
 Model Interoperability via Model Driven Development

Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

1University of Birmingham, Birmingham, UK
{M.A.Ameedeen, B.Bordbar}@cs.bham.ac.uk

2Coventry University, Coventry, UK
R.Anane@coventry.ac.uk

Abstract

 It is widely recognised that software development is a complex process. Among the factors that

contribute to its inherent complexity is the gap between the design and the formal analysis domains.

Software design is often considered a human oriented task while the analysis phase draws on formal

representation and mathematical foundations. An example of this dichotomy is the use of UML for

the software design phase and Petri Nets for the analysis; a separation of concerns that leads to the

creation of heterogeneous models. Although UML is widely accepted as a language that can be used

to model the structural and behavioural aspects of a system, its lack of mathematical foundations is

seen as a serious impediment to rigorous analysis. Petri Nets on the other hand have a strong

mathematical basis that is well suited for formal analysis; they lack however the appeal and the ease-

of-use of UML. A pressing concern for software developers is how to bridge the gap between these

domains and allow for model interoperability and the integration of different toolsets across them, and

thus reduce the complexity of the software development process. The aim of this paper is to present a

Model Driven Development (MDD) model transformation which supports a seamless transition

between UML and Petri Nets. This is achieved by model interoperability between UML Sequence

Diagrams and Petri Nets and supported by tool integration. The model transformation framework

allows a software system to be designed in terms of UML Sequence Diagrams and subjected to formal

analysis by taking advantage of the strong mathematical framework of Petri Nets. The behaviour of a

Personal Area Network will be used to illustrate the proposed approach and to highlight model

interoperability and tool integration through the design, the transformation and the analysis phases.

Keywords:

 1

1.0 Introduction

 The complexity of the software development process has presented researchers with a

significant challenge. This complexity is due to various factors including the variety of application

domains, the variety of software platforms and the variety of the methods and the tools that support

the software development process. This complexity is further compounded by the requirement for a

software system to satisfy a set of specific properties, such as fault-tolerance and security. Many

approaches and methods have been proposed as a way of addressing and reconciling these issues [1].

Of particular significance in the generation of a software system is the need to facilitate a smooth

transition from one phase of the development process to the next. The transition from an informal

design to formal analysis is often critical, especially as it often involves incompatible domains of

discourse.

 This dichotomy between design and analysis manifests itself in the multiplicity of formalisms,

languages and software tools that are required for each phase. The limited scope of these tools and

their tight coupling with specific domains is one of the main sources of heterogeneity between the

models created in the design phase and the models required for analysis [2]. One of the main concerns

of software developers is how to bridge the gap between the different underlying domains and allow

for a seamless transition between them [3]. More specifically, the main issue is how to facilitate the

interoperability between the models that pertain to design and those required by the analysis phase;

another requirement is how to integrate the corresponding software tools. In this respect, model

interoperability and tool integration are considered as critical factors in reducing complexity in

software development.

 Various languages and formalisms were introduced in order to support the software

development in general and the software design and analysis in particular. Software design has been

eased by the introduction of Unified Modelling Language (UML) [4]. Its rich constructs have

conferred to UML a privileged role in the design of software systems in a variety of domains

including networks, business modelling and security. The choice of UML for software design is also

 2

facilitated by the widely available UML software tools such as ArgoUML [5] and Poseidon [6]. One

shortcoming of UML however is its lack of support for model analysis; this characteristic has led

software developers to rely more and more on formal languages such as Petri Nets. Petri Nets are

well suited to structural analysis such as liveness and deadlock detection as well as behavioural

analysis such as reachability [7]. Their relevance and usefulness has also been enhanced by the

availability of tools such as PIPE [8] and CPNTools [9].

Figure 1: SD2PN model transformation framework.

 This paper is concerned with addressing model interoperability [10, 11] between Sequence

Diagrams and Petri Nets, through a model driven approach . It introduces a model transformation

framework, SD2PN, which supports a seamless transition between these heterogeneous models and

allows for the integration of different toolsets as shown in Figure 1. A designer creates a model of a

system as Sequence Diagrams using UML tools, and performs the required analysis in Petri Nets

using Petri Net tools. This combination of model interoperability and tool integration results in a

significant reduction of complexity in software development in general and model analysis in

particular. This is achieved by the automated transformation that allows complex analysis to be

performed by using Petri Net tools without an extensive knowledge of Petri Nets themselves. The

system design phase is facilitated by a combination of a user-friendly interface of UML tools and the

rigorous analytical framework of the Petri Net tools. The behaviour of a Personal Area Network will

be used throughout the paper to illustrate the transition between Sequence Diagrams and Petri Nets

and the analysis that can be applied.

 3

 The remainder of this paper is organized as follows. Section 2 provides a review of Sequence

Diagrams, Petri Nets and Model Driven Development as well as a brief introduction to the case study,

which will be used throughout this paper. Section 3 describes the methods and the SD2PN framework

for transforming Sequence Diagrams into Petri Nets; the transformation process is illustrated with an

example from the case study. Section 4 deals with the extension of SD2PN with timeliness properties

and its implications. Section 5 raises some issues for discussion and Section 6 offers some

conclusions.

2.0 Preliminaries

 This section provides a brief introduction to UML Sequence Diagrams, Petri Nets and Model

Driven Development as well as the behaviour of a Personal Area Network. The behaviour of the

Personal Area Network is used in the subsequent sections of this paper to illustrate the transition from

Sequence Diagrams to Petri Nets.

2.1 UML Sequence Diagrams

Unified Modelling Language (UML) [4] is a family of languages, which is widely accepted as

the de facto standard for software modelling. UML models can be used to specify the structure of a

system, its behaviour and the constraints that the system must adhere to. Models in UML are instances

of metamodels. A metamodel includes system elements, their relationships and a set of rules to which

every model must conform in order to be well defined. In this paper Sequence Diagrams are used as

the modelling language for describing the behaviour of a system.

Sequence Diagrams are a UML 2.1 version of Message Sequence Charts [12] and they are

widely used in Software Engineering [13]. Sequence Diagrams can be used in modelling complex

Enterprise Systems as they provide a sequential listing of events and are also able to model

parallelism and conflicts. As such, Sequence Diagrams are well suited in modelling behaviour and

interactions.

 4

Figure 2: Sequence Diagram Metamodel

Figure 2 represents a subset of UML 2.1 Sequence Diagrams metamodel used in this paper; it

includes important constructs used for specifying models with complex behaviour. The main

fragments of the Sequence Diagram are represented by model elements Message and

CombinedFragments. The model element Message represents the interaction between the instances of

objects in the system while CombinedFragments is a high level addition to Sequence Diagrams and

consists of Interaction Operators alternative, option, break and parallel. These model elements will be

referred to as fragments of Sequence Diagrams throughout this paper. The model element

EventOccurrence and GeneralOrdering denotes the sequencing of events in the diagram.

EventOccurrence is a specialization of MessageEnd where each message is given a specific order in

reference to the previous and subsequent messages.

 From the metamodel in Figure 2, it is evident that Sequence Diagrams have a comprehensive

construct that enables the accurate representation of behaviour as well as relationship between events

such as causality, concurrency and conflict. However, Sequence Diagrams and UML in general have a

limitation with regards to analysis, especially when compared with more formal languages such as

Petri Nets.

 5

2.2 Petri Nets

 Petri Nets is a mathematical and graphical modelling language that can be used to model a

diverse set of behaviours including parallel, asynchronous, concurrent, hierarchical and stochastic as

well as dynamic behaviours [7]. Similarly for Sequence Diagrams, a Petri Net models the flow of

events in a system graphically. The formal and mathematical nature of Petri Nets makes them well

suited to analysis, thus making it an ideal candidate to complement Sequence Diagrams in addressing

its shortcomings with regards to analysis.

Figure 3: Petri Net Metamodel

 Figure 3 presents a metamodel for Petri Nets that will be used in this paper. Petri Nets consists

of a set of places, a set of transitions and a set of arcs that connects places and transitions. Petri Nets

also consist of a set of markings that assigns a number of tokens to each place. Graphical

representation of the Petri Net elements depicts places as circles and transitions as rectangles. Arcs

are shown as directed arrows while tokens are represented by dots inside places.

 A transition in Petri Net has input places and output places, which are places that have arcs in

and out of the transition respectively. A transition is enabled and ready to fire when all of its input

places have at least a token each. When a transition fires, a token will be removed from each of the

input places and added into one of the output places. A more comprehensive introduction to Petri

Nets could be obtained from [7].

 6

2.3 Model Driven Development

Model Driven Development [14] aims to promote the role of modelling in software

development. Models in the context of MDD are captured in machine-readable representations, using

languages which are widely adopted by software industry [4]. Hence it is possible to communicate

such models to various parties and reuse them. This results in lower software production cost and

shorter development cycles. In this paper, MDD is further used to develop a method to benefit from

advantages of using two representations of a system, Sequence Diagrams and Petri Nets.

 In order to allow for the integration of existing modelling software tools through the proposed

approach, the standards set by Model Driven Architecture (MDA) [15], a flavour of MDD initiated by

the Object Management Group (OMG), is used. Meta Object Facility (MOF) [16] is one standard for

describing metamodels. Metamodels are themselves models, from which models of systems are

instantiated. MOF can be compared to EBNF, which is used for defining the grammar of

programming languages. MOF is a blueprint from which MOF Compliant metamodels are created.

Figure 4: Model Driven Development

Figure 4 gives an outline of MDA and the process of Model Transformation. A number of

Transformation Rules are used to specify how various elements of one metamodel (source

metamodel) are mapped into the elements of another metamodel (destination metamodel). The process

of Model Transformation is carried out automatically via the software tools which are commonly

referred to as Model Transformation Frameworks [17-19]. A typical Model Transformation

Framework requires three inputs: source metamodel, destination metamodel and transformation rules.

 7

For any instance of the source metamodel, a transformation engine executes the rules to create an

instance of the destination metamodel.

2.4 Case Study: Personal Area Network

 In order to demonstrate the role of Model Driven Development in facilitating transitions from

Sequence Diagrams to Petri Nets while insulating the user from the underlying complexity, a case

study featuring the behaviour of a Personal Area Network (PAN) is utilised throughout this paper.

This section provides a brief introduction to the Personal Area Network.

Figure 5 presents a simplified PAN that has two stations and a Wireless Router that serves as

an access point to the Internet. In the router, the basic IEEE 802.11 Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA) protocol is used [20]. As the example is only meant to

illustrate the capabilities of the model transformation, deeper technical details are omitted from this

description.

Figure 5: Personal Area Network (PAN)

CSMA/CD assigns different waiting time to packets in order to manage the access of the

stations to the medium. There are three different waiting times for various types of packets. The

shortest waiting time for medium access is called Short inter-frame spacing (SIFS) which is used for

short control messages or polling responses. The waiting time for time-bounded service such as a poll

from the access point is considered PCF inter-frame spacing (PIFS) and the longest waiting time and

lowest priority, DCF inter-frame spacing (DIFS) is used for asynchronous data services. There is a

mechanism called contention window (CW), which is introduced in order to facilitate collision

 8

avoidance. The contention window makes use of an integer value that starts with CWmin = 7 and

doubles every time a collision occurs. Every time a station tries to gain access to the medium, a

random number is generated between 0 and CW and is added to the waiting time. This ensures that

the stations do not send their packets at the same time. CW is doubled for every collision that occurs

to accommodate a larger number of stations vying for the access of the medium. Readers are referred

to [20] for more information.

Several assumptions were made in this case for the sake of clarity and to provide a better

understanding of the tool. Firstly, the waiting time for all packets is constant and all packets are

categorized as DIFS. Secondly, the CW is constant and does not increase, and since there are only two

stations, the CW would be minimum, i.e. CWmin = 7. Thirdly, the packets are dropped after the

unsuccessful tries from the station and each station sends only one packet. These assumptions do not

invalidate the results of the analysis by any means; they only limit the scope of this case study.

3.0 SD2PN Model Transformation and Analysis

 The transition from Sequence Diagrams to Petri Nets (SD2PN) allows model interoperability

between the user-friendly interface of UML and the formal mathematical nature of Petri Nets. This

transition is achieved by the model transformation tool SD2PN [21]. The transformation involves

three distinct phases:

Phase 1: Decomposition of Sequence Diagrams into fragments.

Phase 2: Transformation of each fragment into a Petri Net block.

Phase 3: Composition of the Petri Net blocks using morph and substitute.

 These phases will be detailed in Sections 3.1, 3.2 and 3.3 and their execution will be illustrated

using a Sequence Diagram describing the behaviour of a Personal Area Network. Following the

completion of the model transformation, the resulting Petri Net will be subjected to structural and

behavioural analysis.

 9

3.1 Decomposition of Sequence Diagrams into Fragments

 The decomposition process involves the identification of every model element in the Sequence

Diagram based on the metamodel in Figure 2. The term fragment in this paper refers to the model

elements message and CombinedFragment. There are five types of fragments consisting of message

and each type of CombinedFragment; alternative, option, break and parallel. Each type of fragment

would be assigned a transformation rule in the next section to map the fragment into a Petri Net block.

Examples of these fragments are illustrated in Figure 6 where a Sequence Diagram is decomposed

into 15 numbered fragments based on the model elements.

 The Sequence Diagram in Figure 6 gives an overview of how a station sends a packet to the

medium in the IEEE 802.11 protocol. The medium access control (MAC) layer of the station receives

a packet from an application and registers it. It then idles before checking the status of the medium. If

the medium is free the station is able to send the packet across to the medium. However, if the

medium is busy the station has to wait until the medium is free before idling again. The MAC then

checks the status of the medium again before either sending the packet across or waiting again. Each

of the events in this scenario has multiple sub-events that occur in the background. The diagram is

however simplified for the sake of clarity.

 10

Figure 6: Sequence Diagram for a station in PAN

 Throughout the decomposition process, the causality order between these fragments is

preserved in the metamodel element GeneralOrdering. In the Sequence Diagrams, this ordering is the

same as top-down visual ordering. The hierarchical order between elements is also preserved in the

metamodel as indicated by the relationship between CombinedFragment and InteractionFragment. As

a result, the behaviour of the original Sequence Diagram could be incorporated into the resulting Petri

Net to ensure that they are semantically equivalent.

 11

3.2 Transformation of each fragment into a Petri Net block

 This section describes how each Sequence Diagram fragment generated in Phase 1 is

transformed into a corresponding Petri Net block using a series of five transformation rules; one rule

for each type of fragment.

Figure 7: SD2PN Model Transformation Rules

Rule 1 -Message: A message is either a call for the execution of an operation or depicting sending

and receiving of a signal [4]. The execution of a message, m in a Sequence Diagram fragment is

depicted as the firing of a transition, t in the corresponding Petri Net block. Places s1 and s2 model a

pre-condition and a post-condition for the firing of the transition as shown in Figure 7 (a). These

places will be used to create correct causality of events within the sequence diagram. As a further

condition to this rule, if m is the first message in the Sequence Diagram, then s1 in the corresponding

block of Petri Net must be given a token to signify the start of the Petri Net and to allow the

transitions to fire.

Rule 2 - Alternative: The Interaction Operator alternative specifies a different set of events that may

occur based on the conditions in the fragment [4]. In order to preserve the semantics, this fragment is

represented as a Petri Net block that starts with a place s1 that splits into two transitions t1 and t2.

These two transitions denote the different alternative scenarios in the Sequence Diagrams and will

 12

each map into a placeholder block ph1 and ph2 respectively, which represent alt_fragment1 and

alt_fragment2. These placeholders will later be substituted with the actual events inside the fragment.

They will then map into transitions t1 and t2 to signal the end of the alternative fragments and will

terminate at place s2 as shown in Figure 7(b).

Rule 3 - Option: Interaction Operator option can be treated similar to the way alternative fragment

due to the similarity of their constructs. Therefore, the same block of Petri Net as in Figure 7(b) is

used, with exception of ph1 and ph2 representing opt_fragment1 and opt_fragment2 instead.

Rule 4 - Break: Break consists of a guard (condition) such that when it is satisfied, the operation

breaks (i.e. terminates) [4]. This is modelled with the help of two transitions: t1 for the case where the

guard fails and t2 for when the guard is satisfied. Transition t1 connects to ph1, which represents

break_fragment1, which is the set of event that happens if the break condition is not satisfied while t2

leads to place X, which is the terminal node. The placeholder ph1 is then connected to a transition t3 as

shown in Figure 7(c) to mark the termination of the block at s2.

Rule 5 - Parallel: A parallel operator specifies that two sets of event should occur concurrently

without any pre-defined set of conditions [4]. As depicted in Figure 7(d), the corresponding block of

Petri Nets must ensure the parallel execution of par_fragment1 and par_fragment2.

3.3 Composition of the Petri Net blocks using morph and substitute

 Following the mapping of each Sequence Diagram fragment into a corresponding Petri Net

block, a meaningful Petri Net that corresponds to the original Sequence Diagram needs to be

produced by composing the Petri Net blocks. A closer examination of the five transformation rules

from Phase 2 reveals that each rule produces a Petri Net block with a single input place and a single

output place. This allows the composition of the Petri Net blocks to be conducted using morph and

substitute.

 13

 Morph is used to compose causality relationship between Petri Net blocks. Calling a morph

function with two Petri Net blocks results in the post-condition of the first block being morphed with

the pre-condition of the second block, as shown in Figure 8.

Figure 8: Example of morph in SD2PN

 The function substitute is used for composing hierarchical behaviour between Petri Net blocks.

Substitution is used only for replacing a placeholder with a complete Petri Net block as shown in

Figure 9.

Figure 9: Example of substitute in SD2PN

 14

 The process of composing the Petri net blocks starts with the mapping of the causal

relationships. This mapping requires calling the morph function recursively for each causal

relationship in the original Sequence Diagram. Once all the causal relationships are mapped, the

hierarchical relationships between the Petri Net blocks are considered. The hierarchical relationships

are mapped by recursively applying the substitute function for every placeholder that exists in the

Petri Net blocks.

Figure 10: Petri Net for a station in PAN

 The Petri Net in Figure 10 is the result of applying the SD2PN model transformation to the

Sequence Diagram in Figure 6. Each numbered Petri Net block corresponds to the original numbered

Sequence Diagram fragment and the order of events from the original Sequence Diagram is preserved

through the execution of morph and substitute. Thus the Petri Net in Figure 10 is considered

 15

semantically equivalent1 of the Sequence Diagram in Figure 6. This allows the Petri Net to be

analyzed using widely available Petri Net tools such as as CPNTools [9] and PIPE [8]. This would be

further elaborated in the next section.

3.4 Analysis of the resulting Petri Net

 The mathematical nature of Petri Nets creates a strong base for various types of analysis.

Murata [7] outlines a number of analysis methods and indicates how they relate to the problems in

designing an enterprise system including structural analysis methods such as liveness and

boundedness as well as behavioural analysis methods such as reachability analysis. A liveness

analysis checks the system for deadlocks while a boundedness analysis is used to check the effect of

the system on the buffers and registers when storing intermediate data. On the other hand, a

reachability analysis is used to study the dynamic properties of a system e.g. how one action may

affect the chances of an event happening in the future.

 In the case of the Petri Net in Figure 10, PIPE [8] was used to perform a structural analysis on

the system. The liveness and boundedness of the system was computed through State Space Analysis

where liveness is determined through the absence of deadlocks in the Petri Net while boundedness is

computed through a P-invariant calculation. The result of the analysis confirmed that the Petri Net

was not only live and bounded; it was also safe (bounded with a value of 1).

Subsequently, a behavioural analysis was conducted in the form of a Reachability Graph

generated using the Petri Net tool PIPE as shown in Figure 11. The Reachability Graph identifies all

the different states of the Petri Net and determines whether each state is reachable from the initial

marking of the Petri Net. The graph in Figure 11 shows that every state in the Petri Net is reachable

through a series of event.

1 The semantic equivalence between every Sequence Diagram and its corresponding Petri Net generated via

SD2PN has been previously established in [7] using a common semantics domain.

 16

Figure 11: Reachability Graph generated using PIPE

 The structural and behavioural analysis performed earlier highlights the critical nature of Petri

Nets in determining the usability of a system. A system with deadlocks does not terminate while a

system that is not bounded will overflow the buffers and registers of a host machine. The reachability

analysis on the other hand allows the system designers to analyze all possible aspects of a system that

may be affected by a user-initiated action.

 By providing for a seamless transition from Sequence Diagrams to Petri Nets, SD2PN allows

the analysis capabilities of Petri Nets to be applied to Sequence Diagrams while masking the

complexity behind the model transformation. One type of analysis, performance analysis, could not be

performed with conventional Petri Nets. This is due to the inability of conventional Petri Nets to

 17

support time constraints. This shortcoming is the motivation behind extending SD2PN with timeliness

properties.

4.0 Extension of SD2PN with Timeliness Properties

 It was established that SD2PN allows a model level interoperability between Sequence

Diagrams and Petri Nets in such a way that a system could be designed using Sequence Diagrams and

analyzed as a Petri Net without any remodelling. However, it was also determined that the scope of

the analysis in conventional Petri Nets did not extend to performance analysis, which is a critical

factor in real-time systems. Thus, an enhancement to the model transformation was introduced in [22]

where SD2PN is augmented with timeliness properties. This section details the enhancement and

illustrates the significance of integrating time as a component in the model transformation.

The process of extending SD2PN with timeliness properties is conducted by enhancing both the

metamodels of the Sequence Diagrams and the Petri Nets with time constraints. This is followed by

the enhancement of the transformation rules to include the new time constraints specified in the

metamodels. Both these enhancements are detailed in Section 4.1 and 4.2 respectively. The

composition of the Petri Net blocks using morph and substitute, is not affected thanks to the structural

consistency of the transformation rules.

4.1 Metamodel Enhancement

 The extension of SD2PN with timeliness properties requires the augmentation of the

metamodels of Sequence Diagrams in Figure 2 and Petri Nets in Figure 3.

4.1.1 Sequence Diagrams

 To allow time constraints to be present in Sequence Diagrams, the Sequence Diagram

metamodel in Figure 2 is enhanced with time constraints. Figure 12 presents an enhanced metamodel

for Sequence Diagrams where the shaded elements in the metamodel represent the extensions that

 18

signifies the addition of time properties into Sequence Diagrams. The shaded elements are adapted

from "Common Behaviors", chapter 13 of the UML 2.1 Superstructure [4].

Figure 12: Sequence Diagram Metamodel augmented with Timeliness Properties

Interval and Duration are the two types of time-related constraints added into the metamodel.

Interval represents a time frame with a maximum and minimum value where the occurrence of a

specific event must be within the maximum and minimum value [4, 23]. A Duration is defined as the

temporal distance between two time instances [4, 23]. A Duration consists of only one value and an

event associated with a particular Duration could only occur on the exact time specified by the

Duration. Both Interval and Duration are syntactically represented textually inside curly brackets as

specified in [4, 23] and each value is expressed as float instead of Value Specification in order to

manage the constraints more accurately and to keep the metamodel to a minimum.

θ
θ θ

Figure 13: Example of a Sequence Diagram with time constraints

Figure 13 shows an example of a Sequence Diagram that features both types of time

constraint, Interval and Duration. The Interval between the sending and receiving events of m2

 19

indicates that the completion (sending and receiving) of m2 takes between θ and θ +3 to occur,

where θ is a constant. The Duration between m1 and m2 on the other hand indicates that after m1 is

completed, the state is preserved for the duration of θ before m2 could be sent.

 The presence of Interval and Duration in the Sequence Diagram could present a unique case

that is not represented in the previously defined fragments. The example in Figure 13 shows the

presence of a Duration that is not attached to a message. This warrants the inclusion of an additional

fragment type and an additional transformation rule that will be addressed in Section 4.2.

4.1.2 Petri Nets

The enhancement of the Sequence Diagram metamodel with time constraints introduces an

inconsistency between the source and the destination metamodels of the model transformation. To

allow the Sequence Diagrams to be accurately mapped into Petri Nets, the Petri Net metamodel has to

be enhanced with time constraints as well.

The addition of constraints to an ordinary Petri Net results in a type of Petri Net called Timed

Petri Net [24]. Figure 14 represents the metamodel of Timed Petri Net where the shaded elements

refer to the extension of the metamodel in Figure 3 with time properties.

Figure 14: Petri Net Metamodel with Timeliness Properties

 20

The shaded elements in the metamodel in Figure 14 include Interval and two specializations

of transition; immediate transition and timed transition. The Intervals are expressed as closed

intervals [24] and consists of an upper and lower bound of type float, to be consistent with Sequence

Diagrams. Intervals are connected to transitions. For a transition to fire, it must be enabled and once

enabled, a clock starts; the transition can fire when the value of the clock is within the interval. An

example of a timed transition is shown in Figure 15 where the transition t2 has a time constraint with

the closed interval [θ ,θ +3]. The transition t2 can only fire under two conditions: it must be enabled

and the clock must be between θ and θ +3.

θ θ

θ

Figure 15: Example of a Timed Petri Net

 Two types of transition are identified in the Figure 15, immediate transitions and timed

transitions. Immediate transitions, which are transitions without time constraints, are depicted as

black rectangles while the timed transitions are depicted as white rectangles. An immediate transition

may be considered as equivalent to a timed transition with an interval of [0, 0]. For timed transitions,

the interval is shown in a bracket by the label of the transitions, with a comma separating the upper

and lower bound. If the upper and lower bound of the interval is the same, as in [50, 50], it is

abbreviated as [50].

4.2 Transformation Rules Enhancement

An MDD model transformation consists of three main components; a source metamodel, a

destination metamodel, and a set of transformation rules. Both the source and the destination

 21

metamodel have been enhanced to include timeliness properties; this requires the transformation rules

to be enhanced as well.

In this section, Rule 1 is modified to accommodate the existence of the two types of transition

while Rules 2 through 5 remains unchanged since there are no intervals or durations that are attached

to CombinedFragments. Every transition in Rules 2 through 5 is therefore designated as immediate

transitions.

Rule 1 from Section 3.2 is used to transform every message in a Sequence Diagram into a

Petri Net block consisting of two places, s1 and s2, and a transition, t. By adding a time constraint to

this rule, the transition t is given an Interval constraint with a maximum and minimum value acting as

its upper and lower bound. There are three possible cases for the execution of this rule:

Case 1: If a message has an interval associated with it e.g. {10...30}, the transition t in the resulting

Petri Net block will be designated as a Timed Transition with a closed interval [10, 30].

Case 2: If a message has a duration associated to it e.g. {20}, the transition t in the resulting Petri Net

block will be designated as a Timed Transition with a closed interval [20, 20] or abbreviated as [20].

Case 3: If a message does not have any time properties attached to it, the transition t in the resulting

Petri Net block will be designated as a transition with a closed interval [0, 0] or an Immediate

Transition.

{ }θ []θ

Figure 16: Rule 6 of SD2PN

To accommodate the new type of fragment defined in Section 4.1.1, an additional Rule is introduced

to SD2PN. Rule 6, as illustrated in Figure 16 maps time properties that are not attached to any

particular message into a Petri Net block. This results in a Petri Net similar to Rule 1. However, there

are only two possible execution cases for Rule 6:

 22

Case 1: If a time constraint has an interval associated to it e.g. {10...30}, the transition t in the

resulting Petri Net block will be designated as a Timed Transition with a closed interval [10, 30].

Case 2: If a time constraint has a duration associated to it i.e. {20}, the transition t in the resulting

Petri Net block will be designated as a Timed Transition with a closed interval [20, 20] or abbreviated

as [20].

4.3 Enhanced SD2PN Model Transformation

 The metamodel and transformation rules enhancements from the previous section results in an

enhancement of the SD2PN model transformation. However, the fundamentals of the model

transformation process described in Section 3 remains unchanged. The three phases of SD2PN are

still valid:

Phase 1: Decomposition of Sequence Diagrams into fragments.

Phase 2: Transformation of each fragment into a Petri Net block.

Phase 3: Composition of the Petri Net blocks using morph and substitute.

 The process of Sequence Diagram decomposition in Phase 1 is enhanced through the

introduction of an additional fragment type. In Section 3.1, five fragment types were introduced;

message and CombinedFragments of type alternative, option, break and parallel. However, for the

purpose of the time enhanced model transformation, an additional fragment type is introduced, as

described in Section 4.1.1.

 Phase 2 of the model transformation makes use of a set of six transformation rules specified in

Section 4.2, one for each fragment type. The rules consist of an enhancement to the set of five

transformation rules of Section 3.2 and the addition of Rule 6 in Section 4.2. The composition of the

Petri Net blocks in Phase 3 of SD2PN remains unchanged from Section 3.3 since the enhancements

made to the transformation rules in Section 4.2 do not affect the structural consistency of the Petri Net

blocks i.e. all Petri Net blocks begins and ends with a place. The application of the three phases

results in the transformation of a Sequence Diagram into a semantically equivalent Petri Net.

 23

 In Section 3, an example of the transformation process was provided. The Sequence Diagram in

Figure 6, a representation of a Personal Area Network, was transformed via SD2PN into the Petri Net

in Figure 10. To illustrate the introduction of time as an element in the model transformation, the

Sequence Diagram in Figure 6 is augmented with time constraints, resulting in the Sequence Diagram

in Figure 17 (a). Using the enhanced SD2PN model transformation, this Sequence Diagram is

transformed into the Petri Net depicted in Figure 17 (b).

Figure 17: (a) Sequence Diagram for a station in PAN and (b) its equivalent Timed Petri Net

 24

 The Petri Net generated via the enhanced SD2PN in Figure 17 (b) is structurally equivalent to

the Petri Net in Figure 10; thus indicating the consistency of the model transformation. However, the

introduction of timeliness properties into SD2PN vastly expands the scope of analysis that could be

performed on the resulting Petri Nets.

4.4 Extended Analysis of the resulting Petri Net

 The extension of SD2PN with timeliness properties allows performance analysis to be

performed in addition to the existing structural and behavioural analysis; time-sensitive analysis such

as a cycle-time, average time, standard deviations, confidence intervals and throughput analysis can

be performed, as described in references [8, 25].

 The Petri Net in Figure 17 (b) is still amenable to the structural and behavioural analysis as

described in Section 3.4. However, since there is no structural difference between the Petri Nets in

Figure 10 and Figure 17 (b), the results of the structural and behavioural analysis remain the same.

The focus of the performance analysis in this case is throughput analysis; this will be used to analyse

the maximum delay for a station in the Personal Area Network.

The maximum delay is calculated based on the time it takes for a station to gain access to the

medium (sendPacket). The factor that contributes to the increase in waiting time is the number of

stations. A higher number of stations will increase contention between the stations. This inevitably

leads to a longer maximum waiting period. For the case of a single station in the PAN, the Petri Net

would be the same as the Petri Net in Figure 17 (b). However, for cases where there is more than one

station, the Petri Net in Figure 17 (b) would be replicated for each station. The throughput analysis

will compute the maximum waiting time based on the last station to gain access to the medium via the

message ‘sendPacket’. For example, in a case where there are two stations trying to gain access to the

medium, after registering the packet (firing of registerPacket transition), in Figure 17 (b), both

stations will face a mandatory idle time of 50μs (firing of idle transition) before checking the status of

the medium. Following that, only one station will be able to gain access to the medium while the other

 25

will have to wait between 120μs and 240μs (firing of waitForAccess transition), thus a maximum

waiting time of 290μs (= 240μs + 50μs).

Figure 18: Maximum Waiting Time analysis result

The graph in Figure 18 indicates the maximum delay that a station may face before gaining

access to the medium to send a packet based on the throughput analysis. The number of stations is

limited to 7 to ensure there are no collisions; this is based on the previous assumption that the

contention window (CW) does not increase.

In the example of the Petri Net in Figure 17 (b), the analysis performed could provide a basis to

optimise related protocols to ensure a better performance. This provides a domain of interoperability

from Sequence Diagrams to Petri Net allowing not only structural and behavioural analysis, but also

performance analysis. The performance analysis is not limited only to throughput analysis. Various

other performance analyses such as cycle-time analysis, average time, standard deviations, and

confidence intervals analysis can also be performed. Various analysis methods are covered in detail in

references [8, 25].

5.0 Discussion

 The dichotomy between the design and analysis domains in software development exists due

to the trade-off between the ease-of-use of UML and its lack of precision. The requirement for

analysis using a formal language, as a sequential step to a less formal design phase, results inevitably

 26

in the generation of heterogeneous models. One approach to addressing this issue is to enhance the

formalism of languages used in the design. Recent work in this area has been marked by a concerted

effort aimed at formalizing UML by integrating formal methods techniques into the model [26-30].

Formalization offers many advantages including the ability to analyze a model via techniques such as

model checking and theorem proving in order to ensure correct specification. The introduction of

logical and timing constraints into a model, in particular, facilitates the investigation of non-functional

aspects of the system such as QoS and security. Integrating formal method techniques with UML is an

active area of research. For example, Evans et al [26] propose the use of Z as the underlying

semantics for Class Diagrams to deal with the static aspects of models. Küster-Filipe [31] presents a

semantics for Sequence Diagrams based on Labelled Event Structures. However, it has been noted

that formalization increases complexity and is often achieved at the expense of simplicity. The main

challenge is to strike a balance between precision and ease of use. This can be achieved by creating a

domain for interoperability between UML and a formal language.

The use of model transformation in supporting interoperability between design and analysis

models in software engineering is increasingly gaining importance in the software development

community. Anastasakis et al [32] describe the challenge of model transformation from UML to Alloy

[33]. They propose UML2Alloy [34] as a tool for the analysis of UML models via the Alloy

framework. UML2Alloy allows the analysis of static models which are qualified with OCL

constraints [35]. Alloy does not however provide the mechanisms required for capturing complex

dynamic behaviour such as parallelism.

The choice of Petri Nets as the formal language for performing behavioural analysis is due to

its flexibility, expressiveness and power as well as wide availability of tools. Petri Nets are also a

popular choice for representing dynamic models. For example, Van der Aalst [36] makes use of Petri

Nets for the analysis of Workflow Management Models. Using the analytical capabilities of Petri

Nets, the Workflow Models are analyzed for validation, verification, and performance analysis.

Vanhatalo et al [37] decomposed Business Process Models into blocks of Single Entry Single Exit

(SESE) models and analyzed each blocks independently. This technique makes it possible to analyze

the liveness and soundness of a Business Process Model. Moreover, they state that the fastest

 27

technique used in the analysis of Workflow Models involves transforming them into Free Choice Petri

Nets [38, 39]. Free Choice Petri Nets is a subclass of Petri Nets where conflicting behaviour and

concurrent behaviour may occur, but not simultaneously. This subclass of Petri Net is predominantly

used for effective and efficient analysis of a systems [37]. Free Choice Petri Nets are also proving to

be particularly suitable for the analysis of large-scale systems [36, 37], an important feature that

widens the scope of the application of the proposed framework to encompass similar systems.

In the transformation process SD2PN generates Free Choice Petri Net. This result has been

established and proved in [21]. The seamless transition from Sequence Diagrams to Petri Nets takes

advantage of their suitability for formal analysis and support for the investigation of various

properties such as liveness, safeness and deadlocks detection [38]. It is also possible to integrate

existing Petri Net tools into a tool set, so that for a given UML Sequence Diagram, by applying a

sequence of tools, the user can automatically receive feedback on, among others, the liveness,

safeness and deadlock freeness of the model. This complete tool integration and the model

interoperability presented in this paper is bound to reduce the cognitive load on users since a thorough

understanding of the underlying formal structure of the model is no longer required.

It was established in this paper that the model interoperability and tool integration provided by

SD2PN could be used to generate Petri Net models from Sequence Diagrams; providing a basis for

structural, behavioural and performance analysis using Petri Net tools such as PIPE and CPNTools.

This approach is bound to reduce the complexity inherent to the software development process. The

development and deployment of the tool owes much to the abstract approach that MDD promotes.

MDD provides a platform for models to be reused across domains; in this case those identified by the

design and formal analysis phases. Reusing models across domains results in shorter development

cycle and lower production cost, and in turn reduces complexity in the software development process.

This is evident in SD2PN where the model created in the software design domain could be reused in

the analysis domain, allowing model interoperability between Sequence Diagrams and Petri Nets. The

transition between the two models is well supported by tool integration.

SD2PN is till under development and suffers from some limitations; among these is the

inability to map the data flow and data constraints into Petri Nets. This limitation can be an

 28

impediment to the modelling of some complex systems. Conventional Petri Nets and Timed Petri Nets

are unable to handle data types, and as such incapable of modelling data flow or data constraints. This

limitation could be addressed by using another flavour of Petri Nets: Coloured Petri Nets (CPN). This

will be the focus of future research.

6.0 Conclusion

 This paper has presented a method of model interoperability, which makes use Model Driven

Development in order to bridge the gap between the design and analysis phases of software

development. The framework introduced in this paper, SD2PN, provides a seamless transition from

Sequence Diagrams to Petri Nets. This allows for models to be conveniently designed in UML while

taking advantage of the rigorous mathematical analysis afforded by Petri Nets; it also supports the

integration the different toolsets across incompatible domains. Petri Nets are well suited for structural

and behavioural analysis of a model thanks to their expressive power and flexibility. Moreover, the

addition of time properties as a significant feature of the model transformation allows performance

analysis to be conducted on real-time and time-sensitive models. The proposed approach has been

evaluated with a model of the behaviour of a Personal Area Network. The model was also used as a

vehicle for illustrating the difference between the structural and behavioural analysis of conventional

Petri Nets and the performance analysis of Timed Petri Nets.

References

1. Sannella, D., A Survey of Formal Software Development Methods, in Tech. Rept. ECS- LFCS-
88-56. 1988, Edinburgh University.

2. Sheth, A.P., Changing focus on interoperability in information systems: from system, syntax,
structure to semantics, in Interoperating Geographic Information Systems 1999, Kluwer
Academic Publishers.

3. Medvidovic, N., R.F. Gamble, and D.S. Rosenblum, Towards Software Multioperability:
Bridging Heterogeneous Software Interoperability Platforms, in Fourth International
Software Architecture Workshop (ISAW-4). 2000: Limerick, Ireland.

4. OMG, OMG Unified Modelling Language (UML) Superstructure 2.1, available at
www.omg.org. 2007.

5. ArgoUML, ArgoUML web site, sourceforge.net/projects/argouml. 2005.

 29

http://www.omg.org/

6. Poseidon. Poseidon for UML, from Gentleware, www.gentleware.com/. 2006.
7. Murata, T., Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 1989.

77(4): p. 541-580.
8. Bonet, P., et al., PIPE v2.5: a Petri Net Tool for Performance Modeling, in XXXIii Conferencia

Latinoaméricana de Informática. 2007.
9. CPNTools, Computer Tool for Coloured Petri Nets, http://wiki.daimi.au.dk/cpntools/.
10. Kühn, H., M. Murzek, and F. Bayer, Horizontal Business Process Model Interoperability using

Model Transformation, in INTEREST’2004 Workshop at ECOOP 2004. 2004: Oslo, Norway.
11. Bertolini, D., et al., A Tropos Model-Driven Development Environment, in 18th Conference on

Advanced Information Systems Engineering (CAiSE-06). 2006, Springer Verlag:
Luxembourg.

12. Mauw, S. and M. Reniers, An algebraic semantics of basic message sequence charts. The
Computer Journal, 1994. 37: p. 269-277.

13. Campos, J. and J. Merseguer. On the Integration of UML and Petri Nets in Software
Development. in 27th International Conference on Applications and Theory of Petri Nets and
Other Models of Concurrency. 2006. Turku, Finland: Springer.

14. Stahl, T. and M. Volter, Model Driven Software Development; technology engineering
management. 2006: Wiley.

15. MDA, Model Driven Architecture, Object Management Group www.omg.org/mda/. 2005.
16. MOF. Meta Object Facility (MOF) 2.0 Core Specification, Object Management Group,

available at www.omg.org,. 2004; Available from: http://www.omg.org.
17. ATLAS, ATLAS, Université de Nantes, http://www.sciences.univ-nantes.fr/lina/atl/. 2005.
18. kermeta, Triskell Metamodelling Kernel, www.kermeta.org. 2005.
19. Akehurst, D.H., et al. SiTra: Simple Transformations in Java. in ACM/IEEE 9TH International

Conference on Model Driven Engineering Languages and Systems. 2006.
20. Schiller, J.H., Mobile Communications. 2003: Pearson Education.
21. Ameedeen, M.A. and B. Bordbar, A Model Driven Approach to Represent Sequence Diagrams

as Free Choice Petri Nets, in 12th International IEEE Enterprise Distributed Object
Computing Conference (EDOC). 2008: München, Germany. p. 213 - 221.

22. Ameedeen, M.A., B. Bordbar, and R. Anane, A Model Driven Approach to Analysis of
Timeliness Properties, in Fifth European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA 2009) (to appear). 2009.

23. Douglass, B.P., Doing Hard Time: Developing Real-time Systems with UML, Objects,
Frameworks and Patterns. Object Technology Series. 1999: Addison Wesley.

24. Wang, J., Timed Petri Nets: Theory and Application. 1998: Springer.
25. Jensen, K., L.M. Kristensen, and L. Wells, Coloured Petri Nets and CPN Tools for modelling

and validation of concurrent systems. International Journal on Software Tools for Technology
Transfer (STTT), 2007.

26. Evans, A.F., Robert & Grant, Emanuel. Towards Formal Reasoning with UML Models. in
Proceedings of the OOPSLA'99 Workshop on Behavioral Semantics. 1999.

27. Kim, D., et al. A UML-Based Metamodeling Language to Specify Design Patterns. 2003;
Available from: http://www.cs.colostate.edu/~georg/aspectsPub/WISME03-dkk.pdf.

28. Kim, S.-K., A Metamodel-based Approach to Integrate Object-Oriented Graphical and Formal
Specification Techniques. 2002, University of Queensland: Brisbane, Australia.

29. Snook, C. and M. Butler, UML-B: Formal modelling and design aided by UML, in ACM
Transactions on Software Engineering and Methodology. 2006.

30. Marcano, R. and N. Lévy, Transformation Rules of OCL Constraints into B Formal
Expressions, in 5th International Conference on the Unified Modeling Language. 2002:
Dresden, Germany.

31. Küster-Filipe, J., Modelling concurrent interactions. Theoretical Computer Science, 2006.
351(2): p. 203-220.

32. Anastasakis, K., et al. UML2Alloy: a Challenging Model Transformation. in ACM/IEEE 10th
international confernece on Model Driven Engineering Languages and Systems. 2007.

33. AlloyAnalyzer, Alloy Analyzer Website, http://alloy.mit.edu/beta/ [cited February 2005]. 2005.

 30

http://www.gentleware.com/
http://wiki.daimi.au.dk/cpntools/
http://www.omg.org/mda/
http://www.omg.org,/
http://www.omg.org/
http://www.sciences.univ-nantes.fr/lina/atl/
http://www.kermeta.org/
http://www.cs.colostate.edu/%7Egeorg/aspectsPub/WISME03-dkk.pdf
http://alloy.mit.edu/beta/

34. Bordbar, B. and K. Anastasakis, UML2Alloy: A tool for lightweight modelling of Discrete
Event Systems, in IADIS International Conference in Applied Computing 2005. 2005:
Algarve, Portugal. p. 209-216.

35. OMG. UML 2.0 OCL Specification. Document Id: ptc/03-10-14 2003; OMG Final Adopted
Specification:[Available from: http://www.omg.org/docs/ptc/05-06-06.pdf.

36. van der Aalst, W.M.P., The Application of Petri Nets for Workflow Management. The Journal
of Circuits, Systems and Computers, 1998. 8(1): p. 21-66.

37. Vanhatalo, J., H. Volzer, and F. Leymann, Faster and More Focussed Control-Flow Analysis
for Business Process Models Through SESE Decomposition, in Fifth International
Conference on Service Oriented Computing. 2007, Springer: Vienna, Austria. p. 43-55.

38. Desel, J. and J. Esparza, Free Choice Petri Nets. 1995: Cambridge University Press.
39. Baccelli, F., S. Foss, and B. Gaujal, Free Choice Petri Net: an Algebraic Approach. IEEE

Trans. on Automatic Control, 1996.

 31

http://www.omg.org/docs/ptc/05-06-06.pdf

	1.0 Introduction
	2.0 Preliminaries
	2.1 UML Sequence Diagrams
	2.2 Petri Nets
	2.3 Model Driven Development
	2.4 Case Study: Personal Area Network

	3.0 SD2PN Model Transformation and Analysis
	3.1 Decomposition of Sequence Diagrams into Fragments
	3.2 Transformation of each fragment into a Petri Net block
	3.3 Composition of the Petri Net blocks using morph and substitute
	3.4 Analysis of the resulting Petri Net

	4.0 Extension of SD2PN with Timeliness Properties
	4.1 Metamodel Enhancement
	4.1.1 Sequence Diagrams
	4.1.2 Petri Nets

	4.2 Transformation Rules Enhancement
	4.3 Enhanced SD2PN Model Transformation
	4.4 Extended Analysis of the resulting Petri Net

	5.0 Discussion
	6.0 Conclusion
	References

