

Abstract— With the advent of Cloud computing massively
scalable and cost effective IT resources can be accessed and used
seamlessly. Various APIs are made available for manipulating
the infrastructure of the Cloud and its data models and for
applying the deployment tools. Cloud computing promotes a new
approach to software development. In particular, the
development team must bridge the gap between the requirement
of the clients and the available facilities on the Cloud. This
complexity might inevitably result in higher cost and potentially
unsatisfactory results.

In this paper a method for bridging the gap between the clients
view and software development on the Cloud is proposed. It is
based on the introduction of Domain Specific Languages (DSL)
into the process of Cloud based application development and
deployment. Domain Specific Languages facilitate the
development of applications by easing the design of high level
models and specifications that the client can understand and even
produce. The automated method described in the paper
implements and deploys software for the Cloud. A preliminary
evaluation shows that the proposed approach improves the
process of developing and deploying applications on the Cloud.

Index Terms— Cloud Computing, Service oriented
Architecture, Domain Specific Languages, and Google App
Engine

I. INTRODUCTION

Cloud Computing provides a novel approach for software
deployment and for hosting IT systems on the Internet, by
managing the resources in order to enhance reliability and
scalability. The cost of utilizing resources such as computing
power, data transfer and data storage is relatively low since
consumers only pay for the resources that they require
[1][2][3][4].

Cloud computing adds however an extra layer of
complexity into the process of software development. There is
a steep learning curve associated with the APIs for interacting
with the Cloud infrastructure, mastering new data models and
software tools provided by Cloud vendors. Furthermore each
Cloud provider introduces its own set of proprietary APIs data
format and supporting software tools [5]. As a result, the path
from the gathering of requirements to the deployment of the
software on the Cloud is now being lengthened by the

infrastructure created by the Cloud. Such complexity will not
only extend the application development process it will also
add to the cost of Cloud Computing. There is an urgent need
to introduce better approaches to software development in
order to exploit the potential of Cloud Computing.

The desire to reduce costs and speed up the software
development process has also been marked by an increasing
interest in Domain Specific Languages (DSL) [6][7][8]. In
contrast to general-purpose languages such as C++ or Java, a
Domain Specific Language is tightly coupled with a particular
application domain and provides a higher level of abstraction.
A Domain Specific Language hides low level details and
allows the designer to focus mainly on the design. Moreover,
DSLs use tools to automatically generate an implementation.
As a result, software can be developed faster and with limited
programming knowledge [6][9]. Finally, if the developer is
familiar with the application domain, using DSLs require
substantially less training [10]. Automated code generation in
DSLs can reduce human induced errors and shorten the
development cycle.

This paper presents an approach that incorporates Domain
Specific Languages into the process of developing and
deploying software on the Cloud. The proposed approach
involves two fundamental steps. The first step concerns the
development of a Domain Specific Language for a given
domain so that the developers can generate high-level
representation of an application. In the second step the
language is used to generate automatically the code and to
deploy it on the Cloud. The emphasis is on the seamless
development and deployment of Cloud based applications. As
a way of providing greater accessibility to the language by
Cloud application developers, the DSL designed in the first
step will be available in the form of Software as a Service
(SaaS), which can be accessed via web browsers. This
eliminates the need for additional DSL tools on a local
machine.

The remainder of paper is organized as follows. Section II
provides the background material on Cloud Computing,
Domain Specific Languages and SaaS. Section III presents
the rationale and focus of this research. Section IV describes
the proposed approach for integrating Domain Specific
Language into the development and deployment of Cloud
based applications. Section V provides details of the
implementation of the proposed approach. Section VI
describes a case study where the approach is applied. Section

A DSL-based Approach to Software
Development and Deployment on Cloud

Krzysztof Sledziewski1, Behzad Bordbar1 and Rachid Anane2

School of Computer Science, University of Birmingham
{ k.sledziewski, b.bordbar}@cs.bham.ac.uk

2Faculty of Engineering and Computing, Coventry University
r.anane@coventry.ac.uk

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 Crown Copyright

DOI 10.1109/AINA.2010.81

414

Figure 1: Cloud structure [11]

VII offers an evaluation of the proposed approach and Section
VIII concludes the paper.

II. PRELIMINARIES

A. Cloud Computing
Cloud Computing [1][2][3][4] is a technology which

introduces a novel way of accessing IT resources. It allows
access to hardware, virtualised computational power, data
storage, development and execution platforms or
applications, in a service-oriented manner. These are
characterized by being massively scalable and accessed
through the Internet.

 Cloud Computing offers services in many areas and the
technology is often presented in the form of a layered
architecture. For instance, Youseff et al. [11] present
Cloud Computing in terms of five layers:

• Hardware Layer responsible for providing physical
infrastructure for higher layers, such as hardware and
networking systems.

• Software Kernel Layer which handles basic control
over physical infrastructure including OS kernels,
hypervisors, virtual machine monitors and clustering
middleware.

• Cloud Software Infrastructure Layer is responsible
for delivering computational power, data storage and
communications infrastructure in the form of
virtualised abstraction. The service-oriented manner
of delivering these artefacts are usually called
Infrastructure as a Service (IaaS), Data as a Service
(DaaS) and Communication as a Service (CaaS).

• Cloud Software Environment Layer offers a run time
environment for the applications that run on the top of
Cloud’s stack. It includes APIs, which allow
applications to interact with the underlying Cloud
infrastructure. The services provided by this layer are
usually referred to as Platform as a Service (PaaS).

• Cloud Application Layer is the visible part of the cloud
to end users, exposing services in the form of software
applications which are commonly known as Software as
a Service (SaaS). Such applications are usually based on
web technology and are accessible by means of the
Internet.

The following section provides a brief description of a
specific Cloud Platform, the Google App Engine.

B. Google App Engine
Google App Engine is a platform, which facilitates the

development and execution of software as a Service. The
applications that are executed within the context of Google
App Engine run on Google’s massively scalable physical
infrastructure [12]. The platform supports Java and Python
runtime environments and provides a set of rich APIs, which
serve as an intermediary between hosted application and
virtualised infrastructure. The applications can store data in
Google’s scalable data store through a specific API. This data
store differs from traditional relational data model. Instead of
being held in tables, rows and columns, data is stored within
entities and properties [12]. Google provides an SDK which
simulates the Cloud infrastructure and runs on local machines
in order to support the development of applications for the
Google App Engine. A tool is also supplied for the
deployment of applications on the Cloud [12].

C. Domain Specific Languages
The design of languages, which are specific to an

application domain, is a common practice. For example,
Specialised Querying Language (SQL) is specific to the
domain of relational databases. Such languages allow
problems to be modelled at a higher level of abstraction
compared to general-purpose languages such as C++ or Java.
The idea of using languages, which are specific to a domain,
has been widely accepted and extended. Modern DSLs are
produced and maintained by Software tools [6][7], which
facilitate three main aspects:
• The design of a modelling language
• The generation of domain specific code in low level

languages
• The provision of a framework for modelling and code

generation for the developers.
The next section describes briefly one of the Software tools.

Microsoft DSL Tools

Although it is feasible to develop a Domain Specific
Language from scratch, it is however a complex and time
consuming process [8]. Microsoft has introduced a toolkit, the
’DSL Tools’, which is widely used for the development of
Visual Domain Specific Languages [7]. A domain model
designer uses the toolkit to generate the language structure by
developing a metamodel which captures the domain concepts
and their relationships. The metamodel is specified in terms of
UML class diagrams. Once the metamodel and the
visualisation elements of the language have been generated, it
is possible to produce code and in effect execute the DSL. The
execution of the language is done within the context of Visual
Studio. When the language is executed, a new Visual Studio
instance is generated producing a Framework for the designer
to use the language, for example by creating instances of the
language in C# and executing them.

One of the components of Microsoft DSL Tools toolkit is
the generator, which facilitates the traversal of the instances
of the domain model and the generation of artifacts such as
code and configuration files. In order to generate the output

415

Figure 2: Diagram for the proposed approach

from instances of the domain model, ’text-template files’ have
to be provided. Such files are made up of a dynamic part,
which include C# code for specifying how to traverse models,
and a static part that describes the output of the generated file.

D. Software as a Service
Software as a Service (SaaS) allows the execution of the

software within a remote server, and its access by means of a
standard web browser [13][14]. In contrast to packaged
software, applications delivered in SaaS fashion are owned
and hosted by the service provider. To be able to access
applications, customers have to subscribe and pay for them
[15]. The SaaS makes the process of deploying and upgrading
software less complex and more cost effective [15]. The
software is installed and maintained in one place only, in the
hosting environment. Software maintenance is moved to the
software provider side and upgrades are transparent to the
users. SaaS model is platform independent and does not force
users to rely on single software vendor. They can easily
switch between different software providers [15].

III. PROBLEM STATEMENT
Although Cloud Computing presents an advantageous

model for software execution, a wide range of technical
expertise is required to build applications that run on a Cloud
platform [5]. This covers knowledge of APIs that interact
with the Cloud’s infrastructure, new data models, tools for
software development, local run-time environments simulating
Cloud’s infrastructure and tools that allow the deployment of
applications on the target Cloud platform. Moreover, in the
current market a wide range of Cloud platform is available.
Each Cloud platform introduces different ways of
accomplishing the same task. For instance, programming
languages, APIs, data models or development tools may
significantly differ from one Cloud platform to another. The
skills acquired for specific platform, through training and
experience, may not be transferred to another one [5].
 Although Cloud Computing can accommodate the SaaS
model, the inherent complexity of software development may
be a serious impediment to its wider adoption. The challenge
therefore is to ease the process of software development for
Cloud by insulating the developer from the complexity and
intricacies of the underlying models and tools.

IV. PROPOSED APPROACH
The aim of this work is to provide a framework for

developing Domain Specific Languages, which facilitate the
modelling and deployment of Cloud based applications. This
involves using DSLs to create a seamless environment, which
hides the Cloud implementation and deployment details, and
enable the application designers to focus mainly on the
problem domain. The process involves the following. Firstly,
the DSL Developers produce a Domain Specific Language.
Next, Application Designers use the language to model
applications. The produced DSL is provided in the form of
Software as a Service and target Cloud platform. An outline of
the use of DSL by the Application Designer is depicted in

Fig.2. Once the model is created by the Application Designer,
the framework supporting the DSL, which is a SaaS, translates
the model into executable Cloud specific code and
automatically deploys it to the target Cloud platform. Users
can access the deployed applications via browsers.

One of the key advantages of the presented method is that
the Domain Specific Language allows the Application
Designers to model applications using high level abstraction
models for representing problem domains. In contrast to
software development with a general-purpose language such
as C++ or Java, implementation details are hidden from
Application Designers. A combination of high-level modelling
and automated code generation results in better design and
shorter development cycles.

 There are many reasons for presenting the DSL as a
SaaS. Domain Specific Languages, which are delivered in
the form of classical packaged software, suffer from poor
accessibility [15]. The Application Designers need to install
on their local machines several tools with which they are
expected to be familiar. For instance, languages, which are
built with the use of Microsoft DSL Tools, are executable
within the context of Visual Studio [7]. The Application
Designers need to install the development environment on
their local machines and they have to be become familiar
with its operation. To overcome this limitation, we
introduce Domain Specific Languages provided in the form
of Software as a Service, such that the Application
Designers need only a standard web browser to access the
language. The requirement for additional tools is moved to
the side of the hosting environment.

416

Figure 4: Screenshot of the Model Designer

Figure 3: Architecture of the Tool

V. OUTLINE OF THE IMPLEMENTATION
The development of Cloud applications with the method

presented in this paper requires two main phases: the
Development of the DSL and the provision of the DSL as a
SaaS to be used by the application developer, as depicted in
Fig. 2. In this section the two phases will be briefly explained.

Phase 1 Development of the DSL: Development of
Domain Specific Language is done by via Microsoft DSL
Tools [7] to be executed within the context of Visual
Studio. This phase involves two main steps:
1. Interaction with the domain experts to identify the

Metamodel, a model capturing concepts involved in
the domain and their relationship together. A model
in the system is an instance of a Metamodel.
Microsoft DSL Tools allows creating visual models,
which represent each application.

2. The specification of templates for code generation
from the models, instance of the metamodel.
Specification of such templates allows Microsoft
DSL Tools to automatically create C# code for
executing the models.

In the conventional DSL approach, the Domain
Specific Languages developed in this phase are
executable within the context of Visual Studio, i.e. C#
code can be generated and executed. For example, the
template code generation, in step 2 above, can produce a
two-tier system involving a database and an HTML form
automatically. However, the method presented in this
paper does not rely on the use of Microsoft DSL Tools
by the Application Designer. More specifically, the DSL
designer use the Microsoft DSL Tools, but the
Application Designer uses a SaaS as depicted in Fig. 2.
The structure of the SaaS, which reuses some of the
components of the Microsoft DSL Tools, is explained in
Phase 2.

Phase 2 Development of a SaaS: this will enable the
Application Designer to use the DSL. The architecture of
the SaaS is depicted in Figure 3. It comprises of three
main components; these are Model Designer, Code
Generator and Deployment Tool. Model Designer is a
component, which presents the Domain Specific
Language to Application Designers. It allows Application
Designers to develop models representing instances of a
domain problem. As the models created by Model
Designer are used by further components, they are stored
within the Model Repository. The Code Generator is used

417

Figure 6: Sample questions

to generate executable code from models created by the
Model Designer. This component is a reused part of the
Microsoft DSL Tools toolkit. The executable code, which
is produced by the Code Generator, is stored in files that
comprise Cloud based applications. The last component of
the application is the Deployment Tool. This module is
responsible for deploying the code produced by the Code
Generator for the Cloud platform. It wraps the deployment
tools delivered by the Cloud providers. When executed, it
consumes files containing the generated application,
executes the external deployment application obtained
from Cloud’s platform SDK and places the generated
code as input for the deployment of the generated
application on the target Cloud platform. The application
is built with the use of ASP.NET platform.

VI. CASE STUDY

A case study based on the use of questionnaires for

knowledge elicitation is used to illustrate the different steps
of the framework. The domain knowledge for this
application was obtained through an interview with a
domain expert. An IT based questionnaire application is
designed for gathering information online on a selected topic
and for analysing the data provided by the participants. The
online questionnaire is a web-based form, which presents
different types of questions for the respondent to answer.
There are various types of questions as explained in details
in [16]:
• Dichotomous Questions, which include two answers and
where only one of them can be valid.
• Multiple Choice that can have either a single answer or
multiple answers.
• Scale Questions which are aimed at identifying the rate of
some feature by using a fixed scale.
• Text Questions requiring answers in the form of one or
more sections of text
 The questions can be grouped into Question Sheets to
improve readability and usability. As the application is
online, the display should be in the form of HTML tables,
where the columns correspond to the answers for the
question, while the rows present the set of answers given by
a certain questionnaire respondent.
 The case study has resulted in a SaaS that allows the
modelling of questionnaire applications, by the Application
Designers, which automatically generates the executable

code and deploys it to Google Cloud platform.
The Model Designer, see Figure 3, is a core component of
the SaaS. The Model Designer is based on a Domain
Specific Language, which allows the creation models of
questionnaires in a visual manner. Figure presents a
screenshot of the Model Designer, which is used by the
developer to design questionnaires. To use the Model
Designer, the Application Designer logs in to the SaaS, and
if access is granted is redirected to the list of already
developed questionnaire models. At this stage, the
Application Designer can access an existing model or create
a new one. The next step is a redirection to the Model
Designer module.

At the heart of the Designer Module is the DSL. The visual
elements of the language correspond to the domain concepts
relating to the design of the questionnaire. This
correspondence is captured in a metamodel, a model itself,
that describes the elements involved in the model of the
application and relationships between these elements. Fig. 5
represents two of the classes involved in the metamodel of
the DSL for the questionnaire. The class “PageClass”
represents the page that contains a number of questions.
Questions are instances of the “QuestionClass”. Fig. 6
depicts an example of a page and a number of questions. Fig.
5 is an instance of a metamodel. For example, the page is an
instance of “pageClass” element of the metamodel and each
of the five questions is an instance of the “QuestionClass”.
Each question has a text, which is an instance of the attribute
“QuestionText” of the metamodel which is of type “String”.
Each Page may include zero or more questions, which are
captured as cardinatlities “0...*” and “1..1” in the
“DomainRelationship.”
 Once the questionnaire model is built, the Application
Designer is redirected to the Deployment tool (see Figure 3).
The user provides his Cloud account credentials and deploys
the questionnaire to the target Cloud platform. The current

Figure 5: A metamodel section for the DSL

418

Table 1: Lines of code generated automatically

tool is limited to deploying questionnaires to Google’s
Cloud only. If the deployment process is successful, a new
instance of a web browser opens and the deployed
application is made available. Finally, questionnaire
respondents are able to access the deployed questionnaire
application and fill in the questionnaires. They access the
application by the means of web browser and URL given by
the Application Designer. An instance of a deployed
questionnaire application can be seen in Fig 6.

VII. EVALUATION
 This section is concerned with the evaluation of the
proposed method in terms of four criteria: amount of
automatically generated code, time required for the
development, maintainability and usability.

A. Amount of code
The first step of the evaluation process involves the
investigation of the amount of code, which is automatically
generated for different questionnaires. Four questionnaires
were developed; these contain five, ten, twenty and thirty
questions respectively.
 Table 1 presents the number of lines of code generated by
the tool and a summary of the files. Most of the files are
characterized by a constant amount of code. There are only
two files (questionnaire.html and controller.py) where the
amount of code grows with the number of questions. This
variation is due to the fact that both implement the details of
the questions. Questionnaire.html is responsible for
displaying the questions to the end user and controller.py
handles the requests and saves the questions on the database.
The distinction between the files with variable and constant
amount of code was considered to be an important factor
since most of the benefits of the Domain Specific Languages
stem from this variation [6]. The table shows that every
additional ten questions appear to generate approximately a
further six hundred lines of code. Table 2, on the other hand,
presents the amount of code which was automatically
generated and which is dependent on a specific Cloud
Platform. This code is mainly responsible for managing
Cloud based data models. It can be assumed that in order to
develop applications that run on the Cloud, an additional
development effort is required.
 Both Table 1 and Table 2 confirm that the proposed
method for developing Cloud based applications improves
significantly the development process in terms of the
generated code. In the case where a Domain Specific
Language is applied, no manual coding is required.

B. Time of development
 This section deals with the advantages of the tool in terms

of the
time

needed to generate a fully working questionnaire
application. Time was measured both for the automatic as
well as the manual development of questionnaires. For the
sake of convenience and expediency, the measurement for
the manual development was limited to one measurement
per questionnaire with a variable number of questions per
manual development time.
 Table 3 presents time values, which are needed to develop
a fully working web based questionnaires. The proposed tool
appears to speed up the process of application development.
It should also be noted that the estimated values for manual
development given above are optimistic and are valid for
experts in programming Cloud platform. It is assumed that
the development process does not run into difficulty. In
addition, these values do not include the time of
requirements gathering. This is not an issue in automated
development as the developer is usually a domain expert.

C. Maintainability
 The difficulty level and time required for the introduction
of changes to existing applications was also investigated.
The investigation compared manual and automated ways of
modifying applications. More specifically, the time required
for making alterations to existing Cloud was measured,
based on both the manual and the automated code generated
for the cloud. The evaluation showed that for the same
scenario of changes, the automated development was in
some cases more than eight times faster than manual coding.
Moreover, in the case of the automated development
scenario, the issue of difficulty does not arise since the
Cloud application developer does not need to posses any
programming expertise.

D. Productivity
As Kelly and Tolvanen [6] stated, it is not always beneficial
to provide Domain Specific Languages. The costs of
language development may exceed the costs of manual
development. This is particularly valid when a Domain
Specific Language is built for the production of a small
number of items of one family.

No of
Questions

5 10 20 30

Line of Code 290 365 521 672
Table 2: Code generated automatically for the Cloud

419

Table 3: Time required for the development of questionnaires

Figure 7 Manual and automatic development

The chart in Figure 7 depicts the time, which is required to
develop web-based questionnaires in a manual and in an
automated manner. It presents the number of software
solutions for one family, which have to be developed to
achieve a return on investment from the application of the
Domain Specific Language. It was estimated that fifty-six
man hours (3360 minutes) were needed in order to develop a
web based Domain Specific Language for development and
deployment of questionnaire applications.
The chart shows that approximately for less than twenty
questionnaires it would be more beneficial to adopt a manual
approach. In the, case, however, where more than twenty
questionnaires are generated, it might be more advantageous
to develop Domain Specific Language for the automatic
development. For one hundred questionnaires, the
difference in terms of time of development becomes
significant. The development of one hundred questionnaire
applications manually takes approximately three times more
time than the automatic process.

E. Usability
A domain expert who is a Marketing Manager at Meji Media
Ltd, and has used questionnaires as tools for market research
assessed the usability of the proposed tool. According to the
expert, there are two ways of building questionnaires: either
by hiring a software development company or by using
existing web based services. The former approach is not
cost and time effective, whilst the latter does not offer much
flexibility. Moreover sensitive data collected from
respondents may be kept on the servers controlled by the
service provider.
The proposed solution offers an innovative method of
developing questionnaires. It enabled the creation of

questionnaires in a time and cost effective manner. It was
also considered to be more flexible than many existing web
based services. Most services offer a way of creating
questionnaires based on classic HTML forms, with limited
scope for deciding the order of the questions or the answers,
and for creating dependant questions as easily as with the
proposed tool.
 The other feature, which is considered to be an advantage
over existing web-based services, concerns the way the
questionnaire applications are deployed. Within a few
seconds the application can run on an external Cloud server.
Additional benefits include the enhancement of security and
privacy since the data is not kept in the servers of the service
owner.

VIII. CONCLUSION
 A framework for developing Cloud based applications was
presented and its application illustrated by a case study. The
evaluation of the framework and the resulting tool has
shown that this approach can be effective in addressing
many of issues that hinder the wider adoption of Cloud.
These include complexity, development time and cost
ineffectiveness. This was achieved in two stages. First, the
Domain Specific Language was implemented and deployed
as a SaaS. Second, the SaaS is made accessible to designers
for creating applications on the Cloud.
 It was also demonstrated that the application of Domain
Specific Languages enhances the process of developing and
deploying applications seamlessly on Cloud. We consider
that Domain Specific Languages offer a valid solution for
delivering Cloud based applications in the form of Software
as a Service.

REFERENCES
[1] M. Armbrust, R. G. A. Fox, A. D. Joseph, R. H. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, Above
the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, University of California, Berkeley, Feb 2009.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html, 2009.

[2] C. Boulton, "Forrester’s Advice to CFOs: Embrace Cloud Computing

to Cut Costs. eWeek.com, 2008.

[3] M. J. Turner and F. Gens, "Cloud Computing Drives Break

through Improvements in IT Service Delivery, Speed, and Cost
ftp://ftp.software.ibm.com/software/pdf/au/217961.pdf," 2009.

[4] G. V. M. Evoy and B. Schulze, "Using clouds to address grid

limitations," in 6th international workshop on Middleware for grid
computing, 2008, pp. 1-6.

[5] G. Lawton, "Developing software online with platform-as-a- service
technology," Computer, vol. 41, pp. 13-15, 2008.

420

[6] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling - Enabling
Full Code Generation: Wiley-IEEE Computer Society Press, 2008.

[7] S. Cook, G. Jones, S. Kent, and A. C. Wills, Domain-Specific

Development with Visual Studio DSL Tools: Addison-Wesley, 2007.

[8] T. Kosar, P. E. M. Lopez, P. A. Barrientos, and M. Mernik, "A

preliminary study on various implementation approaches of domain-
specific language," Information and Software Technology, vol. 50,
pp. 390-405, April 2007.

[9] A. V. Deursen, P. Klint, and J. Visser, "Domain-specific languages:

An annotated bibliography," ACM SIGPLAN Notices, vol. 35, pp. 26-
36, 2000 2000.

[10] C. Weyer, "Introducing Domain Specific Languages," 2006.

[11] L. Youseff, M. Butrico, and D. D. Silva, "Toward a unified ontology
of cloud computing," in Grid Computing Environments Workshop
(GCE ’08), 2008, pp. 1-10.

[12] Google, "Google. What Is Google App Engine? URL

http://code.google.com/appengine/docs/whatisgoogleappengine.html,
" 2009.

[13] A. Dubey and D. Wagel, "Delivering software as a service, available
at www.mckinsey.de," 2007.

[14] D. Jacobs, " Enterprise software as service 2005," ACM Queue, vol.

3, pp. 36-42, 2005.

[15] M. Turner, D. Budgen, and P. Brereton, "Turning Software into a

Service," Computer, vol. 36, pp. 38-44, 2003.

[16] K. Sledziewski, "A DSL for modelling and code generation in

Cloud," in School of Computer Science, University of Birmingham,
UK, 2009.

421

