[—a}éw—yéy+gmsin(0—%)
+ gysin (9 + %) + Q;ngcos%sinﬁ} (3)

where J is the inertia of the frame, F, and Fj the
forces applied to X and Y, respectively. Because of the
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hard constraint represented by the limited length of the
rails, system (1)-(3) is valid only when 0 < z,y < L.
When hitting the boundaries x = 0, L, and y = 0, L,
the quantities & , and y will become 0 instantaneously.
When the boundaries are reached, it is natural to with-
draw any control force if in the direction of the con-
strain, however to keep X and Y at the boundaries a
force should be applied to counteract the gravity terms,
where not already cancelled by the reaction force (i.e.
when z,y = 0 and the frame is in an upright position,
or when z,y = L and the frame is hangig from the
pivot).

3 Forming a production-line style composite
system

Consider a composite system formed by placing two
inverted pendulum (of the triangular form described
above) T'1 and T2, on the same axis of rotation but
some distance apart, as shown in Fig. 2. Let the
vertices of the triangles be linked by non-elastic con-
straints or chains which have some slack so that the tri-
angles can rotate relative to each other before they be-
come ‘locked’ at a constant relative displacement. Let
the two loosely coupled triangular frame inverted pen-
dulums plus associated product manipulators be con-
figured into a production-line style system as shown in
Fig. 2. The task of the system is to move a product
from a “feeder” conveyor to an “exit” conveyor via an
arbor on each of the triangular frames.

The overall movement that 7’1 and T2 have to do to
accomplish the target is subdivided into 4 tasks.

[Load_T1] If T1 not loaded, T1 go to loading
point — the control objective is to move T'1 to
the set point 6; (loading point), and align its ar-
bor with the “feeder” conveyor, using an appro-
priate motion profile and then for 7'1 to be held
stationary at 6; during the loading period.

[Unload_T'1] If T'1 loaded, T'1 go to rendez-vous



point — the control objective is to move T'1 (us-
ing appropriate positional and velocity control)
such that it rendez-vous with 72 by aligning its
arbor with that of 72 and then follows it with
zero relative velocity for the period of the prod-
uct transfer from T'1 to T'2 (i.e. unload 7'1). Note
that, the rendez-vous point is not a fixed position.

[Load_T2] If T2 not loaded, T2 go to rendez-
vous point — same as Unload_T'1, but 72 is
exchanged with 7T'1. As a result 72 is loaded.

[Unload_T2] If T2 loaded, T2 go to unloading
point — the control objective is to move T2 to
the set point 8,, (unloading point), and align its
arbor with the “exit” conveyor, using an appro-
priate motion profile and then for 72 to be held
stationary at 6, during the unloading period.

We shall assume that the dynamics of the product ma-
nipulators can be disregarded. For demonstration pur-
poses, the arbors on frames T'1 and T2 are purpose
designed to be asymmetric and are arranged such that
stability zone for frame T'1 includes only the load posi-
tion and for T2 includes only the unload position (i.e.
T'1 will topple if moved to the unload position, and 72
will topple if moved to the load position). Thus, the
production-line task can only be accomplished if both
inverted pendulums cooperate.

4 Control Strategy

The control system was designed in stages. First a
continuous controller was designed to stabilise a tri-
angular inverted pendulum and enable it to track a
particular motion profile. This controller was designed
to be suitable for all the specified profiles and was re-
quired to satisfy the performance requirement (for ex-
ample, zero steady state error). The design process
involved determining the stability area of the frames
and a suitable structure for the controller. To simplify
the design problem the original system with indepen-
dent rails was altered to link the motion of the balance
weight on each rail. This had the effect of reducing
the original non-holonomic second-order system with
two inputs and one output, Eqs. (1)-(3), to a single
input single output system. Second, a discrete event
or supervisory controller was designed to co-ordinate
and synchronise the motion of the pair of linked trian-
gular inverted pendulums and to schedule their motion
profiles. The controller was also used to impose a high
level control strategy that allowed one triangle to try
to rescue the other if it started to fall.

4.1 Preliminaries
The frame will have an unstable equilibrium point

at 9 € [-%,3] and a stable one at 7 — #*.

Due to the geometry of the device, 6* will be-
long to a finite sector of the plane, that is deter-
minable by moving each of the two masses to the
limit on the rails, i.e. (z,y) = (0,L) or (z,y) =
(L,0). Specifically, if the system has initial conditions
(a:(O),y(O),:r(O),y(O),B(O),G(O)) = (O,L,0,0., emyo)
or, equivalently, (z(0),y(0),%(0),4(0),6(0),0(0)) =
(L,0,0,0,0,s,0), then, under the hypothesis that there
are no disturbances, the limiting values for the equilib-
rium condition are:

@ 1
9M = _0m = arctg (tan§ l@]) (4)

3m

It follows that the vertical plane can be devided in three
sectors

o O ={00 € [—7m,—7— 0] U[r — 0,7}, where
all points are stable ones, provided that X and
Y are moved to suitable values z, y computable
open-loop from a static analysis.

ey = {8 0 € (-7 — Op,0n)UOM, 7 —
Or)}, where the frame surely cannot be stabi-
lized /controlled;

e Qs = {0 6 € [—0,,,0M]}, the biggest sec-
tor in the plane, where the frame can be stabi-
lized/controlled.

4.2 Continuous Time Problem Statement
Given the initial conditions (fp,f0p) € Q x IR C Q3 x
IR, the control objective is to make the target position
(04,0) € @ x IR C Q3 X IR, a stable equilibrium point
of the controlled system, where Q) is a suitable subset
of Q3 to be determined.

5 Dynamic stabilization and motion control

To solve our control problem, a three blocks regulator
has been designed as shown in Fig. 3. Each of the rails
is controlled with a PD, which provides set-point regu-
lation with a sufficiently fast response time (i.e. Reg.x
and Reg.y for rails X and Y respectively). The set-
points are generated by the third block Reg.f. With
reference to the scheme in Fig. 3, the three control mod-
ules are

—a(r—ry)—bi, 0<z<L

Reg.x F, = gcos(ﬁ—%), =1L
0, =0
—aly—r2) by, 0<y<L
Reg.y F, = gcos(ﬁ—l—%), y=1L
0, y=0

Reg.0 (ri,me) = f(0,0,60%) .

where 1 and ro are the reference trajectories (control
inputs) for the regulated rails, whilst §* = [, 0] are



trajectory
for 6

Figure 3: Control scheme

the reference trajectories for the variables 6 and 6. For
example, given m = M = 1kg, L =1m, and a = F,
the parameters of the control laws have been chosen as

a = 1000, b = 500.

In choosing an appropriate control strategy for r; and
ro, it is of note that if the frame has to balance at an
angle at the left of the line OO’, the mass Y has to be
moved up, and mass X has to be moved down. Alter-
natively, if * is at the right of OO’, mass X should be
up, mass Y should be down. Therefore, it is sensible
to generally link the two control inputs F, and F, (see
(1)-(2)) by making r1 = £ +r and ro = £ —r where r
is a function of e = 0 — 04, 04 € Q, and its first deriva-
tive. This reduces the problem to a single input single
output one.

5.1 The 0 regulator

We want precise set-point regulation, possibly with ve-
locity control as well, and robustness towards bounded
disturbances (due to the locking of the two triangles
that will be examined in Section 6). For this task, a
discontinuous control has been chosen because of the
highly non linearity of the system and the fast dynam-
ics it can provide for the closed loop system. (Experi-
ments with a series of PID showed that exact set-point
regulation is not possible using PID control).

In developing a discontinuous controller we were con-
scious of needs of the linked multiple triangular in-
verted pendulum system. In particular, we intended to
examine the co-operative behaviour of the triangles and
a scenario (Section 6) in which one triangle rescues the
other if should start falling. Therefore, a secondary ob-
jective was to make such co-operative behaviour as easy
as possible. For example, if one of the two frames is
outside the working (stabilisation) area (13, then as the
rails cannot be used for stabilisation they may as well
be used to minimise the angular velocity of the falling
frame. With this in mind, Reg.f can be designed as a
two module regulator (the control is switched between
them) as follows:

N 9
7Wﬂﬁ)_{u@aw)oem

Now, u(+) must be specified.

5.2 Sliding mode control

Given a dynamical system & = f(z) + g(x)u, z € R",
u € R, a typical sliding mode control [8] is set up in
two steps

1. Design a switching function S(z), such that for
S(x) = 0 some control objective is satisfied.

2. Design a control law wu(z) discontinuous on
S(x) = 0 such that the states of the system reach
the sliding manifold {x € R | S(z) = 0} in a
finite time.

For step 1, a suitable surface for our system is
S(-) =0+ c(6 - 6a)

where 64 is the angle set-point. On the manifold the
dynamics of the frame is 8 = —c + cfy4, i.e. an asymp-
totically stable first order system, then, 6 — 0 and
0 — 9(1.

5.3 Second order sliding mode control
For step 2, because the control u appears only in the
second derlvatlve of S (in fact $ =6+ ..., and 0 does

not contain u, as can be seen from (3), while § = b+...
contains it thorough the expressions of # and ), we
apply a second order sliding mode algorithm [1], that
is

1. Let y; = S and y» = S.

2. Write the auxiliary system

{Z)l(t) = y2(t) (5)
y2(t) = Fly(t),t] + Gly(t), tlu(t)

with y(#)T = [yi(t) y2(t)], y2(t) unmeasurable,
Fly®);t] = &5 (55 (f(@) + 9(2))) (f(2) + g(2)u),
]

and Gy(t);t] = %—gg uncertain functions.
3. Find suitable bounds F', I';,, and I'p; such that
| Fly(@);t]l < F (6)
0<Tm <Gly(t);t] <Tm (7)
4. Apply the control law

u(t) = —B)Unsign {y1(t) — 1 (tar,) }
t

o if [yi(t) — sy (tar)]x
a(t) = [y1(tar;) —y2 ()] > 0 (8)
L af [ya(t) — w1 (tar)] ¥
[yi(tar,) —y1 ()] <0

where Uy is the control amplitude to be suit-
ably selected, ty, is such that y2(ta:) = 0, and
y1(tn;) represents the last extremal value of the
y1 (t) function, i.e., the last local maximum, local
minimum or horizontal flex point of y; (¢).



In [1] it has been proved that, the corresponding suffi-
cient conditions for the finite time convergence to the
sliding manifold are

{ A€ (0,1]Nn (0, =)

F v (9)
Upn > max Fro 3Fm76*FM)

Let us apply this strategy to our case, i.e. let y; =
6 +c(f —0q), and y> = ¢

o=y (10)

ﬁ [ — 01'29 — be — 1’29 — Cly2é
m T y

— byl — %0 + gisin(0 — %) + gabeos(f — %)

Y2 =

+ gysin(f + %) + gybcos(0 + %)

+ QMLgé cos cosg] — 3[3:93: — by
m 2
. a . a
+ gzsin(f — 5) + gysin(6 + 5)
2M Lg . Tx + gy
+ 3 COSQSme](J/m—kmz—ky)
— ab(z —y)u (11)

Because of the physical constraints, and of the assump-
tion that we are working in the sector {23, bounds for
the expressions in (11) can be easily found. These
quantities are functions of (*), where t* is the time
when a new set-point/reference profile is imposed to
the system. As the reader can notice, the control gain
is —0(x—y) i.e. it is a quantity that can be zero and can
change its sign, thus it is contrary to the assumptions
for the application of the second order sliding mode
algorithm describe above. However, this does not pre-
vent the stabilisation of the frame: in fact, the control
tends to bring z and y to different values even when
the gain is zero. Moreover, the X and Y movement
influences directly 6, then the condition 9(3: —y) =0
will hold for a time of measure zero. As for the sign,
because of the geometry of the frame, V8 € s, if
x —y > 0, 6 shall become negative, and, if z —y <0,
0 shall become positive. Then, apart from transients
periods, the applied control is such that O(m —y) <0,
ie. u=pBt)Unsign(S — %StMl—) is applied.

However (11) is the expression of S when the PDs are
applied on X and Y. When the ends of the rails are
reached,

§ = gaxsin(d— %) + gysin(6 + %)
2ML
gsin(@)cos% (12)

It is easy to see that § = —|§|sign5, where |0| has
a lower bound kp determinable from (12). Then, for
each 6(t*), we can determine the limit value of cf for

which the term ky is dominating the the expression of
S, i.e. the system satisfies a first order sliding mode
condition SS = S(—|f|signS + f) < —k|S|,  some
positive constant.

5.4 First order sliding mode control

The reasoning at the end of the previous section, sug-
gests that even a first order sliding mode control law
could be applied successfully to the system in question.
In fact, let us choose the easiest discontinuous control
that is 7 = K sign(S). Because of the constraints
and of the fast response of the PD applied to X and
Y, (= L — y), exhibits the behaviour of a saturated
function, say o..

L, S>e
oge=1q KY(S) [S|<e (13)
0, S < —e¢

where y() is an increasing function of S,  is a value
proportional to K, and e is proportional to 7/ K, 7 the
PD time constant. After the transients condition (12)
holds, i.e. the manifold is attractive, and provided that
K is sufficiently large (in other words, the system is
allowed to over-saturate as in [7]), maz(f) € Q3 during
the transitory phase, as well as 6 below the value 074,
derived from relation (12).

5.5 Coordination and synchronisation logic
The tasks of Section 3 are translated into a series of
different set points for the frames. Let 6; denote the
angular position of 7'1 and with 6> the the angular
position of 72. Then:

91+c
= 91+c
= 92+c
= 92+c

S(Load T'1
S(Unload-T'1
S(Unload-T2

S(Load-T2

6, —60r)
61 — 6>)
02 au)

)

)
)
)
) b2 — 61

~ I~ N~

The system requirement contains also a series of rules
that define, in general terms, the logic necessary to
coordinate and synchronise the frames and forms the
functional requirement of the discrete event part of the
hybrid system. Traditionally such logic would have
been embedded as switching functions in the contin-
uous controller. However, if the sensor and actuator
interfaces are modelled at an abstract level they can be
incorporated directly in the discrete event part of the
system. To facilitate analysis and reasoning, the in-
terfaces and discrete event system were modelled using
Petri nets [6] which have a tangible graphical represen-
tation, constructs for describing asynchronous concur-
rent behaviour, and an underlying mathematical struc-
ture.

Using Petri nets the task sequences were modelled and
the coordination and synchronisation logic designed as
shown in Fig. 4. Transducers are modelled using a



0= Signa from continuous layer

T1 _goto_rendezvous
T1 at_rendezvous

¢ = Signal to continuous layer

Figure 4:

O symbol and an arc leading to a transition: when a
signal from the continuous layer is received the event
“tokenises” the square and thus enables the transition
(assuming all input places are tokenised). Actuators or
continuous layer controllers are modelled by the sym-
bol ¢ and an arc leading from a transition: when the
transition fires (“tokenises” the diamond) it causes a
command to be sent to the continuous layer actuator
or controller.

5.6 Analysis and verification of synchronisation
logic

The Petri net of the task sequence, shown in Fig. 4, con-
sists of two components 7'1 and 72, which are synchro-
nised via the transition Rendez_vous, which denotes the
action of exchanging the component from one trian-
gle to the other. The production-line sequence starts
with T'1 not loaded and located neither at the loading
point nor at the Rendez_vous point. Firing of tran-
sition T1_goto_loading sends T'1 to the loading point
(T1-at_loading is marked). On receipt of the sensor sig-
nal indicating that T'1 is at the loading point, T1_load
fires and issues a command to the continuous layer to
say that the component has to be loaded. Next fir-
ing of T1_goto_rendezvous sends the frame T'1 to the
rendez-vous point and since the triangle is not yet at
the loading point, T1_not_at_loading is marked. By syn-
chronisation via the Rendez vous transition the compo-
nent is unloaded from T'1 and transferred to T2 and a
new cycle of operation starts for 7'1. For side T'2 of the
Petri net, the behaviour is dual of that of 71, as shown
in Fig. 4. The Petri net of Fig. 4 is live (free from
deadlocks) and safe (has a single, realisable, instance
of states) and the reachability graph has 24 states and
41 arcs.

6 Cooperative behaviour in abnormal
circumstances: the rescue function

In this section, we introduce the possibility that one of
the triangular frames can go past the stability limit an-

gle, perhaps due to an external impulsive disturbance,
and start to ‘tumble or fall down’ (i.e. starts head-
ing towards the stable equilibrium point for the uncon-
trolled system where it would dangling from the pivot).
Because the loosely-coupled triangular inverted pendu-
lums are linked by “chains”, it follows that when one
triangle begins to fall, the chains would tighten and the
triangles would become locked and both would then
fall. Tt follows that the chains provide a mechanism for
the “domino” collapse of the system.

However simple appraisal shows that, if the two frames
are identical and the ratio between m and M is suit-
able, the chains provide a mechanism that allows the
non-falling triangular frame to come to the rescue of
the falling frame. For example, given a method of de-
tecting the onset of “falling” the non-falling triangular
pendulum could throw itself in the opposite direction
in the hope that the chains might prove to be “safety
chains” and rescue the falling pendulum.

At this stage, the following Falling policy was intro-
duced,

If T1 (T2) is outside the region [0,,,0r], (i-e.
T1 (T2) is falling), then X1 (X2) and Y1 (¥'2)
should be moved as fast as possible to (z,y) =
(0,0) (the mechanical constraints imply that

(#,9) = (0,0))
along with a Rescue policy,

If T1 (T'2) is outside the region [0,,,60x], (1.e. T'1
(T'2) is falling), then T2 (T'1), should change its
target set-point to a predetermined rescue set-
point; when T'1 (T'2) is rescued, T2 (T'1) should
go back to try to reach the abandoned target set-
point.

6.1 Dynamic model of the two frame system

It is easy to see that the policy introduced for the single
frame in Section 5.1, in which X and Y were sent to
(0,0) when outside the stabilizability sector (to mini-
mize the torque of the rails on the falling frame) turns
out to be useful for the falling policy. Indeed, the reg-
ulator applied to the frames is exactly the same as be-
fore. A similar reasoning as the one in section 5.4 can
be applied to the compound triangle, to determine a
suitable k. This k is used also when the two trian-
gles are not locked. Thus the control law ensures that
the dynamics of the single frame is not affected by the
disturbance imposed by the other frame.

In Section 2, the biggest stabilization region for one iso-
lated frame was shown to be [0,,,,05]. A similar static
analysis can be applied to the composite two frame sys-
tem in the case when the frames are locked. This gives



Figure 5:

M < 2m tan®A as a sufficient condition for the new
limit angle

oM
tang +tanA (1 + %)

2M a 2M
1+ 3m ta’ngtanA + 3mcosA

O, = arctg(

to be bigger than the one in (4). Thus, if this condi-
tion is satisfied, the composite system of two loosely
coupled inverted pendulums have the potential to co-
operate and operate over a zone of stability wider than
that for the two pendulums operating in isolation.

6.2 Production-line style composite system
with Rescue Mode

As a final phase of the design process, the falling/rescue
policy was integrated with the task sequence. The re-
sulting Petri net, Fig. 5, has been designed for the
discrete part of the hybrid controller. With respect
to the Petri Net in Fig. 4, the shaded places have
been added along with new transitions. Place p7 is
marked when none of the frames is in rescue mode.
As soon as one among the transitions t82, t92, t81,
t91 fires because a ‘falling down’ signal is received
from the continuous layer, the token in p7 is removed,
and no transition in the sub-nets linked to the regu-
lar behaviour can fire. Also the tokens in the places
pl2 (T2_-not_at_unloading), pll (TI1_not_at_loading),
p22 (T2_at_unloading), p21 (T1_-at_-loading), p52
(T2_not_at_rendezvous), p51 (T1_not_at_rendezvous),
p62 (T2_at_rendezvous), p6l (T1_at_rendezvous), are
temporarily removed because the condition no longer
makes sense during a rescue. Later, when the falling
frame is safe, the two subnet will be restarted putting
back the tokens in p7, pl12, p52, pl1, p51, and tokens
are also added the transitions t52 and t51 to force T2
to go to the rendez-vous point if it is unloaded (in the
original Petri Net the marking {p12,p32,p52,-} gives
rise to deadlock), and to force T'1 to go to the rendez-
vous point if it is loaded, respectively.

When one of the two frames is falling down one of p91

and p92 is marked. Let’s say that T2 is falling. Then,
tokens in pl2, p22, p52 are removed from the tran-
sitions t82 or t92, and tokens in the 71 sub-net are
removed from the only transitions enabled to fire (i.e.
one among t101, t111, t121), and place p81 is marked,
indicating T'1 in rescue mode. At this stage one of two
things can happen: T2 comes back to the stabilizabil-
ity zone (it is said that it has been rescued) and both
frames go back to the original tasks (transition t141) or
T'1 also goes in the unsafe sector and both frames will
fall down (transition ¢131). Analysis of the Petri net
of Fig. 5, made with Design/CPN_3.1.2 (University of
Aarhus, Denmark), shows that its reachability graph
has 35 states and 103 arcs. It has 4 deadlock configu-
rations, each of which contains the marked places p91
and p92 which correspond, as expected, to the falling
states of the two pendulums.

Analysis shows that the Petri net contains a ‘livelock’
or ‘dynamic deadlock’. This corresponds to the firing
sequence {¢82,¢t111,¢141,¢81,¢112,¢142}, in which the
two frames are cycling between the falling and rescuing
states.

Verification of the system’s function also involved
searching for any transition firing sequences not con-
taining the transitions t7 (rendez-vous), which indicates
an operational deadlock due to geometric and physical
constraints. The Petri net was found to contain such
sequences and therefore pre—emption of the sequences
was used to ensure correct operation.

7 Implementation with Matlab Toolbox

The continuous system has been implemented as a
Simulink (Vers.3) model and comprises models of the
two triangular inverted pendulums, the balance weight
mechanisms, and the control system. The models of
the inverted pendulum have been simplified in the
locked case to a composite pendulum model, and par-
ticular care has been devoted to the modeling of the
lock/unlock conditions that permits switching between
the composite model and the two separated models.
The control system model consists of a set of simple
regulators and lower level mode control switches.

The controlling Petri net has been translated into a
Stateflow (Vers.2) diagram. This sends commands (i.e.
signals) to the Simulink model (to select between mo-
tion profiles and control algorithms). It also receives
events (i.e. signals) from the Simulink model. Since
Stateflow is not a verifiable tool, the translation from
the Petri net to Statechart [4] was achieved by design-
ing a Statechart which implements the Petri net reach-
ability graph.

In Fig. 7, there is the complete statechart with the four
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entry: uswitch2=3;

Figure 6:

possible states: Regular Motion, Falling-1 (T'1 falling
down), Falling-2 (T2 falling down), Both falling. A
test condition is used to switch between the four states
at each time step. Going down in the hierarchy, in
Fig. 6, there is the enlargment of the part of the chart
associated with the regular motion phase. The dotted
smooth rectangles indicates two parallel sections. They
correspond to the T'1 and T2 controls that run concur-
rently. Outside the parallel boxes, the state at_RV
can be seen: it is the synchronisation stage in the ren-
dez vous. Extensive testing at limits of working condi-
tions has shown correspondence between the expected
behaviour and the implemented one. Figure 8 show
the angular position (left) and the angular velocities
(right) of the arbors of the two synchronized frames for
a regular sequence of movements. In Fig. 9(left) are
shown the arbor trajectories for the case that triangle
T2 starts in an unstable position and the lock angle
is not too big (i.e. less than §). After an initial res-
cue phase, the falling frame enters the stable area and
from that instant on, the two frames follows the reg-
ular sequence of set-points. In figure 9(right), 72 the
lock angle is too small to allow the scheduled task to be
completed (in fact the angle between loading point and
unloading point is bigger than the lock angle). In this
exceptional case, the two frames go to an equilibrium
position in which the two arbors are at the minimal
distance achievable and the system deadlocks.

8 Conclusions

This paper has examined the control of a set
of interconnected nonlinear components comprising
triangular-form inverted pendulums. It has demon-
strated that hybrid sliding mode control can stabilise
the inherently unstable pendulums and provide rela-
tively complex supervisory control. The use of Petri
nets to make the decision layer accessible to analysis
and reasoning is shown to provide invaluable feedback

[(e1>=tD1 & e2<tD2)]

>=1D1 &4 e2>=(D2)]

Teaching/

entry: uswitch2=4;

arbor angular position

Figure 8: T} arbor angle (with respect to the center of the
frame)= 0.4, T> arbor angle = —0.4, 6:(0) =
61(0) = 62(0) = 62(0) =0, Qioek = 5, @ = .

— Unloading point

+— Unloading point

rescue
o2 fiise:

Lo

arbor angular position
!

= Loading point

4 5

3
timefsec]

Figure 9: T} arbor angle (with respect to the center of the
frame)= 0.4, T> arbor angle = —0.4, 6:(0) =
6:(0) = 62(0) = 0, 62(0) = —0.55, a = ,
Qock = 5 (left) and ajocr = 0.6 (right).

concerning potential behaviour and facilitates the de-
sign of a supervisory controller for the composite sys-
tem. The paper demonstrates how these techniques can
be used to design a composite system of linked non-
linear components in which co-operative behaviour in-
creases the stable performance envelope relative to that
obtained by the system components acting in isolation.
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