
Verification and Trade-Off Analysis of
Security Properties in UML System Models

Geri Georg, Member, IEEE Computer Society, Kyriakos Anastasakis, Behzad Bordbar, Member, IEEE,

Siv Hilde Houmb, Indrakshi Ray, Member, IEEE, and Manachai Toahchoodee

Abstract—Designing secure systems is a nontrivial task. Incomplete or faulty designs can cause security mechanisms to be

incorrectly incorporated in a system, allowing them to be bypassed and resulting in a security breach. We advocate the use of the

Aspect-Oriented Risk-Driven Development (AORDD) methodology for developing secure systems. This methodology begins with

designers defining system assets, identifying potential attacks against them, and evaluating system risks. When a risk is unacceptable,

designers must mitigate the associated threat by incorporating security mechanisms methodically into the system design. Designers

next formally evaluate the resulting design to ensure that the threat has been mitigated, while still allowing development to meet other

project constraints. In this paper, we focus on the AORDD analysis, which consists of: 1) a formal security evaluation and 2) a trade-off

analysis that enables system designers to position alternative security solutions against each other. The formal security evaluation

uses the Alloy Analyzer to provide assurance that an incorporated security mechanism performs as expected and makes the system

resilient to previously identified attacks. The trade-off analysis uses a Bayesian Belief Network topology to allow equally effective

security mechanisms to be compared against system security requirements and other factors such as time-to-market and budget

constraints.

Index Terms—Aspect-oriented modeling (AOM), Bayesian belief network (BBN), security analysis, trade-off analysis.

Ç

1 INTRODUCTION

DEVELOPING secure systems is a nontrivial task. We have
identified four issues where consistent, comprehensive

approaches can help designers create a system that meets its
project goals. First, designers of secure systems need effective
methodologies to systematically apply standards in the
context of a particular development project. Security stan-
dards such as the ISO Common Criteria [1], [2] and risk
management standards such as the Australian/New Zealand
Risk Management standards [3], [4] exist to aid secure
systems development; however, these standards generally
address system security in the broad sense, often require
extensive resources to use, and do not provide specific
methods to help designers verify that particular resources are
protected from specific kinds of attacks. They do not take into
account project goals other than security, such as time-to-
market, cost, effort, and compliance with governmental laws
and regulations.

Second, designers must correctly incorporate security
mechanisms into a system design, and provide assurance that
the resulting system design is indeed secure. Often, breaches
in security-critical systems pose unacceptable risks since they

can cause irreparable damage to sensitive data or to a
company’s image. To mitigate such risks, designers incorpo-
rate security mechanisms into the system. Security mechan-
isms, designed to protect against certain attacks, are typically
analyzed in isolation. However, the efficacy of an approach
often lies in the manner in which it has been integrated with
the application, so designers need to be able to analyze
security mechanisms in the context of the whole system.

Third, system designers need techniques that allow them
to compare alternative security mechanisms and decide
which best meets the needs of the given application and other
project development goals and constraints. Multiple me-
chanisms are often effective in protecting against a particular
kind of attack. For instance, to protect against unauthorized
access, a system design may incorporate access control lists
or capability-based mechanisms. The optimal mechanism to
use for a given application depends on how well the
mechanism protects the given application, and how well it
meets other project goals such as those mentioned above.

Finally, security mechanisms incorporated to protect
against different attacks may actually interfere with each
other, reducing their efficacy. For example, auditing may
detect and deter malicious activities in the system, but may
cause improper disclosure of sensitive data if the logs can
be accessed by unauthorized entities. Designers need
techniques that provide formal evaluation of these interac-
tions, prior to system implementation and deployment.

We propose an Aspect-Oriented Risk-Driven Develop-
ment Methodology (AORDD) [5], [6], [7] for designing
secure applications. AORDD combines security develop-
ment techniques, aspect-oriented techniques, and analysis
techniques to address these four issues. Our previous papers
provide high-level discussions of the techniques we use in
AORDD, and proof-of-concept examples for its security and

338 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

. G. Georg, I. Ray, and M. Toahchoodee are with the Computer Science
Department, Colorado State University, 1100 Center Avenue Mall, Fort
Collins, CO 80523-1873. E-mail: {georg, iray, toahchoo}@cs.colostate.edu.

. K. Anastasakis and B. Bordbar are with the School of Computer Science,
University of Birmingham, Edgbaston, Birmingham, UK.
E-mail: {k.anastasakis, b.bordbar}@cs.bham.ac.uk.

. S.H. Houmb is with the Services Platform Group, Telenor GBDR, Otto
Nielsens vei 12, 7004 Trondheim, Norway.
E-mail: siv-hilde.houmb@telenor.com.

Manuscript received 9 Oct. 2008; revised 10 July 2009; accepted 18 Nov.
2009; published online 1 Mar. 2010.
Recommended for acceptance by K. Goseva and K. Kanoun.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2008-10-0319.
Digital Object Identifier no. 10.1109/TSE.2010.36.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

trade-off analysis elements. By contrast, in this paper, we
discuss the analysis portion of the methodology in detail:
systematic formal evaluation and trade-off analysis of
alternative security solutions in complex systems design.

We recognize that in industrial systems development, a
perfect system is almost never achievable in the time frame
required and within the constraining budget, so we include
techniques that take into account these and other project
constraints. We also acknowledge that in an industrial
setting, the size of a development team (and a system design
team) may be quite large, and team members are often not
experts in security issues or in formal mathematical-based
evaluation techniques. We have, therefore, taken a prag-
matic approach to secure systems development, utilizing
existing techniques and developing a methodology that
supports a more formal approach by nonexperts while
realizing that the result may not be as precise and verifiable
as an organization might ultimately desire. AORDD steps
are, by consequence, quite flexible so that as new tools and
techniques become generally available they can be used to
add precision and verification to the methodology.

This paper makes two major contributions. The first is to
demonstrate how designers can provide assurance, at the
time of system design, that a security mechanism is effective
in protecting against a given security breach. The second is
to provide details of the trade-off analysis designers use to
compare alternative mechanisms during systems design.
We additionally discuss current and possible points of
automation in the methodology analysis, and provide
heuristics for activities that require human intervention.

The rest of the paper is organized as follows: Section 2
provides an introduction to our AORDD methodology and
explains the analysis steps that are our focus. Additional
background information regarding techniques we use for
analysis is included in this section. Section 3 describes the
e-commerce system that we use to illustrate our methodol-
ogy, an attack example on that system, and two potential
mitigating security mechanisms. Section 4 discusses formal
security analysis using Alloy, a declarative first-order logic
language with supporting tools designed for modeling and
analyzing complex systems. We demonstrate an Alloy
analysis on the example system and discuss its results.
Section 5 presents our trade-off analysis that uses Bayesian
Belief Network (BBN) technology, and the results of
applying it on our example system. We also discuss the
effect of changing trade-off priorities in the context of the
example. Section 6 discusses related work, and Section 7
concludes the paper with our future research.

2 BACKGROUND

2.1 AORDD Methodology

AORDD Methodology is targeted toward the development
of complex systems where there are competing project and
security goals. Under these conditions, it can be difficult for
a designer to determine how different parts of the system,
designed to meet different goals, interact with each other.
Performing security analysis in the context of the whole
system can help a designer understand these interactions
better. Performing trade-off analysis can help a designer
make informed choices when faced with multiple designs

that mitigate security threats equally well. AORDD trade-
off analysis allows designers to analyze various security
design solutions against properties such as required
security levels, and project constraints such as time-to-
market, budget, laws, and regulations at the same time, in a
single trade-off analysis.

We have been able to partially or fully automate portions
of AORDD, for example, security analysis is automated by
using the Alloy Analyzer and trade-off analysis by using
our BBN topology. We have developed the methodology
with an eye toward automating especially repetitive or
tedious tasks while recognizing that very complex systems
do require an investment of human expertise to develop.
Our goal is to make onerous and error-prone tasks
automated—leaving time for humans to apply their ex-
pertise where it is most needed.

The AORDD Methodology has two steps that must occur
prior to any analysis. First, system architects and designers
must create system functional models. Since the Unified
Modeling Language (UML) is the de facto software specifica-
tion language used in the industry, our tool chain requires
that these models be specified using the UML 2.0 [8]. Second,
designers must perform a risk assessment of the system. Risk
assessment begins with system stakeholders (e.g., end users,
designers, developers, and management) identifying sensi-
tive system assets such as system information or services.
Different stakeholders can place different values on an asset,
so the stakeholder and the value they assign to a particular
asset are both needed in our methodology. Designers must
develop security requirements for these assets and identify
possible threats against them, with the aid of security
standards such as ISO 14508: Common Criteria [1] and
ISO/IEC 13335-5: Guidelines for Management of IT Security
[9]. Threats are attacks on the system with the goal of
compromising assets. Designers and security experts must
also rank the potential threats. Designers also identify
potential security mechanisms that can mitigate specific
risks, as part of the assessment process. Designers can be
aided in a risk assessment by organizational experience or
security experts. Note that security expertise may be in the
form of international forum security postings.

In general, risk assessment is a very human-intensive
task; however, some techniques such as CORAS [10], [11]
are computer-assisted. Designers identify attacks associated
with unacceptable risk as targets for analysis. The specifica-
tions of the attacks are referred to as attack models. Designers
can model attacks separately or as a group, depending on
their desired approach. This activity should not include
every possible attack, but instead, it should focus effort on
the attacks that designers, system architects, and security
experts identify as being critical to the system.

AORDD supports an incremental approach to the design
of secure systems, so many steps are iterative, allowing
designers to create and analyze a more complete system
design each time. For example, system designers often add
security mechanisms into a system to mitigate a particular
security threat only to discover that the addition has opened
the way for a different threat, which may have already been
considered. By incrementally adding security mechanisms
as different threats are considered, and reanalyzing the
design in light of previously considered attack models,

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 339

designers can discover and address conflicts between
multiple security solutions or between security goals and
other project goals, prior to system implementation.
Designers decide the amount of iteration needed based on
project goals, for example, the desired security level or the
time constraints of the project, and based on the number of
risks that are identified.

We next present brief introductions to the major
technologies we use in our analysis. These are Aspect-
Oriented Modeling (AOM), Alloy, and BBN.

2.2 Aspects and Aspect Composition

We use aspect-oriented techniques to support analysis since
attacks are not usually confined to one functional module of
an application, but rather impact multiple modules.
Similarly, security mechanism designs that prevent attacks
affect multiple modules. Aspect-oriented methodologies
were developed to allow a modular approach to develop-
ment and reasoning of such crosscutting features. We use
AOM techniques to specify attack models and security
mechanism models. Aspects make it easier for designers to
understand, manage, and change these models separately.
Since models are developed separately, a library of reusable
attack and security mechanism models is feasible. These
models are all specified using the UML 2.0 [8]. We use tools
to support integration, or composition, with system func-
tional models. Although composition is largely automated,
human designers must specify where and how aspects
should be incorporated into a system design.

The aspects we describe in this paper are similar to those
of other AOM or Aspect-Oriented Programming (AOP)
approaches in that they represent a view of interest, e.g.,
security, and they are crosscutting. In AOM, crosscutting
means that an aspect model must be integrated in several
places across the main system functional modularity. In
AOP, crosscutting means that aspect code must be inserted
into multiple components of the implementation. In both
AOM and AOP, it is necessary to define what an aspect will
do, and where this action should be taken. Many AOP and
AOM techniques use the term advice for the action an aspect
will take and join points for where the action will be inserted
in the main system functionality. Point cuts are used to
specify more general rules of where to apply an aspect.
Often, advice, joint points, and point cuts are specified as
one entity, called an aspect.

We take a more general approach to AOM by defining a
generic aspect that specifies not only what the aspect should
do, but also where it can fit into a system design (by
specifying parameters in the generic aspect template). A
human designer must specify the generic aspect and its
parameters. We create context-specific aspect models from
generic aspect models by binding parameters in a generic
aspect template to model elements in the main functionality
design (which we term a primary model). Humans must
specify the parameters they want bound between the
generic aspect and the system design. Automated tools
create defaults for parameters that are not specified, and
instantiate the generic aspect template to create a context-
specific aspect. This approach means that generic aspect
models can be reused across multiple applications, whereas
in the advice/join point/point cut view of aspects, only an

advice can be reused. Point cuts and join points are specific
to the application in which the aspect will be inserted.

We compose context-specific aspect models and main
functionality designs to create models in which the aspect
has been integrated. In order for composition to produce a
meaningful model, the models being composed must be
specified at similar levels of abstraction. However, we do
not require any particular level of abstraction in our
techniques and tools. Therefore, designers can compose
and analyze a set of models at different levels of abstraction
to produce different kinds of information, depending on the
amount of detail available at a particular point in the design
cycle. Fig. 1 shows portions of a primary model and a
generic aspect in the form of sequence diagrams.

The portion of a primary model in Fig. 1a shows two
classes: ActiveClient and LoginManager. A message is sent
from ActiveClient to execute the requestLoginPage method in
LoginManager. The result of this operation returns a loginPage
message to ActiveClient. ActiveClient then executes an internal
method ProcessPage. A portion of a generic man-in-the-
middle (MiM) attack aspect model is shown in Figs. 1b and
1c. There are three classes: jSender, jAttacker, and jReceiver.
The “|” symbol at the beginning of any name in the generic
aspect model serves as an indicator that this element is a
parameter that can be bound to elements in the primary
model that are of the same UML type, prior to model
composition. The generic aspect Fig. 1b shows a message to
execute a method called jmethodCall to be sent to jAttacker,
and from jAttacker to jReceiver. There is a response, jreply,
that is sent back. Fig. 1c shows behavior that is not allowed
(indicated by an X mark), that is, some message or reply
going directly between jSender and jReceiver. Our composi-
tion techniques allow us to specify such elements that will be
removed prior to composition if they exist.

We specify bindings of generic aspect parameters to
primary model elements of the same type, then instantiate
the aspect to create a context-specific aspect model, which we
compose with the primary model. For example, using the
models in Fig. 1, we can specify that jSender should be bound
to ActiveClient, jReceiver should be bound to LoginManager,
jmethodCall should be bound to requestLoginPage, and jreply
to loginPage. There is no corresponding primary model
element to jAttacker, so our tools automatically create a
binding from jAttacker to Attacker.

Figs. 2a and 2b show the context-specific MiM aspect
model fragments with element names as specified in the
bindings discussed above. Fig. 2c shows the result of

340 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

Fig. 1. Examples of portions of (a) a primary model, and (b) and (c) a
generic MiM attack aspect. Parameterized model elements in (b) and
(c) have names beginning with “|”, while model elements indicated with
“X” will be deleted if they exist in the primary model.

composing the context-specific model with the primary
model, in this case producing a sequence diagram. Compo-
sition includes removing the direct messages between
ActiveClient and LoginManager, and adding the messages
from ActiveClient to Attacker and from Attacker to LoginMa-
nager. Composition also adds the final execution message of
the primary model, ProcessPage, to the composed model. Our
general composition algorithm is to identify elements in a
context-specific aspect model that have the same name as
elements in the primary model, and that are of the same
type and add these to the composed model if they do not
have the deletion mark X, e.g., Fig. 2b. Model elements in
either the context-specific or primary model that do not have
corresponding elements in the other model are also added to
the composition. This composition approach allows addition
of, for example, the Attacker object lifeline and the
ProcessPage message. Users can specify additional composi-
tion directives if this default behavior is not desired. Default
behavior and directives are discussed in France et al. [12],
[13], Georg et al. [14], [15], and Straw et al. [16].

We use AOM to specify generic attack models and generic
security mitigation mechanism models. We compose an
attack model with a system primary model to create what we
term a misuse model, that is, a model of the system whereby
some asset may be compromised through application of a
successful attack. Composing a security mechanism with
a primary model yields a security-treated system model. In a
similar fashion, composing an attack model with a security-
treated system model yields a security-treated misuse model.
We perform security analysis on misuse models and trade-
off analysis on security-treated system models along with
the results of security analysis. Misuse models typically
consist of both static class diagrams and dynamic behavior
diagrams. In this paper, we demonstrate dynamic behavior
specified as sequence diagrams, but these diagrams are not a
requirement of the techniques we use. We find that sequence
diagrams are especially convenient when dealing with
behavior such as security protocols, and since our examples
use such protocols we have chosen to utilize sequences in
our modeling and analyses.

2.3 Alloy

We approach analysis in AORDD in two steps. First, we
perform a formal security analysis to give assurance that the
system, created by integrating a security mechanism model,

is indeed resilient to the targeted attack. We transform a
UML misuse model into Alloy and use the Alloy Analyzer
[17], [18] to reason about its security properties. The results
of the analysis either give assurance that the security
properties exist, or show that they do not.

Alloy is a fully declarative first-order logic language
designed for modeling and analyzing complex systems. An
Alloy model consists of a number of signature and relation
declarations. A signature specifies entities used to model the
system, and relation declarations specify the dependencies
between such entities, allowing the designer to specify
complex structures. Alloy is supported by a fully automated
constraint solver, called the Alloy Analyzer, which analyzes
system properties by performing an exhaustive search for
model instances that violate properties of the system. Users
must express the properties to be checked as Alloy logical
statements that are called assertions. The Alloy Analyzer
translates a model into a Boolean expression and analyzes it
using embedded SAT-solvers. The user needs to specify a
scope to the tool. A scope is an integer number used to create
a maximum bound of the domain of model elements to make
the analysis tractable. Bounding enables the tool to create
finite Boolean formulas for evaluation by the SAT-solver.

Considerations regarding the technique. There are
several considerations that users need to take into account
when using Alloy. In particular, if the Alloy Analyzer
produces an instance that violates an assertion (a counter-
example), we can infer that the specified property is not
satisfied. However, for a chosen scope, if no counter-
example emerges, it is possible that the property is violated
in a larger scope. The underlying idea of the Alloy Analyzer
is to deploy automated analysis to inspire confidence in the
correctness of a design. The larger the scope, the more
confidence is warranted, but the longer the analysis will
take. Experience has shown that design flaws are often
discovered in small scopes [18].

Choosing the right scope, and the degree of confidence a
given scope provides, depends on the problem and the
security property being analyzed. Currently, there are no
generic guidelines on how to choose the scope for a given
problem. However, when developing security-critical sys-
tems, where a higher degree of confidence is required, a
designer can use the Alloy Analyzer as a first line of defense
to discover flaws in the design of a system. We approach
the issue of scope by starting with a small scope, and then,
while the Alloy Analyzer does not provide a counter-
example, increasing the scope until the time required for the
analysis is not tractable or becomes burdensome. Table 2 in
Section 4.1.3 shows analysis times for one of the security
mechanism analyses included in this paper: No counter-
example was found up to a scope of 20. By contrast, the
analysis of the other security mechanism discussed in this
paper produced a counterexample using a scope of six.

If the analyzer does not produce a counterexample, other
techniques such as Model Checking and Theorem Proving
can also be used to ensure that the security property is not
violated. Such techniques are more time-consuming and
require human intervention and expertise. Our approach
can therefore save time and resources by using the Alloy
Analyzer to rapidly discover a number of flaws that would
otherwise require much more time and resources to

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 341

Fig. 2. (a) and (b) Portion of context-specific MiM aspect model and
(c) composed model fragment. The generic aspect from Figs. 1b and 1c is
instantiated using user-specified bindings for generic parameter names
to create Figs. 2a and 2b. A default composition algorithm is used to
compose these with primary model from Fig. 1a to create Fig. 2c.

uncover. For more details on Alloy and its comparison with
other formal methods, refer to Jackson [18].

Sometimes a user may incorrectly assume that a security
property is satisfied when no counterexample is produced by
the analyzer, when, in fact, the model is overconstrained or
the scope is not large enough to produce an instance of the
model. Therefore, before checking any assertion, it is
imperative that the user ask the Alloy Analyzer to generate
an instance of the model. If the analyzer produces an
instance, then the user can check for counterexamples to
the assertions.

The Alloy Analyzer allows us to check for the possibility
of a security property violation in the system model. This is
achieved by checking if a specific attack, such as the man-
in-the-middle attack, can occur. UML models for each
attack scenario are created and integrated into the security-
treated system. The models are then transformed into Alloy
via UML2Alloy and the security property is checked by the
Alloy Analyzer. Therefore, our approach does not allow
general, a priori security evaluation of a system design.
However, our method enables the user to work with UML
models and benefit from the capabilities provided by Alloy.

2.4 Bayesian Belief Networks (BBNs)

The second step in AORDD analysis is to compute a BBN
trade-off analysis network. BBN is a powerful technique for
reasoning under uncertainty, using disparate information
[22], [23]. Input to the BBN consists of the evidence from the
security analysis, risk information from other AORDD steps,
and trade-off parameters. The trade-off parameters consist of
project-specific goals, including required security level, time-
to-market, budget, laws and regulations, and business goals.
The trade-off analysis computes a fitness score, showing how
well the proposed security mechanism meets the project
goals. However, project-specific goals are rarely static over
the course of system development, so our BBN topology
allows designers to easily change parameters and priorities
in real time as they explore candidate security mechanisms.

A BBN is a connected and directed acyclic graph that
consists of a set of nodes (also called variables) and directed
arcs (also called links). Nodes correspond to events or
concepts and are structured into either: 1) a belief network
(Fig. 3a) or 2) a decision network (Fig. 3b). A belief network
consists of a hierarchy of stochastic nodes (shown as ovals in
Fig. 3). Stochastic nodes can be observable, in which case they
model information that can be directly observed or obtained.
They can also be intermediate, in which case they represent
information connecting observations with a target node. A
target node holds the result of a BBN computation and
represents the outcome of the network. Decision networks

include at least one decision node (shown as a rectangle in
Fig. 3b), in addition to any number of stochastic nodes. A
decision node is supported by a utility node/function
(represented by a diamond shape in Fig. 3b), which holds
the rules or decision preferences of the decision variable. A
decision variable is the target node of a decision network.

Nodes denote the variables and the directed arcs
represent dependencies between the variables, i.e., a BBN
expresses the conditional probability relations between
variables. Possible outcomes of a node are specified using
a set of states, and multiple nodes may be used to determine
the state of a node. States of a node are expressed using
probability density functions (pdfs), which express the
confidence that a node will be in a particular state. The
value of a pdf at a node depends on the states of the nodes
connected to it. The pdf for a node is referred to as the Node
Probability Table (NPT). The status of a topology is
continually updated as different types of information are
entered and propagated backward and forward along the
edges of the network. Several networks can be connected
into a topology consisting of one top-level network and a
number of connected subnetworks. In this case, the target
node of each subnet holds its outcome. We use this type of
structure to increase the flexibility and evolution of our
trade-off analysis.

To compute a topology, a user inserts information into
observable nodes, which is propagated to the target node
via any intermediate nodes. Propagation uses causal
relationships defined by the topology and the NPT or
utility function associated with each node. There are two
types of evidence that can be entered at the observable
nodes in a BBN. These are hard and soft evidences. Hard
evidence comes from actual observations that a particular
node is in a particular state. Soft evidence is information
that cannot be verified or observed, such as expert opinions
or experience from similar systems. Soft evidence is
expressed using probability distributions. BBN is based on
the Bayesian interpretation of probability (see Fenitti [19]).
For more information on BBNs, the reader is referred to
Jensen [20] and Pearl [21]. For more information regarding
the highly relevant work on application of BBNs in software
safety assessment, the reader is referred to Gran [22] and
the SERENE project [23].

Considerations regarding the technique. There are three
considerations that a designer should take into account when
using BBN technology: the nature of BBN computations, the
relations of hard and soft evidence to those computations,
and the affect of network topology on the computations.

BBN is a technique used to reason in the face of
uncertainty. The computation of a BBN topology provides
the probability of a variable state, but not verification of its
truth. The more confidence we have in the data input to the
BBN, the more confidence we can have in the resulting
computation, but the computation still represents a prob-
ability. Approaches such as trust-based information aggre-
gation schemas can help users assess trustworthiness of
information input into a topology [5].

Hard data can be obtained from relevant prior observa-
tions (e.g., from honeypot installations where a clone
system is deployed and actual attacks are measured), while
both hard and soft data can be obtained from expert

342 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

Fig. 3. Hierarchy and node types in BBN: (a) belief network with
observable nodes and a target computation node and (b) decision
network with a target decision node supported by a utility function that
holds rules/decision preferences.

opinions, experience with similar systems, and national and
international forums on security. In general, all kinds of
information can be used as input to a BBN, since the
technique is designed for handling disparate information.

There is no rule as to how much hard or soft evidence is
required for the trade-off analysis BBN topology to aid in
security decisions. Security decisions are very subjective by
nature and performed by humans interpreting the informa-
tion given to them. Our goal is to promote the use of sources
of hard evidence to enable more informed decisions that are
less biased on the trust between the decision maker and the
information source. We support this goal with our trade-off
analysis. The trade-off analysis is a best effort approach that
represents a step forward from the current subjective and
often highly biased security decision processes.

BBN is very flexible, and a topology can be quite
sensitive to some of its variables, so care must be taken
when using the technique. The topology we present in this
paper is stable and has been used for a number of trade-off
cases. However, it is possible for a designer to change the
network to tailor it to a new situation, including changing
the specification of affected NPTs to capture the effects that
the changes should have on target nodes. In this case, the
designer must also perform a sensitivity analysis to ensure
that the updated topology and associated NPTs achieve the
desired affects. Section 5.6 includes a brief discussion of
topology sensitivity, and ways to address it.

2.5 AORDD Analysis Process Steps

Fig. 4 shows a UML activity diagram that describes the steps
in an iteration of AORDD analysis. The solid circle and
outlined solid circle shown in Fig. 4 represent the initial and
final states (respectively) of an AORDD analysis. Ovals are
activities (four in this diagram), and rectangles are objects
produced or consumed during the activity. Solid arrows
show control flow, while dashed arrows show flow of objects
among activities. The dashed arrow into the Security Solution
Treatment Level parameters object indicates that information
from Analyzer results is needed by it. The first three activities
produce an evaluation of the security provided by a security
solution to protect against a successful attack. The fourth
activity results in a fitness score for the security solution with
respect to security and other trade-off parameters. The
abbreviations shown in parenthesis are used in the trade-off
analysis discussion in Section 5.

Based on the results of the security evaluation, a designer
might decide to iterate the security analysis steps with a

different security solution prior to performing any trade-off
analysis. Similarly, based on the fitness score, a designer
might decide to iterate the trade-off analysis, changing the
priority of trade-off parameters or relaxing some of them. In
practice, security acceptance criteria are often relaxed in the
face of budget and/or time-to-market constraints. Relaxing
constraints can have a great effect on fitness score. We
discuss flexibility in trade-off analysis in Section 5.5.

2.5.1 Security Analysis

We use the UML2Alloy tool to transform a UML model into
Alloy. Its input consists of a UML class diagram in XML
Metadata Interchange (XMI) format [24], and an accom-
panying OCL [25] specification of behavior. We therefore
begin with the Abstract & Transform activity as the first
activity in AORDD analysis. This activity takes as input a
UML misuse model that a user creates by composing an
attack model with either a system model or a security-
treated system model, as discussed in Section 2.2. A
designer must abstract the misuse model to only include
elements associated with testing the security properties of
interest. We have created a set of heuristics to aid in this
process, which we describe in Section 4. Details can be
found in our previous work [15]. We use a UML CASE tool,
ArgoUML [26], to create the UML class diagram and OCL
specification. ArgoUML, like most UML tools, allows us to
export the model in XMI format.

The next activity, Create Alloy Model using UML2Alloy,
applies UML2Alloy to the XMI representation. UML2Alloy
implements transformation rules to create an Alloy model
[27], [28]. This model is input to the next activity Analyze
with Alloy Analyzer. The Alloy Analyzer searches the state
space exhaustively on all possible valid instances of the
model, up to the user-specified scope, for a counterexample.
The output from the analyzer must be interpreted by a
human, and be input into the BBN topology via computer
assistance. If a counterexample is produced, the input to the
BBN should reflect that the security mechanism does not
preserve security. Otherwise, the input represents the
analysis assurance that the security mechanism included
in the misuse model provides protection against the attack.

Considerations regarding the technique. There are a
number of OCL constraints that cannot be directly
expressed in Alloy and are thus not supported by
UML2Alloy (for example, the OCL “iterate” construct).
Another issue is that OCL lacks inherent support to capture
temporal properties. As a result, different methods have
been proposed to extend OCL with the ability to express
temporal constraints [29]. It is, however, possible to depict
simple but crucial constraints related to time if a designer
models time explicitly and uses conventional OCL to
express constraints. Details on exactly which OCL state-
ments are supported by UML2Alloy are presented in our
previous work [27].

2.5.2 Trade-Off Analysis

Our trade-off analysis BBN topology consists of multiple
subnetworks that relate to a security solution and security
analysis. This is because a simple security analysis output is
not sufficient for a designer to determine whether a security
solution is adequate. Analysis either proves a particular

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 343

Fig. 4. UML activity diagram showing steps in AORDD security (first
three activities) and trade-off (fourth activity) analyses. Activities are
represented as ovals and objects that they use or create as rectangles.
Solid arrows indicate control flow and dashed arrows indicate object
information flow.

successful attack path (misuse) to be executable, or provides
evidence that it is not executable. However, the existence of
an attack path does not imply that the attack will actually
happen. It means that there exists a possibility of an attack.
A successful attack depends on other factors, such as the
likelihood or frequency of the attack and the mean time and
effort needed to launch a successful attack. These latter
characteristics in turn depend on the skills, motivation, and
resources of the attacker [2]. Our trade-off analysis takes
these characteristics into consideration, along with the
impact of a successful attack on the value of system assets.
We also include the project-specific consequence of incor-
porating a security mechanism to prevent the attack, in the
form of variables related to the development effort in terms
of cost and time.

Our trade-off topology consists of four subnetworks,
which are discussed in detail in Section 5. The subnets are
shown as object inputs to Perform Trade-Off Analysis using
BBN Computation activity in Fig. 4. The information
categories represented by the trade-off subnets are the
static security level variables (SSLE), risk level variables
(RL), the security solution treatment level variables (SSTL),
and the trade-off parameters (TOPs).

The SSLE variables represent information regarding the
criticality of the system assets, along with stakeholder asset
value information, that system designers obtain from the
risk assessment process. The RL variables represent infor-
mation regarding identified security risks. Designers obtain
part of this information during risk assessment and part
through security analysis of an initial system misuse model.
Recall that risk assessment is a required step of the AORDD
methodology that must be performed prior to any analysis.

SSTL variables represent information relevant for
measuring the abilities of a security solution to prevent
the attack, along with development and maintenance costs.
Again, designers obtain part of this information through
security analysis, and part from the risk assessment
process. The TOP variables consist of relevant project
goals and their relative priorities. This information comes
from various project stakeholders and decision makers.
The trade-off parameters are used to compute a fitness
score that reflects the ability of the security solution to
meet the set of trade-off goals.

We use the Hugin tool [30] to specify and compute the
trade-off topology. We present BBN diagrams and compu-
tations in this paper using output from this tool. Fig. 5
shows a Hugin representation of the top-level portion of the

topology. Each oval section of the topology is a subnetwork.
The topology computes a decision variable Fitness Score

(rectangle with thick border) for a security solution using
four subnets (ovals with dotted and thick outlines). Subnet
values and a decision variable utility (diamond) are used to
compute the score.

A user must populate the BBN topology parameters,
with computer assistance, then computing the BBN topol-
ogy is fully automated. However, the results must be
interpreted by a human designer.

3 EXAMPLE E-COMMERCE SYSTEM

We next present the example we will use to illustrate
AORDD analysis. This section also presents a possible
attack against the example system and two potential
security solutions to prevent a successful attack.

Our example is an e-commerce platform called ACTIVE.
ACTIVE provides services for electronic purchasing of
goods over the Internet [31]. The IST EU-project CORAS
[10], [11] performed three risk assessments of ACTIVE in
the period 2000-2003. The project identified several security
risks, including attacks against user authentication in the
login service.

Fig. 6 shows the primary model sequence diagram
associated with logging into the system. There are four
design classes involved, one running on a user’s local
machine (ActiveClient) and three running on a machine over
the Internet. The ActiveClient on the user’s local machine
communicates with an ACTIVE system login manager
(LoginManager), which uses two other classes to: 1) authenti-
cate the user (UAcctManager) and 2) provide user-specific
information (UProfileManager). A user runs ActiveClient to
request a login page from LoginManager. When the loginPage
is returned, the user enters a user name (uname) and password
(pword) that are transmitted to LoginManager. UAcctManager
authenticates the user, and LoginManager obtains user-
specific information, a profile, from UProfileManager. It uses

344 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

Fig. 5. Top-level topology of the trade-off analysis BBN. The target of the
computation is the decision variable Fitness Score (rectangle with thick
border). Four subnets (ovals with dotted and thick outlines) affect the
computation.

Fig. 6. Original ACTIVE login sequence. A user runs ActiveClient on a
local system to request a login page from a remote ACTIVE system
(LoginManager) and to provide credentials. A tailored homePage is
returned if the credentials are accepted and the user has an ACTIVE
profile; otherwise, a visitorPage is returned.

this information to build a homePage that is returned to the
user. If the profile does not exist or the user cannot be
authenticated, a visitorPage is returned that does not contain
any user-specific information. Alternative actions are shown
in Fig. 6 using an alt box; the dotted line across the box
separates the actions, and guards such as [acct <> NULL]
specify the conditions under which each alternative action
should be taken.

3.1 The Man-in-the-Middle Attack

The risk assessment performed by the IST EU-project CORAS
demonstrated that the ACTIVE login service is vulnerable to
an MiM attack, which allows an attacker to intercept
information that may be confidential. This type of attack
has two variations: passive and active. During a passive
attack, the attacker eavesdrops on the message flow between
a requestor and authenticator. By contrast, an attacker
participates in the communication during an active attack:
changing, deleting, or inserting messages between the
requestor and authenticator. The generic MiM model in
Figs. 1b and 1c specifies a passive attack; messages pass
through the attacker, but are not changed prior to forwarding.

In order to understand the impact, a man-in-the-middle
attack has on the e-commerce login service, we need to
generate a misuse model and analyze it using the Alloy
Analyzer. The results will indicate if the primary model can
be compromised by the attack, in which case the analyzer
will produce a counterexample.

The misuse model of the ACTIVE login service and a
passive MiM attack is presented in Fig. 7. We create the
misuse model by instantiating a generic man-in-the-middle
aspect model, as shown in Figs. 1b and 1c, in the context of
the ACTIVE login service, and compose the aspect with the
login sequence. A partial explanation of this process is as
follows: We must instantiate the generic aspect twice, to
handle the two messages passing back and forth from
ActiveClient to LoginManager. For example, in the first
instantiation, jmethodCallðÞ is bound to requestLoginPage()

and jreply is bound to loginPage. jSender is bound to
ActiveClient and jReceiver is bound to LoginManager. We use
these bindings for the generic aspects, as shown in Figs. 1b
and 1c. We use our default composition algorithm to
compose the context-specific version of the generic aspect
from Fig. 1c. This composition removes the direct messages
passing between ActiveClient and LoginManager from the
composed model. When we compose the context-specific
aspect derived from Fig. 1b, the default algorithm adds the
Attacker lifeline and the messages from ActiveClient to
Attacker, and then, to LoginManager, and back. The second
message is handled in a similar fashion, with two bindings
of the reply message, once for the homePage and once for the
visitorPage. The remaining portions of the primary model
are left intact in the composed model since they are present
in the primary model.

The misuse model in Fig. 7 differs from the original login
service sequence diagram of Fig. 6 in that all communica-
tion between ActiveClient and LoginManager goes through
Attacker. In order for Attacker to obtain registered user
information, it can either eavesdrop until this information
passes by, in the form of a homePage, or until uname and
pword pass by, which will allow Attacker to impersonate the
registered user at a later time. Either of these situations
indicates a successful attack.

The misuse model shown in Fig. 7 has been transformed
into an Alloy model and analyzed using the Alloy
Analyzer, as described in Section 4. The result of this
analysis is a counterexample, which indicates that the attack
can succeed. These results are used in the Risk Level (RL)
subnet of the BBN trade-off analysis that is discussed in
Section 5.2. We next discuss two security mechanisms that
can be used to protect a system against an MiM attack.

3.2 Security Mechanisms to Counter
Man-in-the-Middle Attacks

System designers must identify security properties relevant
to mitigating a risk to system assets. We identify properties
according to the ISO/IEC TR 13335:2001 Information
Technology—Guidelines for Management of IT Security
[9]. This standard defines seven security properties:
accountability, authenticity, availability, confidentiality,
integrity, nonrepudiation, and reliability. The security
properties relevant to protecting the ACTIVE login service
assets from an MiM attack are authenticity, confidentiality,
and integrity.

We have incorporated and analyzed two mechanisms
that provide these properties. The first mechanism is Secure
Remote Password (SRP) [32], [33] and the second is Secure
Sockets Layer (SSL) [34]. SSL is an authentication mechan-
ism often used in Web applications and is part of commonly
available Web clients. It operates just above a reliable
transport layer (e.g., TCP). SRP is an alternative mechanism
that is not generally available at lower levels of commu-
nication and must be added at the application level. Both
mechanisms provide user authentication, data confidenti-
ality, and data integrity. SSL is often used to authenticate a
server to a client and can also be used to authenticate a
client to a server, while SRP always authenticates both
parties to each other. Confidentiality is provided through
symmetric key encryption in both mechanisms. SSL

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 345

Fig. 7. Misuse model of original ACTIVE login sequence and MiM attack,
created by composing primary login sequence model with context-
specific MiM passive attack models. All communication between
ActiveClient and LoginManager goes through Attacker. The attack is
successful if Attacker obtains homePage, or uname and pword.

provides additional integrity through the use of hashed
message digests, while SRP relies on encryption to provide
integrity.

3.3 Incorporating SRP Authentication in the
Application

SRP is based on generating symmetric encryption/decryp-
tion keys in a client and server without passing secret
information between them. Instead, tokens are passed back
and forth, and each side verifies the other’s token, to
provide both client and server authentication.

SRP requires that the client and server have each
received portions of a shared secret from a trusted source,
usually based on a password. The client has the password,
and the server has a verifier string created from the
password. Both items must be kept secret. The client and
server must also agree upon a generator function that is
used to create a key, and a large prime number. SRP begins
when a client creates an expression using the generator
function, a random number, and the large prime number,
and sends these to the server, along with its identity, as part
of an initiation message (i.e., startComm() in Fig. 8). The
server retrieves the verifier string associated with the client
identity. If no verifier string is found, the server aborts the
communication. Otherwise, the server creates an expression
from the verifier string, the generator function, and the
large prime number, and sends it back to the client. The
client generates a key from this expression and the pass-
word, while the server generates a key from the expression
it received from the client and the verifier string. The client
creates a token using its key and the server expression and
sends it to the server for verification. If the server cannot
verify the token, it aborts the communication. Otherwise,
the server next creates a token from its key, the client token,
and the client expression, and sends it to the client for
verification. If the client verifies this token, authentication
has taken place between both parties and the client can use
its key to encrypt a message to be sent to the server. The
server uses its key to decrypt the message and act on it.

We have defined a generic SRP aspect that consists of the
following three subaspects. Part A specifies authentication

and key generation between a client and server. Part B
specifies deletion of any previously existing authentication
messages between the client and server and any helper
classes the server might have used to authenticate the server
(along with associated messages). Part C specifies message
transfer between a sender and receiver including message
encryption prior to being sent and decryption upon receipt.

We create an SRP security-treated login service model in
several steps. Here, we discuss the steps needed to
incorporate SRP authentication and key generation into
the primary model. First, we create a context-specific
subaspect of Part A by binding the aspect client to
ActiveClient and the aspect server to LoginManager. We also
bind the client identity to uname. Second, we create a
context-specific model of Part B, specifying that the
requestLoginPage() and loginPage messages are previously
existing authentication messages, UAcctManager is a helper
class for authentication, and validate() and acct are also
messages associated with this previous authentication. We
compose these context-specific aspects with the primary
model from Fig. 6 to incorporate SRP authentication and
key generation. Fig. 8 shows a portion of the resulting
model. Note that: 1) Message and helper classes from the
previous authentication are removed and 2) SRP authenti-
cation and key generation occur with ActiveClient serving as
a client and LoginManager serving as a server. A misuse
model must then be created by composing this security-
treated model with a generic MiM aspect model, as we
discuss next.

3.4 Creating the Misuse Model of the
Security-Treated Primary Model

Once security mechanisms have been incorporated into the
login service primary model, we need to verify whether the
security properties of authenticity, confidentiality, and
integrity are preserved in the presence of the man-in-the-
middle attack. We therefore create a security-treated misuse
model to analyze these properties using the Alloy Analyzer.
The man-in-the-middle attack we compose with the
security-treated system is an active version of the attack,
where the Attacker can change and insert messages flowing
between the client and server. Instantiating this generic
attack aspect is more complex than instantiating a generic
passive attack because some security domain knowledge
must be used to decide what messages need to be changed,
inserted, or deleted to promote a successful attack. For user
authentication, personal information, such as name, a
personal expression, a personal certificate, or the like, can
often be substituted to fool a server or client. Since
communication between a client and server is encrypted
as part of the SRP mechanism, a successful attack occurs if
the attacker can obtain a decryption key.

We show a portion of the SRP security-treated misuse
model in Fig. 9. It is similar to the misuse model of Fig. 7 in
that all communication between ActiveClient and LoginMa-
nager pass through Attacker. However, the active attack
differs in three ways: 1) Attacker substitutes its own
expression and name in the startComm message (aExpr and
aname); 2) Attacker generates its own key and token (key and
aTok); and 3) Attacker substitutes its token for that of the

346 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

Fig. 8. Portion of SRP security-treated system model, showing
composition of SRP authentication and key generation with primary
model of Fig. 6. Original authentication using uname and pword is
removed, and SRP is included.

ActiveClient in the verify message (aTok). All other messages
are simply passed through Attacker to the intended recipient.

The result of substitutions by Attacker, as part of a
successful attack, allows Attacker to generate the same key as
LoginManager. Attacker is thus able to decrypt messages from
LoginManager meant for ActiveClient, such as the homepage.

3.5 Creating a Misuse Model for the SSL Mechanism

SSL provides authentication through certificate checking,
and confidentiality and integrity using secret keys gener-
ated by the client and server. Although authentication is
normally only used to authenticate a server, client authen-
tication can also be requested. A certificate check may be
minimal, in which case only a few items in the certificate are
checked (e.g., whether it has been signed by a trusted
authority), or it may be more thorough and include
checking the certificate IP address against the desired
server address, and checking that the certificate is not on a
revocation list. In the discussions that follow, we assume
minimal certificate checks.

The misuse model used to analyze SSL is created by first
composing the primary login sequence model with a
context-specific SSL aspect model to create a security-
treated model. Then, the security-treated model is com-
posed with an active man-in-the-middle attack. The SSL
security-treated system and misuse models may be found in
our related technical report [35].

4 FORMALLY VERIFYING SECURITY PROPERTIES IN

THE MISUSE MODEL

We use the Alloy Analyzer [17], [18] to help reason about
the SRP and SSL security-treated misuse models and the
ability of these mechanisms to protect the ACTIVE login
service from an MiM attack. We first discuss the SRP
security-treated misuse model. We abstract the UML
misuse model to a format suitable for the UML2Alloy tool,
which transforms it into an Alloy model. We then run the

Alloy Analyzer on the model to search for counterexamples
to assertions about the security properties we wish to verify.
In order to abstract the security-treated misuse model
properly, we identify the security properties in detail and
ensure that relevant elements remain in the abstracted
model. Recall that the threat posed by a man-in-the-middle
attack is to obtain access to system assets. In the original
ACTIVE login sequence, this threat is realized when the
attacker obtains a user name and password or a homepage
(uname, pword, and homePage, respectively).

The system assets are a bit different in the SRP security-
treated misuse model shown in Fig. 9 since the uname, pword
pair no longer exists. The homePage asset still exists, but an
attacker can no longer use eavesdropping to gain access to it
since it is encrypted using the key generated during SRP
authentication. The attacker therefore needs to obtain enough
information to generate the key used by LoginManager to
encrypt the homepage.

We define two security properties for our example as
follows: 1) If the SRP authentication succeeds and a homePage
is sent to ActiveClient, Attacker does not have the secret key
used by LoginManager to encrypt the page, and 2) if Attacker
does gain access to this key, the SRP authentication must fail
and no homePage or visitorPage can be sent to ActiveClient. In
the following sections, we explain how the Alloy Analyzer
can be used to verify that these properties hold.

4.1 Analyzing the Misuse Model for Security
Properties

Recall from Fig. 4 that the first step in formal security
analysis is to abstract and transform a misuse sequence
model into a UML class diagram and accompanying OCL
behavioral specification. The class diagram depicts the
entities that take part in the sequence diagram, and defines
their methods and messages. OCL statements specify
method behavior in the form of pre and postconditions,
and the order of execution represented in the original
sequence diagram. We use UML2Alloy [28] to automati-
cally transform the class diagram and OCL statements into
an Alloy model, which we subsequently analyze using the
Alloy Analyzer.

4.1.1 Stage 1: Abstracting a Sequence Diagram

We first simplify the original misuse model (e.g., Fig. 9) by
removing elements so that UML2Alloy produces a model
that only contains items necessary to reason about its security
properties, e.g., 1) and 2) above. We recognize that identify-
ing which security properties are relevant to a system is a
design task that falls in the purview of security engineering.
Such design tasks require deep insight into the system and
cannot be automated. However, it is possible to support
security engineering tasks as we briefly discuss in Section 7.

We discuss abstraction to test security property 1),
which depends on a successful SRP authentication. The
protocol is successful if the sequence reaches the true
portion of the [resC ¼ OK] guard (in the third nested alt
box of Fig. 9). We need to test whether Attacker has the
same key as LoginManager.

We have developed a set of heuristics to help designers
abstract a misuse sequence diagram [15]; however, abstrac-
tion is essentially a user-driven process. We proceed as

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 347

Fig. 9. Portion of SRP security-treated misuse model including active
MiM attack. If successful, Attacker substitutes its expression (aExpr),
identifier (aname), and token (aTok) in the SRP authentication, allowing
it to generate the same key as LoginManager. Subsequent messages
can then be decrypted by Attacker.

follows, referring to Fig. 9: First, we analyze the tests
included in each alt box, the variables used in these tests,
and the dependencies of each variable—that is, the
variables and messages that affect their value at the time
of the test. For example, the outermost alt box in Fig. 9
contains the test ½vStr !¼NULL�, which utilizes the
variable vStr. This variable is returned as a result of the
retrieveVstr(aname) message from LoginManager to UVerif-
String. Thus, vStr has a dependency on aname. The value for
aname was obtained from the message startComm(aExpr,
aname) sent from Attacker to LoginManager. We derive a
similar dependency set of variables and messages for the
second alt box (with the test ½resS ¼ OK�), and finally, the
third alt box (with the test ½resC ¼ OK�). The final set of
dependencies gives us the model elements needed to decide
whether the authentication is successful. We perform a
similar analysis to determine the messages and variables
that go into generating the key, then remove all model
elements that are not in these dependencies.

The next part of the abstraction consists of constructing the
class diagram and accompanying OCL that will be used as
input to UML2Alloy. We first specify classes for the lifelines
still left in the abstracted sequence diagram. We create
methods for these classes that are named for the messages
received by the object lifeline in the sequence diagram. For
example, looking back at Fig. 9, we will create a class named
LoginManager. In the examples below, we have created a
method called receiveStartCommFromAttacker, named for the
startComm message sent to LoginManager from Attacker. We
must also add a method named main, essentially to start the
sequence. This method is placed in the ActiveClient class, and
its purpose is to invoke the receiveStartCommFromClient
method in Attacker. We add variables that are used in
methods as attributes to the class diagram, and we add
relations between classes that send and receive messages.

Fig. 10 depicts a portion of the class diagram we created
after abstracting the sequence diagram in Fig. 9. It shows
classes corresponding to lifelines in the sequence diagram,
i.e., ActiveClient. Fig. 10 also shows attributes, their
corresponding types, and methods in the classes. Attribute
types denote enumerations we define since Alloy does not
have built-in data types such as integers. Each enumeration
type defines a set of literals, which represent the distinct
values the type can have. We also abstract internal method
calls shown in Fig. 9 to class attributes. Thus, for example,
we abstract cExpr ¼ genCExprðgenFunc; prime; randÞ to

the value of the expr attribute of the ActiveClient. To show
that when the parameters are changed, a different value of
expr is obtained, we use an enumerated type (ExpressionType

in Fig. 10) that defines different literals.
We must next create textual OCL specifications of the

methods in the class diagram that specify system invariants
and behavior. We specify these methods using OCL pre and
postconditions. Preconditions are OCL statements that must
be satisfied before the invocation of a method. Postcondi-
tions are true after the execution of the method. For the
purpose of analysis, the specification needs to have an entry
point, which in this case is the main() operation of the
ActiveClient class.

We name the relationship ends between classes for
navigation purposes in the OCL pre and postconditions. For
example, to navigate from ActiveClient to Attacker, we use
the at role on the relationship between these classes. Thus,
the OCL fragment to specify the invocation of the
receiveStartCommFromClient method in Attacker, from Acti-
veClient, uses at.receiveStartCommFromClient(). Fig. 11 shows
the OCL definition of the main() method of the ActiveClient
class. The OCL statement specifies that the values of the
name and expr attributes of every ActiveClient in the model
are the Enumeration literals cName and cExpr, respectively.
It also specifies that the receiveStartCommFromClient()
method of the Attacker should be invoked.

The receiveStartCommFromClient() method of the Attacker
corresponds to the first message passed by the ActiveClient to
the Attacker in the abstracted version of the sequence, as
shown in Fig. 9. Its OCL specification is shown in Fig. 12. The
Attacker replaces the name and expr it receives with its own
and invokes the receiveStartCommFromAttacker() method.

The specifications of the rest of the methods defined in
the abstracted class diagram are similar: The methods set
the values of local attributes depending on the messages
received and then invoke a method that simulates the
passing of messages between the lifelines of the sequence
diagram.

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

Fig. 10. Portion of misuse model class diagram used for UML2Alloy tool
translation. A user creates the diagram by abstracting the SRP security-
treated misuse model shown in Fig. 9 to retain messages and variables
needed to test security properties. Class method names correspond to
the retained messages.

Fig. 11. OCL specification of the main() method of the ActiveClient class.
The specification sets class attributes name and expr, and invokes the
receiveStartCommFromClient method in the Attacker class.

Fig. 12. OCL specification of the receiveStartCommFromClient()
operation of the Attacker class. The specification sets Attacker attributes
name and expr, and invokes the receiveStartCommFromAttacker
method in the LoginManager class.

4.1.2 Stage 2: Using UML2Alloy to Generate the Alloy

System Model

As depicted in Fig. 4, the UML2Alloy tool is used to create
an Alloy model from the class diagram and associated OCL
specification. The OCL specification defines system beha-
vior, and users must also develop OCL expressions for the
security properties they want to check, as discussed below.
The user must create an XMI format of the class diagram
and OCL specification, using a UML design tool.

UML2Alloy reads the UML model data from the XMI file
and generates an equivalent Alloy model. UML2Alloy then
uses the Alloy Analyzer API to carry out fully automated
analysis on the generated Alloy model. (Note that in this
paper, we used UML2Alloy to automatically generate the
Alloy model from the UML model and then used the Alloy
Analyzer as a stand-alone tool to carry out the security
analysis.) If the Alloy Analyzer finds that the security
property under investigation is violated, it provides a
counterexample, an instance of the model that violates the
security property. If a counterexample is found, it is
displayed in UML2Alloy as a UML object diagram. If the
analysis performed by the Alloy Analyzer does not find a
counterexample, the user is informed that the security
property holds for the user-specified scope.

Table 1 provides the most important transformation
rules from UML class diagram model elements to Alloy
model elements. In particular, a UML package maps to the
notion of an Alloy module. A UML class maps to an Alloy
signature. In UML, a class denotes a set of object identifiers
(object ids). In Alloy, a signature denotes a set of atoms. An
object id in UML uniquely identifies an instance of a class,
in the same way that an atom in Alloy identifies an instance
of a signature. A property in UML denotes either an
attribute or an association end of a class and is translated to
an Alloy field of a signature. In UML, an association
connects two (or more) association ends. Multiplicity
annotations on association ends specify how many in-
stances of the classes participating in an association can
exist. UML2Alloy maps these multiplicity markings of the
association ends to Alloy multiplicity constraints. Finally, if
a UML operation is of type void, UML2Alloy maps it to an
Alloy predicate, otherwise to an Alloy function.

UML2Alloy uses similar transformation rules for OCL to
Alloy. Both OCL and Alloy are based on first-order logic.
They are therefore quite similar, and the mapping from
OCL to Alloy is straightforward when dealing with first-
order logic statements. For example, the forAll OCL
construct is translated to all in Alloy, and the exists OCL
construct to some in Alloy. For an extended study of the
similarities and differences of OCL and Alloy, refer to
Vaziri and Jackson [36].

The Alloy language has notions such as the scope and
assertion commands which allow the Alloy Analyzer to
perform fully automated analysis of Alloy models. Since
our work aims to make UML class diagrams fully
analyzable using Alloy, we need to extend the UML class
diagram notation to introduce concepts such as the scope
and assertion commands. We achieve this extension with
the help of a UML profile for Alloy, which defines a number
of stereotypes that a designer can use in UML class
diagrams. We explain the transformation rules from UML
to Alloy, the UML profile for Alloy, and the implementation
of UML2Alloy in detail in our previous work [27].

When we apply UML2Alloy to the OCL specification in
Fig. 11, it produces the Alloy code, as shown in Fig. 13. The
UML operation is translated to an Alloy predicate, denoted
by the pred keyword. The forAll OCL statement is translated
to all in Alloy, and navigation expressions remain un-
changed (i.e., ac.name). The and OCL statement is trans-
formed to the Alloy conjunction symbol (&&).

It is important to note that OCL pre and postconditions are
automatically transformed into an Alloy model evaluated
over a single state. In particular, in this example, we are
interested in the information exchanged between the
ActiveClient, the Attacker, and the LoginManager. This ap-
proach to transformation is also followed by Torlak et al. [37]
when analyzing the Needham and Schroeder protocol [38].

4.1.3 Stage 3: Using the Alloy Analyzer

Assertions are statements that capture properties we wish
to verify. The Alloy Analyzer automatically checks such
assertions and if they fail, it produces a counterexample. We
have specified assertions corresponding to the security
properties discussed at the beginning of Section 4. The first
property is that the Attacker cannot generate the same key
that is created independently by the LoginManager and the
ActiveClient if the protocol is successful, which we call
SymmKey in Fig. 10. We create an assertion that if the
protocol does not abort, the Attacker key attribute does not
have the value SymmKey. Fig. 14 depicts the OCL specifica-
tion of this property. It indicates that for every ActiveClient
in the system, if the login has not been aborted, the value of
the key of the Attacker is not symmKey. It also states that the

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 349

TABLE 1
Overview of Important Transformation Rules in UML2Alloy

Fig. 13. Alloy code produced by UML2Alloy from the translation of the
OCL statement of main(). The name and expr variables are set and the
receiveStartCommFromClient operation is invoked in the attacker.

Fig. 14. OCL assertion that Attacker has not generated the same key as
ActiveClient and LoginManager if the SRP protocol is successful.

values of the keys of the LoginManager and the ActiveClient
are both symmKey. This last statement is used to check that
if the protocol does not abort, both the ActiveClient and the
LoginManager have generated the symmetric key and can
thus encrypt and decrypt messages. UML2Alloy automati-
cally transforms the OCL statement shown in Fig. 14 to the
Alloy assertion shown in Fig. 15.

We chose a value of 20 for the scope of analysis, and used
the Alloy Analyzer to check the assertion in Fig. 14. A scope of
20 means that the Alloy Analyzer will attempt to find an
instance that violates the assertion, using up to 20 instances
for each of the entities defined in the class diagram of Fig. 10
(e.g., ActiveClient, Attacker, and LoginManager). The assertion
produced no counterexample, meaning that it is valid for the
given scope. Table 2 shows how much time the Alloy
Analyzer required to provide results on a 2 GHz Core 2
Duo processor.

4.2 Analysis of the SSL-Treated Login Sequence

We have created a complete SSL-treated system misuse
model, similar to the SRP-treated misuse model (see our
related technical report [35]). We abstracted this misuse
model into a class diagram and OCL specification. The
model specifies an active man-in-the-middle attack on a
system that uses minimal certificate checking. We used the
Alloy Analyzer to check the Alloy version of this model
against the assertion of Fig. 14, and it produced a counter-
example, which means that the assertion was violated. The
counterexample shows an instance where Attacker gains
access to the symmetric key and is therefore able to decrypt
the messages exchanged between the LoginManager and the
ActiveClient. In this case, the attacker substitutes its own
certificate for that of the server, and since the certificate
check is minimal, ActiveClient does not recognize the fact
that a substitution has occurred. In another experiment, we
generated a model where Attacker only uses passive attacks
(i.e., does not change any of the messages). The Alloy
Analyzer did not produce a counterexample for the
assertion using this model. We use these results in trade-
off analysis, as presented in the next section.

5 AORDD TRADE-OFF ANALYSIS

We now discuss each of the four subnetworks shown in Fig. 5,
in the context of our example ACTIVE system. We briefly
discuss two subnets: SSLE and RL subnets. (See our technical
report [35] for details on these subnets, how they are
configured, and an example utility function definition.) We
discuss the SSTL subnet and TOP subnet in detail, along with
results of the top-level network computations of fitness for
SRP and SSL. We use a qualitative scale for all of the variables
in the SSLE, RL, and SSTL subnets, {low, medium, high}. The
TOP subnet and the top-level fitness network use these and

additional qualitative scales that are described in the network
discussion. We finish this section with observations regard-
ing network topology sensitivity.

5.1 Static Security Level Subnet (SSLE)

The SSLE subnet represents stakeholder assessment of the
value of system assets. Asset value is an integral part of the
trade-off analysis, because successful attacks lower asset
value, while security mechanisms are intended to mitigate
risk and thereby increase asset value (hopefully at least back
to its original value). There are always multiple stake-
holders viewpoints regarding system asset value, so the
SSLE subnet topology includes variables that apply relative
weight to a stakeholder’s assessment. The stakeholders’
assessment of asset value and the stakeholder weight are
the observable nodes in the subnet. A decision node that
represents the computation and its accompanying utility
node determine the influence of each stakeholder on the
outcome of the subnet. For our example, the subnet
computation leads to an SSLE value of high.

5.2 Risk Level Subnet (RL)

We use results from the initial system design security
analysis as input to the variables in the RL subnet. All nodes
in the subnet are stochastic and are:

1. the average effort an attacker must use to launch a
successful attack, also known as a misuse of the
system (METM),

2. the mean time it takes for an attacker to launch a
misuse (MTTM),

3. how often a misuse will occur (MF), and
4. the impact of a misuse (MI).

We can specify effort in many ways, for example, in terms of
skills, experience, and resources required. Similarly, we can
specify frequency in different ways. We can use numeric
(e.g., 1 hour) or subjective (e.g., often) scales to describe attack
characteristics. The only requirement is that the same scales
be used for the same variables when performing trade-off
analysis on alternative security mechanisms. We derive the
value for the risk variables MTTM, METM, and MF directly
from the result of the Alloy security analysis based on an
initial misuse model (e.g., Fig. 9). The security analysis
produced a counterexample for our example of the passive
man-in-the-middle attack, which is a simple attack, and one
that requires little time or effort on the part of the attacker.
The variable values we use based on these results lead to an
RL subnet computation distribution of RL:low ¼ 0:1,
RL:medium ¼ 0:7, and RL:high ¼ 0:2.

5.3 Security Solution Treatment Level (SSTL)

The SSTL subnet contains variables relating to an alternative
security solution and how well it protects target assets. The

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

Fig. 15. Alloy translation of OCL assertion, as shown in Fig. 14. If the
protocol does not abort, the Attacker has not generated the same key as
that generated by ActiveClient and LoginManager.

TABLE 2
SRP Model Analysis Time for a Given Scope

SSTL subnet variables include the extent to which the
mechanism provides security properties, its effect on RL
subnet variables METM, MTTM, MF, and MI, and its cost.
We model the cost as a subnet that combines implementa-
tion cost, maintenance cost, and time to implement.

The security analysis described in Section 4 did not
produce a counterexample for the SRP security-treated
misuse model. In the analysis, we used a scope of 20, which,
for our example, gives strong evidence that SRP protects the
ACTIVE login sequence against active man-in-the-middle
attacks. These results mean that the security effect (SE) is
verified as being high, and hence, the variables “SE on
METM,” “SE on MTTM,” “SE on MI,” and “SE on MF” are
all high. Fig. 16 shows the Hugin tool calculation of the SSTL
subnet with this evidence entered and propagated. The
right frame shows the network (SSTL in this case) and
nodes marked with an “e” show where evidence has been
entered. The left frame shows evidence as dark solid bars.

For purposes of demonstration, we define the cost of SRP
as medium because the code is not shipped with Web clients
as part of browsers, and thus, it must be added to both
clients and servers at the application level. The resulting
computation is the following pdf for the target variable SSTL
treatment level: “SSTL:low ¼ 0:0,” “SSTL:medium ¼ 0:50,”
and “SSTL:high ¼ 0:50.” The interpretation of this pdf is that
it is just as likely that the treatment level is medium as high
and the treatment level will never be low.

The Alloy Analyzer security analysis of the SSL security-
treated misuse model did produce a counterexample for an
active man-in-the-middle attack. The counterexample de-
monstrates an attack that does not require more than
medium attacker skill, little resources, and time, so the
solution effect is modeled as low. These results mean that all
variables related to the effect of the security solution on an
active MiM attack are set to low (“SE on METM,” “SE on
MTTM,” “SE on MF,” and “SE on MI”). For purposes of
demonstration, we define the cost of SSL as low since the
code is shipped with Web clients as part of browsers.

For the passive version of the attack, the Alloy Analyzer
did not produce a counterexample, so we infer that the SSL
protocol preserves the security properties under this

particular attack. Its effect on the risk variables MI, MF,
METM, and MTTM is therefore high. Table 3 shows the
resulting SSTL calculations in the context of both passive
and active man-in-the-middle attacks. There is a significant
difference in the resulting treatment levels. For an active
attack, the security analysis showed that all security effect
variables are in the low state. The SSTL subnet is configured
such that if all security effect variables are in the low state,
both the solution effect and the resulting treatment level are
in the low state, independent of the cost.

However, in all other cases, cost is given a high
importance in the calculation of the resulting treatment
level. This bias can be seen in the resulting treatment values
for the passive attack, where it is three times more likely
that the treatment level is high rather than medium and it is
never low.

5.4 Trade-Off Parameters Subnet (TOP)

Fig. 17 shows the TOP subnet with relevant information and
results for our example. We first discuss the security-
relevant node, the SAC variable. To simplify the demonstra-
tion of the trade-off tool, we use the qualitative scale {N/A,

low, medium, high} for this node, which we represent as states
of the security acceptance criteria. Here, N/A means not
applicable, low means low value or importance, medium
means medium value or importance, and high means high
value or importance. The SAC variable is actually an input
node that receives input from an associated subnet, as
shown by the gray line inside the SAC oval. This subnet
contains one node for each of the seven possible security

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 351

Fig. 16. Hugin tool SSTL subnet for SRP with evidence inserted and
propagated. An “e” next to a node denotes hard evidence, defined as a
result of the Alloy security analysis. The computed solution treatment
level is equally likely to be medium or high, and it will never be low.

TABLE 3
SSL Treatment Level for Active and Passive Attacks

Fig. 17. Hugin output of the TOP subnet. Budget and TTM represent
hard evidence (denoted by an “e” by the node) of medium and short,
respectively. SAC attributes (confidentiality, integrity, and authenticity)
and priority (TTM, then SAC, and then budget) represent soft evidence,
or probability distributions (denoted by an “f” by the node). The resulting
TOP variable gives the derived priorities between the trade-off
parameters, taking the related weights into consideration. The result is
a priority of first SAC, then TTM, and finally budget.

properties [9]. In our example, the security properties
confidentiality, authenticity, and integrity are relevant, and
the corresponding nodes are in the high state. The account-
ability, availability, nonrepudiation, and reliability nodes
are not relevant and the corresponding nodes are in the N/A
state. Since we consider the three properties to be equally
important, the result of the evidence propagation from the
SAC subnet to the SAC variable in the TOP subnet is an
equal probability between the confidentiality, integrity, and
authenticity states. In addition to the security relevant
information, there are time-to-market (TTM) and budget
constraints. Since we need to produce a product in a small
time, we define a value short for TTM. Our limited economic
resource for incorporating a security solution to prevent
MiM attacks necessitates that we define a value of medium
for budget.

Finally, we include an additional variable called priorities
in the TOP subnet that a designer can adjust when it is not
possible to meet all the initial constraints. For example, the
budget constraints may not allow satisfying all the security
requirements and we need to prioritize the security
requirements.

We model the variable “TOP” as a utility and decision
node construct, and it produces a prioritized list of trade-off
parameters. The utility node (with its associated utility
function) specifies the dependencies between the states of
the incoming nodes, and the decision node holds the result
of the utility function executed on the input information. For
example, consider the following configuration of the TOP
utility function that we have implemented in our example.

We identify three trade-off parameters of interest—
budget, security acceptance criteria (SAC), and TTM.
These are the states of the priorities variable in Fig. 17.
The priorities used in our example are the following: First
priority is given to TTM, second priority is given to security
requirements, and third priority is given to budget. We use
a simple score-based schema to define the values of the
priorities states (all scales are [1, 100]):

. the first priority trade-off parameter is assigned the
score value 50,

. the second priority trade-off parameter is assigned
the score value 30, and

. the third priority trade-off parameter is assigned the
score value 20.

The utility function cannot use these priorities directly
since each of the variables corresponding to the related
parameters in the TOP subnet has several states associated
with it. The utility function must take these states into
consideration when deriving the distribution of the utility
value of each trade-off parameter. We can use logic
statements to handle this problem, as follows:

We first define a weight for each trade-off parameter,
using the following schema. There are five states (see Fig. 17,
left frame) associated with the TTM variable, and for
simplicity, we assign the weight of 0.2 to each state. We
assign a parameter weight by assuming that the states
represent an enumerated ordering from immediately through
unlimited. We then sum the weights of each state up to and
including the targeted state to derive the weight of TTM. A
target state of short TTM results in a weight of 0.4. We use

the same method to derive a weight for the budget
parameter: The five states associated with budget are each
assigned a weight of 0.2, and weights of each state are again
summed, up to and including the targeted state. The target
budget of medium, therefore, results in a weight of 0.6. For
SAC, we keep the value assigned to it, as discussed
previously, scaled between 0 and 1 (i.e., 0.3).

The utility function value is derived by multiplying the
parameter weight by the value of its associated state in
the priorities variable and then normalizing the result over
the combined variables’ weight and priority. Since informa-
tion is propagated back and forth through the network, the
resulting TOP utility function is as follows:

init:budget ¼ priority:budget� budgetWeight;

init:TTM ¼ priority:TTM � TTMWeight;

init:SAC ¼ priority:SAC � SACWeight;

UN ¼
1

init:budgetþ init:SAC þ init:TTM ;

Top:budget ¼ init:budget� UN;
Top:TTM ¼ init:TTM � UN;
Top:SAC ¼ init:SAC � UN;

where UN is the utility normalization factor. Each init.
variable refers to the initial priority weight of the variable
and is obtained by multiplying the weight (determined by
the above schema) with the variable priority (e.g., 50 for
TTM). Each Top. variable holds the updated priority weight
after normalization.

5.5 Comparing SRP against SSL—The Fitness
Network

The Hugin tool computes each subnet, using all evidence
entered into the topology, and propagates the results into
the respective observable nodes in the top-level fitness score
network, as shown in Fig. 5. The fitness score utility
function uses a ranked-weight schema. Higher priority
trade-off parameters are ranked with higher fitness scores
so that factors other than security can be taken into account
when deciding between alternative security solution de-
signs. This schema also gives us the ability to easily change
the importance of a trade-off parameter if project circum-
stances change and we need to put more emphasis on
meeting a different project goal. The fitness score is thus a
measure of the degree that a particular security solution
meets the security, development, project, and financial
constraints of the project (specified in the TOP subnet).

Fig. 18 shows the resulting fitness score for the SRP
security solution, which tells us that, when the priorities are
TTM, SAC, and budget, the fitness of SRP in mitigating an
active MiM attack is more than three times more likely to be
high than low and 1.6 times more likely to be high than
medium (16 percent for low, 32 percent for medium, and
52 percent for high). Note that these results do not mean that
the fitness score is high 52 times out of 100, but that our
belief is that it will be high more than half the time within a
particular time frame.

We compute the fitness score for SSL by changing the
SSTL variables in the top-level network in the BBN
topology, based on the values discussed in Section 5.4.

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

The computation produces a fitness score of 23 percent for
low, 23 percent for medium, and 54 percent for high for SSL in
the presence of an active MiM attack. (For a passive MiM
attack, the result changes slightly and becomes 12 percent
for low, 35 percent for medium, and 53 percent for high).

The above results imply that the fitness scores for SRP and
SSL with the current trade-off parameter priorities differ by a
small measure, so either one can be chosen. However, the
situation changes if the priority of the trade-off parameters
changes. If all emphasis is put on security requirements,
meaning that the trade-off parameter SAC is given a priority
of 100 percent, and both the active and passive MiM attack
are taken into consideration, the fitness score changes to
20 percent for low, 75 percent for medium, and 5 percent for
high for SRP and 0 percent for low, 90 percent for medium, and
10 percent for high for SSL. These results make sense as the
treatment level of SRP is higher than for SSL in the context of
the active MiM attack. The fitness score is, however, still not
completely in favor of SRP for two reasons. First, SRP
involves a higher cost and time to market than SSL. Second,
the risk level of the MiM attack is most likely medium. SSL
has a low treatment level for active attacks, but never a low
treatment level in the context of passive MiM attacks, as
shown in Table 3. For this reason, the fitness score of SSL
turns out to be heavily ranked toward medium when both
attack types are taken into consideration.

5.6 Sensitivity of the Topology

The outcome of a BBN computation is sensitive to the
configuration of the BBN topology with its composite
subnets and associated pdfs, and it must be constructed
carefully to ensure representative results. Also, different
BBN topologies might interpret the same evidence differ-
ently depending on which nodes in the network are
sensitive, meaning that they are given high priority by the
computation engine. These nodes are called neighboring
networks. The reason they are important is that the Hugin
evidence propagation algorithm first reduces the topology
according to its rule set, and then, transfers the BBN
topology into a set of trees that are computed separately. It

is, therefore, important to understand how the evidence
propagation works in order to construct a healthy BBN
topology. In practice, topology designers can perform
uncertainty and sensitivity analyses to identify whether
the nodes and/or evidence intended to be of high
importance are treated properly. The Hugin tool provides
these analyses, and we have constructed the trade-off
topology using their results.

6 RELATED WORK

A great deal of research is motivated toward making real-
world systems secure. Since this is a very complex problem,
most of the literature addresses only parts of it. We aim to
provide a more comprehensive solution by showing how
such a complex system can be developed using our AORDD
framework, how the trade-off decisions can be made using
probabilistic analysis, and the resulting system formally
analyzed to give assurance of security properties. Our work
either complements or builds upon existing work, some of
which we describe briefly in this section.

Standards such as the ISO 15408 Common Criteria for
Information Technology Security Evaluation [1] can help
developers focus on processes and development activities
that lead to more secure systems. However, these standards
only address the development activities of the system, not its
operational security, which is observed during system
operation at a particular point in time, as described by
Littlewood [39]. These standards also assume assessment by
certified assessors. Experienced assessors must apply trade-
off techniques such as Architecture Trade-off Analysis
Method (ATAM) [40] and Cost Benefit Analysis Method
(CBAM) [41] at an architectural level. Any of these
assessments requires a strong resource commitment on the
part of the organization that uses them. Our trade-off
analysis incorporates ideas from both ATAM and CBAM,
and provides methodologies and tools that lighten the
resource requirements. We also incorporate security-specific
parameters in the form of both static (during development)
and dynamic (operational) security levels and other project-
specific parameters as input to trade-off analysis.

We have chosen not to incorporate financial approaches
such as Net Present Value (NPV) or Real Option Value
(ROA), described by Daneva [42] and Benaroch [43], or
existing return on security investment (RoSI) approaches,
such as that of Sonnenreich et al. [44], as we believe that
these approaches take too narrow a scope for the trade-off
analysis of security mechanisms. These approaches often
depend on the ability to measure all variables in terms of
economical value. The problem arises when designers wish
to compare alternative security solutions, as there is little
hard evidence available to assess the true cost of a
successful attack or the amount of money saved by
implementing a mitigating solution versus no mitigation.
The only hard evidence that may be available is the
procurement, implementation, and maintenance cost of
the security solution. Furthermore, a security solution
decision process includes factors to which cost cannot be
attached, such as legislation, time-to-market, etc. Our BBN
trade-off topology can incorporate any or all of these
disparate factors, and is, therefore, easy to evolve and adapt

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 353

Fig. 18. The resulting security solution fitness score for SRP. When the
priorities are TTM, SAC, and then budget, the fitness of SRP to mitigate
an active MiM attack is more than three times more likely to be high than
low and 1.6 times more likely to be high than medium. An “e” next to a
node denotes hard evidence, and an “f” denotes soft evidence (a
probability distribution).

according to what the designer considers to be important
and what information is available.

Risk identification, assessment, and management are the
targets of the CCTA Risk Analysis and Management
Methodology (CRAMM) [45] and CORAS [10], [11] frame-
works. CORAS makes use of multiple standards, including
the Australian/New Zealand Standard for Risk Manage-
ment, ISO/IEC 17799-1: Code of Practice for Information
Security Management [46] and ISO/IEC 13335: Information
technology—Guidelines for Management of IT security [9].
CORAS adapts the asset-driven structured approach in
CRAMM and uses model-based risk assessment in inte-
grated system development processes. Our AORDD frame-
work [6], [7] makes use of the CORAS processes.

One suitable choice of formalism for UML models is
Alloy, which is specifically designed for Object-Oriented
design. We base our security analysis on Alloy, by
transforming UML class diagrams and OCL into Alloy
models. Massoni et al. [47] also transform UML Class
diagrams to Alloy in order to analyze structural properties
of UML models. However, their work covers a small subset
of UML and OCL and is not automated. Our methods
encompass larger subsets of UML and OCL, and we
provide automation through the UML2Alloy tool [27].

Torlak et al. [37] have used Alloy to analyze man-in-the-
middle attacks. They introduce the idea of knowledge flow,
which models how knowledge (information) is exchanged
between the participants of a protocol handshake. In
particular, they focus on the information that the man-in-
the-middle can possess, irrespective of the order the
messages are exchanged between the participants. They
used their method on the Needham and Schroeder protocol
[38] and verified the existence of a flaw already discovered
by Lowe [48]. This work is similar to the approach presented
in this paper with the exception that while they model the
system directly in Alloy, our work utilizes more popular
notations such as class diagrams and OCL, and provides
transformations to Alloy. Our work also provides a method
to interpret the Alloy Analyzer results in the context of other
project goals through the BBN trade-off analysis.

There are also various tools to support the analysis of
UML models. For example, the UML Specification Environ-
ment (USE) tool [49] is a Java implementation, which
provides simulation and validation functionality. More
specifically, designers can use the USE tool to generate
snapshots that conform to the model. They can check if a
specific instance of the model (generated via a script)
conforms to the invariants. In contrast, our approach uses
the Alloy Analyzer, which automatically searches the state
space exhaustively (up to the user specified scope), without
the requirement to learn and use a scripting language to
generate the instances.

Basin et al. [50] describe an approach to creating security
design models that integrate security policies into UML
design models. Their approach is language-based and uses
languages for a particular security policy and system design,
along with a dialect (that specifies how they are related), to
specify system designs that contain the security policy. Their
early work describes an example of these concepts, in the
form of the SecureUML language that can be used to specify
access control policies for role-based access. The dialect

Basin et al. develop constrains how the access control
policies are used to augment the system design. The authors
demonstrate generation rules to transform the model into
control infrastructures such as those provided by EJB or
.NET. In recent work, Basin et al. [51] also provide an OCL
query methodology and tool that allows directed inquiry
into specific access control in potential runtime instances, as
specified by scenarios, or system states.

Our work differs in several areas. For example, we
approach the modeling of security policies through aspect
composition rather than through specific languages. We feel
that representing security policies as models allows a
designer great flexibility and reduces any dependence on
a language developer. In addition, the combination of
security policies specified as aspect models and composi-
tion allows a designer to freely explore many alternatives in
search of a satisfactory design. Different languages for each
prospective policy would be required in a language-based
approach. Our methodology is focused on early design
analysis, whereas Basin et al. have emphasized develop-
ment and implementation issues. Their newer OCL query
tool can be used in design to explore particular state access
control, whereas our analysis methods are based on
dynamic behavior models that result in a set of system
states where we can test assertions, the possibility of
overconstraining the system, etc. We use an established
tool, the Alloy Analyzer to perform these analyses. Finally,
by using aspect models and composition, we can analyze
the effectiveness of particular security policies, as realized
by security mechanism designs, against particular security
threats to a system design.

7 CONCLUSIONS AND FUTURE WORK

Ad hoc approaches for developing secure systems may
result in security breaches. We propose an AORDD
methodology for designing secure systems. Designers
perform a risk assessment to identify the attacks on the
system and evaluate how the assets of the system can be
compromised. Designers then methodically identify and
incorporate security mechanisms into the design that
protect against these attacks. They evaluate the resulting
system to give assurance that it is indeed secure. Multiple
security mechanisms are often effective in protecting
against a given attack, so designers must identify and
integrate the mechanism most suitable for the application.

This paper makes two major contributions. First, we
show how to formally verify that a security mechanism
incorporated into a system is effective in protecting against
a given security breach. Toward this end, we show how a
system modeled using UML is converted to a form that can
be automatically verified using the Alloy Analyzer. Second,
we show how to compare the suitability of different security
mechanisms for a given application on the basis of factors
such as the level of protection offered, cost and effort
involved, and the time to market. We demonstrate how a
BBN topology can be used to perform such trade-off
analysis and provide evidence to make a suitable choice
between competing designs.

In this paper, we illustrated the case for a single attack.
However, in reality, there are multiple attacks and multiple
security mechanisms must be incorporated. Moreover,

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

incorporating a security mechanism should not open up
new vulnerabilities. The existing approach addresses these
issues through AOM techniques. Designers can continually
augment system designs by composing additional security
mechanisms to mitigate additional attacks. They can then
compose multiple attack models with these system models,
and analyze them with the Alloy Analyzer. However, this
approach can be cumbersome for designers, so we hope to
provide an easier approach for handling multiple attacks. In
this respect, we are currently investigating techniques that
formalize the dependencies between the different types of
attacks and security solutions. Such formalization will allow
us to group attacks and security solutions. This, in turn, will
facilitate minimizing the time required for security analysis.

A main focus of our on-going research relates to
analyzing the model in which a security mechanism design
has been incorporated. The analysis, shown in this work,
consists of three parts: 1) converting UML sequence
diagrams to OCL, 2) using the UML2Alloy automated
conversion tool to transform OCL specifications into those
of Alloy, and 3) verifying security properties in the resulting
Alloy model using the Alloy Analyzer. Parts 2 and 3 are
completely automated. To increase the automation of part 1,
we are working on algorithms that will automatically
convert UML sequence diagrams into OCL. This work
must include a method to create abstractions of the model
that do not alter the security property being verified. This
work will make the analysis more automated.

However, while we can transform security property
assertions, it is not possible to fully automate the process of
identifying which security properties are relevant to a
system. We aim to support this security engineering task by
providing a checklist of security properties, with associated
design solutions, as a repository of templates in the form of
aspects. A designer or security engineer can use such a
repository to instantiate a design solution that provides a
relevant property and compose it into the model, speeding
the application of our approach. Creation of such a
repository involves substantial implementation, and there-
fore, remains an area for future work. Another automation
opportunity related to part 2 is to develop a scheme to make
the attack models specified in Alloy reusable across
different applications. The scheme would then be incorpo-
rated into parts 1 and 2 as applicable.

Another research thread consists of formally defining
and modeling factors that will affect the choice of the
security mechanisms, such as the performance or fault
tolerance. We are currently modeling the performance
requirements of security mechanisms using Layered Queu-
ing Networks. Our intent is to include the performance
analysis results as another input to the trade-off analysis
tool as part of the decision-making criteria for choosing a
security solution design.

ACKNOWLEDGMENTS

This work was partially supported by the US Air Force Office
of Scientific Research under Award No. FA9550-07-1-0042.

REFERENCES

[1] ISO 14508, Common Criteria for Information Technology Security
Evaluation, in Version 3.1, Revision 2, 2007.

[2] ISO 14508-4, Common Methodology for Information Technology
Security Evaluation: Evaluation Methodology, in Version 3.1,
Revision 2, 2007.

[3] AS/NZS, Australian/New Zealand Standard for Risk Management AS/
NZS 4360:2004, ANZ Standard, ed., 2004.

[4] AS/NZS, Australian/New Zealand Standard HB 436:2004 Risk
Management Guidelines—Companion to AS/NZS 4360:2004, ANZ
Standard, ed., 2004.

[5] S.H. Houmb, “Decision Support for Choice of Security Solution:
The Aspect-Oriented Risk Driven Development (AORDD) Frame-
work,” Dept. of Math. Sciences, Norwegian Univ. of Science and
Technology, 2007.

[6] S.H. Houmb et al., “Cost-Benefit Trade-Off Analysis Using BBN
for Aspect-Oriented Risk-Driven Development,” Proc. IEEE Int’l
Conf. Eng. Complex Computer Systems, pp. 195-204, 2005.

[7] S.H. Houmb et al., “An Integrated Security Verification and
Security Solution Design Trade-Off Analysis Approach,” Integrat-
ing Security and Software Eng.: Advances and Future Vision,
H. Mouratidis and P. Giorgini, eds., IGI Global, 2007.

[8] OMG, Unified Modeling Language: Superstructure Version 2.1.2
Formal/07/11/02, 2002.

[9] ISO/IEC 13335-5, Information Technology—Guidelines for Manage-
ment of IT Security, 2001.

[10] 1CORAS, IST-2000-25031, 2003.
[11] K. Stølen et al., “Model Based Risk Assessment in a Component-

Based Software Engineering Process: The CORAS Approach to
Identify Security Risks,” Business Component-Based Software Eng.,
F. Barbier, ed., pp. 189-207, Kluwer, 2002.

[12] R. France et al., “A UML-Based Pattern Specification Technique,”
IEEE Trans. Software Eng., vol. 30, no. 3, pp. 193-206, Mar. 2004.

[13] R. France et al., “Aspect-Oriented Approach to Design Modeling,”
IEE Proc. Software, vol. 151, no. 4, pp. 173-186, 2004.

[14] G. Georg, J. Bieman, and R. France, “Using Alloy and UML/OCL
to Specify Run-Time Configuration Management: A Case Study,”
Proc. Workshop pUML-Group Held Together with the UML, A. Evans
et al., eds., pp. 128-141, 2001.

[15] G. Georg et al., “An Aspect-Oriented Methodology for Designing
Secure Applications,” Information and Software Technology, vol. 51,
no. 5, pp. 846-864, 2009.

[16] G. Straw et al., “Model Composition Directives,” The Unified
Modelling Language: Modelling Languages and Applications (UML),
T. Baar et al., eds., pp. 84-97, Springer, 2004.

[17] Alloy, http://alloy.mit.edu, 2009.
[18] D. Jackson, Software Abstractions: Logic, Lanaguage, and Analysis.

MIT Press, 2006.
[19] B.D. Finetti, Theory of Probability, vols. 1 and 2. John Wiley and

Sons, 1973.
[20] F. Jensen, An Introduction to Bayesian Network. UCL Press, 1996.
[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems. Cambridge

Univ. Press, 1998.
[22] B.A. Gran, “The Use of Bayesian Belief Networks for Combining

Disparate Sources of Information in the Safety Assessment of
Software Based System,” Dept. of Math. Science, Norwegian Univ.
of Science and Technology, 2002.

[23] SERENE, SERENE: Safety and Risk Evaluation Using Bayesian
Nets, p. ESPIRIT Framework IV nr. 22187, 1999.

[24] OMG, XML Metadata Interchange (XMI) V2.0 Formal/05-05-01, 2005.
[25] OMG, Object Constraint Language Version 2.0 Formal/06/05/01, 2006.
[26] ArgoUML, http://argouml.tigris.org, 2009.
[27] K. Anastasakis et al., “UML2Alloy: A Challenging Model

Transformation,” Proc. 10th Int’l Conf. Model Driven Eng. Languages
and Systems, G. Engels et al., eds., pp. 436-450, 2007.

[28] B. Bordbar and K. Anastasakis, “UML2ALLOY: A Tool for Light-
Weight Modelling of Discrete Event System,” Proc. Int’l Conf.
Applied Computing, N. Guimarães and P.T. Isaı́as, eds., pp. 209-216,
2005.

[29] P. Ziemann and M. Gogolla, “An Extension of OCL with
Temporal Logic,” Proc. Workshop Critical Systems Development with
UML, J. Jürjens, ed., pp. 53-62, 2002.

[30] HUGIN, Hugin Expert A/S, 2007.
[31] T. Dimitrakos et al., “Integrating Model-Based Security Risk

Management into Ebusiness Systems Development: The CORAS
Approach,” Proc. IFIP Conf. E-Commerce, E-Business, E-Government,
J. Monteiro, P. Swatman, and L. Tavares, eds., pp. 159-175, 2002.

[32] T. Wu, “The Secure Remote Password Protocol,” Proc Internet Soc.
Network and Distributed System Security Symp., pp. 97-111, 1998.

GEORG ET AL.: VERIFICATION AND TRADE-OFF ANALYSIS OF SECURITY PROPERTIES IN UML SYSTEM MODELS 355

[33] T. Wu, The SRP Authentication and Key Exchange Systems,
N.W. Group, ed., 2000.

[34] TLSWG, SSL 3.0 Specification, 1996.
[35] G. Georg et al., Security Property Verification and Trade-Off Analysis

Using UML. Colorado State Univ., 2008.
[36] M. Vaziri and D. Jackson, “Some Shortcomings of OCL, the Object

Constraint Language of UML,” Proc. Int’l Conf. Technology of
Object-Oriented Languages and Systems, Q. Li et al., eds., pp. 555-
562, 2000.

[37] E. Torlak et al., Knowledge Flow Analysis for Security Protocols.
Computer Science and Artificial Intelligence Laboratory, MIT,
2005.

[38] R.M. Needham and M.D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers,” Comm. ACM,
vol. 21, no. 12, pp. 993-999, 1978.

[39] B. Littlewood et al., “Towards Operational Measures of Computer
Security,” J. Computer Security, vol. 2, nos. 2/3, pp. 211-230, 1993.

[40] R. Kazman, M. Klein, and P. Clements, “ATAM: Method for
Architecture Evaluation,” Technical Report CMU/SEI-2000-TR-
004, Carnegie Mellon Univ./Software Eng. Inst., 2000.

[41] R. Kazman, J. Asundi, and M. Klein, “Making Architecture Design
Decisions: An Economic Approach,” Technical Report CMU/SEI-
2002-TR-035, Carnegie Mellon Univ./Software Eng. Inst., 2002.

[42] M. Daneva, “Applying Real Options Thinking to Information
Security in Networked Organizations,” CTIT Report TR-CTIT-06-
11, Univ. of Twente, 2006.

[43] M. Benaroch, “Managing Information Technology Investment
Risk: A Real Options Perspective,” J. Management Information
Systems, vol. 19, no. 2, pp. 43-84, 2002.

[44] W. Sonnenreich, J. Albanese, and B. Stout, “Return on Security
Investment (ROSI)—A Practical Quantitative Model,” J. Research
and Practice in Information Technology, vol. 38, no. 1, pp. 45-56, 2006.

[45] B. Barber and J. Davey, “The Use of the CCTA Risk Analysis and
Management Methodology CRAMM in Health Information
Systems,” Proc. Medical Informatics Conf., K.C. Lun et al., eds.,
pp. 1589-1593, 1992.

[46] ISO/IEC, Information Technology—Code of Practice for Information
Security Management, 2000.

[47] T. Massoni, R. Gheyi, and P. Borba, “A UML Class Diagram
Analyzer,” Proc. Int’l Workshop Critical Systems Development with
UML at UML, pp. 100-114, 2004.

[48] G. Lowe, “Breaking and Fixing the Needham-Schröeder Public-
Key Protocol Using FDR,” Proc. Int’l Conf. Tools and Algorithms
for Construction and Analysis of Systems, T. Margaria and
B. Steffen, eds., pp. 147-166, 1996.

[49] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and
OCL Models in USE by Automatic Snapshot Generation,” Software
and System Modeling, vol. 4, no. 4, pp. 386-398, 2005.

[50] D. Basin, J. Doser, and T. Lodderstedt, “Model Driven Security:
From UML Models to Access Control Infrastructures,” ACM
Trans. Software Eng. and Methodology, vol. 15, no. 1, pp. 39-91, 2006.

[51] D. Basin et al., “Automated Analysis of Security-Design Models,”
Information and Software Technology, vol. 51, no. 5, pp. 815-831,
2009.

Geri Georg received the MS and PhD degrees
in computer science from Colorado State Uni-
versity, Fort Collins, where she is a research
associate in computer science. Her research
interests include modeling and analysis of
crosscutting system properties in complex dis-
tributed systems. She is also interested in
aspect-oriented modeling and model visualiza-
tion of these properties. Prior to joining Colorado
State University, she worked at the corporate

research laboratories of Hewlett Packard Company and Agilent
Technologies. She is a member of the ACM and the IEEE Computer
Society.

Kyriakos Anastasakis received the MSc de-
gree in advanced computer science and the PhD
degree in computer science from the University
of Birmingham, United Kingdom, in 2004 and
2009, respectively. His doctoral thesis is entitled
“A Model Driven Approach for the Automated
Analysis of UML Class Diagrams.” His research
is focused on software engineering, model-
based approaches for systems development,
and formal methods. He worked as an indepen-

dent software consultant in Birmingham and as a software developer for
Ulysses Systems prior to his postgraduate studies.

Behzad Bordbar received the PhD degree in
pure mathematics from the University of
Sheffield, United Kingdom. He is currently a
lecturer in the School of Computer Science,
University of Birmingham, United Kingdom. He
was a research fellow in discrete event
systems at the University of Ghent Belgium,
in massively distributed manufacturing systems
at Aston University, Birmingham, and in
distributed multimedia systems at the Univer-

sity of Kent, United Kingdom, which he joined as a lecturer. His
research interests are in software tools and techniques for design,
analysis, and implementation of large distributed systems. In
particular, he is currently interested in model-driven architecture,
domain-specific languages, performance modeling, and fault tolerance
in service-oriented architectures. He is a member of the IEEE and the
IEEE Computer Society.

Siv Hilde Houmb received the PhD degree in
computer science (security) from the Norwe-
gian University of Science and Technology,
Trondheim, Norway. She is a researcher and
security expert at Telenor R&I and a Telenor
delegate on three standardization technical
committees: ETSI TC TISPAN, ETSI TC IST,
and ETSI TC M2M. She also works as a
Special Task Force security expert at the
Telecommunication Standardization Organiza-

tion ETSI (for Telenor). Her research interests include decision
support methodologies and techniques that allow architects to choose
among sets of security solutions in security critical information
systems taking all of security, development, project, and financial
constraints into consideration.

Indrakshi Ray received the PhD degree from
George Mason University. She is an associate
professor in the Computer Science Department
at Colorado State University. Prior to joining
Colorado State, she was a faculty member at the
University of Michigan-Dearborn. Her research
interests include security and privacy, database
systems, e-commerce, and formal methods in
software engineering. She has published several
refereed journal and conference papers in these

areas. She served as the general chair for SACMAT ’08, the program
chair for SACMAT ’06, and the program cochair for the IEEE/IFIP
TSP ’08 and IFIP WG 11.3 DBSEC 2003. She has also been a member
of several program committees such as EDBT, SACMAT, ACM CCS,
and EC-Web. She is a member of the ACM, the IEEE, and the IEEE
Computer Society.

Manachai Toahchoodee received the BS
degree in mathematics and the MS degree in
information technology from King Mongkut’s
University of Technology Thonburi, Thailand.
He is a doctoral candidate in the Department of
Computer Science at Colorado State University.
His research interests include spatiotemporal
access control models, modeling and analysis
of access control models, and aspect-oriented
secure software development. He has served as

an instructor at the University of the Thai Chamber of Commerce, and
as a system analyst for IBM Solution Delivery and Sanofi-Aventis Co.,
Ltd., both in Thailand.

356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

