
OCL Constraints Generation from Natural Language Specification

Imran Sarwar Bajwa, Behzad Bordbar, Mark G. Lee
School of Computer Science
University of Birmingham

Birmingham, UK
i.s.bajwa; b.bordbar; m.g.lee@ cs.bham.ac.uk

Abstract— Object Constraint Language (OCL) plays a key role
in Unified Modeling Language (UML). In the UML standards,
OCL is used for expressing constraints such as well-
definedness criteria. In addition OCL can be used for
specifying constraints on the models and pre/post conditions on
operations, improving the precision of the specification. As a
result, OCL has received considerable attention from the
research community. However, despite its key role, there is a
common consensus that OCL is the least adopted among all
languages in the UML. It is often argued that, software
practitioners shy away from OCL due to its unfamiliar syntax.
To ensure better adoption of OCL, the usability issues related
to producing OCL statement must be addressed. To address
this problem, this paper aims to preset a method involving
using Natural Language expressions and Model
Transformation technology. The aim of the method is to
produce a framework so that the user of UML tool can write
constraints and pre/post conditions in English and the
framework converts such natural language expressions to the
equivalent OCL statements. As a result, the approach aims at
simplifying the process of generation of OCL statements,
allowing the user to benefit form the advantages provided by
UML tools that support OCL. The suggested approach relies
on Semantic Business Vocabulary and Rules (SBVR) to
support formulation of natural language expressions and
their transformations to OCL. The paper also presents
outline of a prototype tool that implements the method.

Keywords- Natural languages, SBVR, OCL, Model Driven
Development,

I. INTRODUCTION
Unified Modeling Language (UML) is now considered as

the de-facto standard for software modeling. One of the
languages in UML is Object Constraint Language (OCL).
OCL is widely used in expressing constraints and well-
definedness in the UML standards. OCL can be used as part
of UML model to significantly improve the clarity of
software models and make models more precise [26]. In
addition, OCL is well supported with numerous tools [32],
[33], [19], [34], [35] that provide type checking support.
However, there is a common consensus that the least adopted
member of UML family of languages is OCL. Indeed,
software practitioners shy away from the OCL mostly due to
unfamiliar syntax and semantics. In complex models, writing
correct OCL statements is non-trivial; it is often argued that
manual effort to create an OCL constraint usually results in
inaccurate and erroneous constraints specification [25], [27].

In order to benefit from the OCL, the usability aspects of the
language must be addressed.

The idea of this paper is motivated by recent progresses in
Model Driven Development (MDA) [3] and birth of Semantic
Business Vocabulary and Rules (SBVR) [13]. The presented
approach allows the user to write various constraints and
pre/post conditions on a UML model in natural languages [14]
(NL) e.g. English. The NL specification of the constraints is
automatically transformed to an equivalent OCL syntax. Users
can be assisted to write better OCL statements in shorter time by
using a NL based user interface. A tool support can be used for
automatic translation of the NL to OCL statements. But,
formalizing of the concepts in natural language representation to
a clear and unambiguous mode is a real challenge. SBVR can be
useful in achieving a clear and unambiguous representation. In
NL to OCL transformation, the use of SBVR not only makes the
NL easy to semantically analyze but also it provides OCL
resembling syntax.

The objective of the paper is to improve the OCL usability
by writing constraints in a natural language and then generating
the OCL constraints from NL specification by doing automated
transformation. Automated transformation is used to hide the
complexity involved in the manual production of OCL
constraints from NLs. Model transformations will provide a
systematic and attributed way of creating OCL from NL but
also results in producing OCL statements in a seamless and
non-intrusive manner.

The paper is organized as follows. Next section describes
preliminary concepts related to the Model Transformation,
Natural Languages, SBVR, and OCL. Section 3 describes the
problem addressed in the paper. Section 4 presents a sketch
of the solution and describes model transformation from
Natural Languages to SBVR and then from SBVR to OCL.
Section 5 illustrates the implementation, followed by a
discussion on the related work. The paper ends with a
conclusion section.

II. PRELIMINARIES

A. Object Constraint Language (OCL)
OCL [18] is a formal language used to annotate a UML

model with the constraints. The typical use of OCL is to
represent functional requirements using class invariants, pre
and post conditions on operations and other related
expressions on a UML model [19]. OCL can also be used
for representing non-functional requirements [20].

2010 14th IEEE International Enterprise Distributed Object Computing Conference

1541-7719/10 $26.00 © 2010 IEEE

DOI 10.1109/EDOC.2010.33

204

OCL abstract syntax defines the grammar and structure of
an OCL statement. The OCL abstract Syntax is further defined
into OCL types and OCL expressions. Common OCL types are
data types, collection types, message types, etc. While, OCL
expressions can be property expression, if expression, iterator
expression, variable expression, etc. We have used a selected
set of OCL abstract syntax for implementation. Figure 1 shows
the abstract syntax metamodel [18] of selected OCL
expressions, we refer the reader to OCL 2.0 document [18] for
further information on OCL.

Figure 1. Elements of selected OCL meta-model

While creating UML models such as Class diagrams for
expressing structure of a system or sequence diagram for
describing interaction between objects is almost intuitive,
writing OCL expressions requires not only an adept
knowledge of OCL syntax but also skilful understanding of
the semantics of OCL expressions. Consider a scenario
involving a bank, where a customer has a bank account as
depicted in figure 2.

context customer
inv : self.cAge >= 18

Figure 2. Example conceptual schema of a bank account

In this paper, we target generation of OCL constraints. A
constraint is a restriction on state or behaviour of an entity
in a UML model [19]. The OCL constraint defines a
Boolean expression. If the constraint results true, the system
is in valid state. Consider the following three categories of
the OCL constraints:

1) Invariants: The invariants [3] are conditions that
have to be TRUE for each instance of the model.

context customer
inv: self.cAge >= 18

2) Precondition: A precondition [3] is a constraint that
should be TRUE always before the execution of a method
starts.

context customer :: isAdult(cDOB:
Integer): Boolean
pre: self.cDOB >= 1990

3) Postcondition: A postcondition [3] is a constraint that
should be TRUE always after the execution of a method has
finished.

context driver :: isAdult(cDOB: Integer):
Boolean
post: result >= 18

In this paper, we propose a natural language (e.g. English)

based user interface for writing constraints for a UML
model. Natural languages are ambiguous and unclear; we
propose the use of Semantic Business Vocabulary and Rules
(SBVR) standard to deal with the syntactical inconsistencies
and semantical ambiguities involved in the NL
representation. The transformation from NL to OCL
involves two stages. Firstly, NL specification is
automatically transformed to SBVR representation and then
finally to the OCL constraints.

B. Semantic Business Vocabulary and Rules
Semantic Business Vocabulary and Rules (SBVR) [13] is

a recently introduced standard by OMG. Using SBVR,
specifications can be captured in natural languages and
represented in the formal logic so that they can be machine-
processed. Figure 3 shows SBVR metamodel:

Figure 3. – Elements of selected SBVR meta-model

SBVR representation has two major elements: SBVR
vocabulary and SBVR Rules. Brief details of these two
major elements of SBVR are given below.

1) SBVR Vocabulary: SBVR vocabulary is based on two
elements: Concepts and Fact Types. A concept is a key term
that represent a business entity in a particular domain. There
are two common types of concepts [13]: noun concept and
individual concept. Typically, the common nouns are
classified as noun concepts while the proper nouns or
quantified nouns are denoted as individual concepts. A fact
type is a verb, a proposition, or a combination of both [13].

Bank

accNo: String
accType: String

has an account in

customer bankAccount

1…* 1
Customer

cName: String
cAge: Integer
cDOB: Date

 withDraw(): Integer
 isAdult(cDOB): Bool

205

A Fact type specifies the relationship among different
concepts in a business rules.

An example of SBVR rule for UML model shown in
figure 1 can be as “It is necessary that each customer
should be at least 18 years old”. In this example, “It is
necessary that” is a SBVR keyword, “each” is a keyword
and a quantifier, “customer” is a noun concept, “should be”
is verb and “at least” is SBVR keyword, 18 is a quantifier,
and “years” is a noun concept. In this example, “customer
should be old” is a fact type.

2) SBVR Rules: SBVR propose use of the SBVR rules
to represent particualr business logic in a specific context.
The SBVR rules can be of two types [13]: definitional rules
and behavioral rules:

� Definitional Rules or structural rules are used to define
an organization’s setup [13] e.g. It is necessary that
each customer has at least one bank account. �

� Behavioural Rules or operative rules express the
conduct of an entity [13] e.g. It is obligatory that each
customer can withdraw at most GBP 200 per day. �

3) Formalizing NL Text Representation. In SBVR 1.0
document [13], the Structured English is proposed, in
Annex C, as a possible notation for the SBVR rules. The
Structured English provides a standardized representation to
formalize the syntax of natural language representation. In
this paper, we have used the following Structured English
specification:
� noun concepts are underlined e.g. customer��
� verbs are italicized e.g. should be��
� keywords are bolded i.e. SBVR keywords e.g. each, at

least, at most, obligatory, etc.�
� individual concepts are double underlined e.g. silver

account customer�
Here, we purpose a new element adjective. We have

dotted underlined the adjectives e.g. in the above given
example, “old” is an adjective. The adjectives are used to
identify the attributes.

4) Formulating NL Text Semantic: Logical formulations
are used to semantically formulate the SBVR rules.
Common logical formulations are [13]:
� Atomic formulation specifies a fact type in a rule e.g.

“customer should be old” is atomic formulation from the
fact type “customer is old”.

� Instantiation formulation denotes an instance of a class
e.g. “silver account” is an Instantiation of the noun
concept “bank account”.

� Logical operations e.g. conjunction, disjunction,
implication, negation, etc are also supported in SBVR.
In natural languages, the logical operations allow
combining NL phrases to create more complex logical
expression.

� Quantification states the enumeration of a noun concept
or verb concept e.g. “at least one”, “at most one”,

“exactly one”, etc are used to quantify concepts.
� Modal Formulation identifies the meanings of a logical

formulation. e.g. “It is obligatory” or “It is necessary”
are used to formulate modality.

For mapping the natural languages with SBVR, the NL
phrases are mapped with SBVR vocabulary and particular
meanings of a NL phrase are mapped using SBVR rules. �

C. Model Transformation
Model Driven Architecture (MDA) [1] is a flavor of

model-driven development (MDD) [20] proposed by the
OMG . Central to the MDD and MDA is the process of
model transformation, i.e. automated creation of new
models, which is depicted in Figure 4 and can be described
briefly as follows. Model Transformations rely on the
“instanceof” relationship between models and metamodels
to convert models. Model Transformations define the
mappings rules between two modelling languages
metamodels. Rules typically define the conversion of
element(s) of the source metamodel to equivalent element(s)
of the destination metamodel. The Model Transformation
frameworks execute the Model Transformation
implementations on models. Upon execution with a given
model, the necessary rules are applied by the transformation
framework, applying rules to generate an equivalent model
in the destination modelling language.

Figure 4. : An overview of MDD

There are different types of model transformations such
as model-to-model, model-to-text and text-to-model
transformations [7]. The Model-to-Model Transformation is
used to transform a model into another model e.g.
translating OCL to SBVR [8], UML to SBVR [8], and
SBVR to UML [9]. The Model-to-Text Transformation is
used to translate a model to a natural language
representation e.g. transforming OCL to NL [10], and UML
to NL [11]. The Text-to-Model Transformation talks about
interpreting the natural language text and create a model
from the interpretation.

In our approach, we propose the use of model-to-model
transformation for automated transformation of NL to OCL
constraints. A Typical model transformation is employed by
creating abstract syntax of source model and then
converting it into the target model representation using the
model transformation rules. We have used a set of
transformation rules to perform the proposed transformation
of NL to OCL.

206

III. DESCRIPTION OF THE PROBLEM
UML has been adopted as the de facto standard for the

design, modeling and documentation of software systems
[19]. There are lots of tools which not only allow modeling
and design but also allow support for creation of code,
reverse engineering, versioning and many more [24].
However, it is a well know fact that the least used of all
UML languages is OCL. This is often attributed to complex
syntax of OCL [7].

The ability of using OCL by the developer is very
important. Correctly written OCL constraints and pre/post
conditions improve the clarity of software models
significantly and make models more precise [26]. Manual
effort to create an OCL constraint may result in inaccurate
and inconsistent constraints specification [25], [27]. We can
increase OCL usability through automatically generating
accurate and consistent code for OCL constraints. Besides,
constraints specification, OCL can be used for specifying
models for analysis purposes, such as, among others, our
work on transformation of UML to Alloy [28]. Improving
the usability of OCL will also assist developers who are not
experts of formal methods for producing specifications in
other languages e.g. Z, B, Petri-nets, for automatic analysis.

This paper plans to present a technique that allows
development of tools and techniques assisting in writing
OCL. Wahler’s research has addressed this problem by
using template based approach [27]. Kristofer J. presents a
rule system [21] to transform an OCL expression into NL
representation. Similarly, Linehan presented his work for
the translating Structured English representation to predicate
logic [25] and then finally this mathematical representation
is transformed into equivalent Java structures. However, we
are adopting a radically new approach by bringing together
two main domain of computer science: model
transformation and Natural language through adopting
SBVR. Using natural languages and transformation to OCL
seems like an intuitive approach. However, we adopt a
systematic way to use SBVR to restrict the domain of NL
text and generate OCL code from the SBVR representation.

The objective of this paper is to present a method of
using SBVR for better formulation of natural languages and
then allow development of tools for better writing of OCL
statements from SBVR based natural language text.

IV. SKETCH OF THE SOLUTION
In this section, we present a framework to perform NL to

SBVR and SBVR to OCL transformation. In the first
transformation, the preprocessed English language text is
transformed into a conceptual model in SBVR. The second
transformation is performed to translate the SBVR
expressions into OCL statements. Figure 5 highlights the
sketch of stages involved.

Figure 5. Application Scenario of NLto OCL transformation

A. NL to SBVR Transformation
The transformation of natural language specification to

SBVR rules is performed by performing following four
steps:

1) Parsing NL Specification
2) Extracting Fact Types
3) Verifying with the UML Model
4) Apply Semantic Formulation

A breif description of all these steps is provided in the
following section.

1) Parsing NL Specification: The NL represeantaiton is
semanically analyzed using LESSA [14] (Language
Engineering System for Semantic Analysis) approach.
Parsing information of a SBVR rules “A customer should be
18 years old” is following:

TABLE I. NATURAL LANGUAGE ABSTRACT SYNTAX INFORMATION.

Syntactic
Elements Meanings Syntactic

Elements Meanings

S English Sentence V Action Verb
NP Noun Phrase DT Determiner
VP Verb Phrase AJ Adjective
VB Verb N Noun
P Pronoun NR Number
HV Helping verb PP Preposition Phrase

Figure 6. Parse information of natural language text

2) Extracting Fact Types: The generated NL semantic
information is further mapped with SBVR syntax via a set
of transformation rules, which are described in section 5.1.
To explain briefly, in this phase the noun concepts and verbs
are identified from the semantic information. A set of
transformation rules have been used to identify the noun
concepts, verbs, and attributes from the NL text and map
with the target SBVR rules. Finally the fact types are
formed from the extracted noun concepts, verbs, and
attributes. Transforamtion rules to extract fact types are
based on the following facts:

� Common names are transformed noun concpets
� Proper nouns are transformed into individual concpets
� Auxilary verbs and action verbs are transformed into

verbs
� Adjectives are used to produce the attributes.

N

customer

VB

HV

should be

DT

A AJ

old

NP VP

 NP

18 years

NP

S

SBVR to
OCL Transformation

NL to
SBVR Transformation

NL User
Interface

OCL
Constraints

SBVR
Rules

N NR

207

To find the individual concepts, the instantiation
formulation is employed. An instantiation formulation is
equivalent to existential quantification and uses only one
concept at a time [13]. Here, the concept is bound with a
bind-able target that is similar to the process of instantiation
in OO and UML e.g. “John is a customer.” can be
formulated as below:

. The instantiation formulation considers the concept “customer.”

. The instantiation formulation binds to the individual concept
‘John’.

3) Verifying with the UML Model: Before generating a
SBVR rule from NL text, the extracted information from
NL text is semantically verified with the given UML model.
The semantic verification is performoed by mapping the
noun concepts, individual concepts, adjectives, and verbs
from NL text with the class names, instance names, attribute
names and method names in the given UML class model.
This semantic verification is performed to verify that the
input NL text is semanticly related to the target UML model
for which the OCL constraint will be generated. Following
is the example of the UML model verified SBVR rule:

It is necessary that each customer must be 18 years cAge.

4) Applying Semantic Formulation. SBVR standard 1.0
[13] has defined a set of logical formulations to devise the
natural language text in a structured and consistent manner.
For the different types of syntactic structures used in
English language, respective types of logical formulations
have been defined. Following are the details that how we
have incorporated these logical formulations to map English
language text into SBVR metamodel.

a) Atomic Formulation: An atomic formulation is
based on only one fact type and a fact type role is bind with
the respective fact type [13]. A NL statement e.g. “The
customer has silver account” can be atomic formulated by
with a fact type ‘customer has account’. The process of
atomic formation defiend in SBVR 1.0 is as following:
. The atomic formulation is based on the fact type ‘customer has
account’.
. The atomic formulation has a first role binding.
. . The first role binding is of the role ‘customer’ of the fact type.
. . The first role binding binds to the individual concept ‘The
customer’.
. The atomic formulation has a second role binding.
. . The second role binding is of the role ‘account’ of the fact type.
. . The second role binding binds to the individual concept ’silver
account’
For the further reading we recommend to the reader SBVR 1.0
document, section 9.2.2 [13].

b) Logical Operations. Logical operations are used to
combine one or more expressions, known as logical operand
to produce complex Boolean expressions [13]. We have
incorporated these logical operations to map NL phrases to
more complex logical expression. We are currently
supporting the following six types of the logical expressions
which are defined in SBVR v1.0 [13] document.

i. Conjunction is a binary operation for logical decision of
two operands to formulate the meanings that each
operand is true i.e. p AND q

ii. Disjunction is a binary operation for logical decision of
two operands to formulate the meanings that at least
one operand is true i.e. p OR q

iii. Equivalence is a binary operation for logical decision of
two operands to formulate the meanings that both
operands are true of false i.e. p is equal to q

iv. Implication is a binary operation for logical decision to
formulate the meanings that second operand is true if
first operand is true i.e. if p then q.

v. Negation is a unary operation for logical decision of
one operand that formulates the meanings that the
operand is false i.e. NOT p.
c) Quantifications. Quantification is a logical

formulation that uses a variable to specify the scope of a
concept. Four basic types of quantifications have been
defined in SBVR v1.0 [13]. Quantification types are briefly
described below:

i. At least n quantification: An existential quantification
shows min. cardinality

ii. At most n quantification: This quantification shows
max. cardinality

iii. Numeric range quantification: It exhibits both min. and
max. cardinality

iv. Exactly n quantification: This quantification shows the
exact cardinality.
d) Modal Formulations. Modal formulations are

logical formulations that are used to specify meanings of the
other logical formulations. There are four basic types of
modal formulations [13].

i. Necessity Formulation: if a logical formulation is true
in all possible worlds.

ii. Obligation Formulation: if a logical formulation is true
in all acceptable worlds.

iii. Permissibility Formulation: if a logical formulation is
true in acceptable worlds.

iv. Possibility Formulation: if a logical formulation is true
in some possible worlds.

Following example highlights basic types of logical
formulations in a SBVR rule.

 It is necessary that each customer must be 18 years old.

Figure 7. Logically formulating a SBVR rule

B. SBVR to OCL Transformation
OCL code is created by generating different fragments

of the OCL expressions and then concatenating the created
fragments to compile a complete OCL statement. The
following section describes the process of creation of
abstract syntax model for OCL constraints. Following steps

Obligation
Formulation

Noun
Concept

Fact
Type

At least-n
Quantification

Noun
Concept

At least-n
Quantification

208

were performed for NL to SBVR transformation.
1) Extracting Classes, Methods and Attributes from

SBVR rules.
2) Generation of OCL expressions from the extracted

information e.g. Classes, Methods and Attributes
3) Mapping OCL Syntax
4) Mapping OCL Semantics

1) Extracting Classes, Methods and Attributes: The first
step is to identify the noun concepts, individual concepts,
verbs, attributes and fact types in the source SBVR rule. In a
SBVR rule the nouns concepts represent a class, the
individual concepts represent an instance of a class, the
verbs represent methods of a respective class or instance,
and the fact type represents a relationship a UML model.
The adjectives represent the attribute of a class or an
instance. Following information is employed to extract
classes and their respective methods and attributes from the
SBVR rules:
� Each noun concepts are mapped into classes. ��
� Each individual concepts are mapped as instances of a

class which are identified from the noun concepts��
� Each verb is mapped into a method of the respective

class. �
� The adjectives are mapped as attributes of a class or an

instance. �
�

2) Generating OCL Expression: The extracted classes,
methods and attributes are used to find OCL context,
invariant body, logical expressions and collection
expressions. These OCL elements were combined to make a
complete OCL expression. Following steps are performed to
generate an OCL expression.

Source: It is necessary that each customer should be at
least 18 years old.

Step I – The noun concept is mapped with the context i.e.
customer or bank e.g. context customer

Step II – Adding the instance i.e. bank customer e.g.
customer or self

3) Mapping OCL Syntax. In the context of our research

domain, OCL syntax rules will help to extract the desired
information. To translate a SBVR statement into OCL
expression, an OCL abstract syntax model is designed that
is based on OCL version 2.0 [18]. The OCL abstract syntax
model is shown in Table 4.3.

TABLE II. OCL SYNTAX MODEL

Syntax Rule Syntactic Elements
Constraint � Context Context-Name inv: Constraint-Body
Context-
Name � Identifier | Identifier :: Identifier [: Class]

Identifier � Context |
Context : Method-Name (Parameters): Literal

Class � Identifier :: Identifier | Collection-Name (Class)
Constraint-
Body � Expression | (pre | post) : Expression

Expression � If Expression

 then Expression
 else Expression
endif |
Expression (. | �) Method |
Expression InfixOper Expression |
PrefixOper Expression | Literal

Method � forAll | exists | select | allInstances |
include | iterate | …

Parameters � Parameter-Name : Literal
Literal � Integer | Real | String | Boolean | Collection
Collection-
Name � Collection | Set | Bag | Sequence

InfixOper � + | – | * | / | = | > | < | >= | <= | <> | OR | AND | XOR
PrefixOper � – | not

In the OCL syntax mapping phase, the extracted OCL
constitutes are concatenated according to the OCL abstract
syntax given in table II. Here, we use the constraint rule and
replace the extracted context with the Context-Name and
generate the following expression:

 context customer
 inv: Constraint-Body

In the above example, the Constraint-Body is generated in
the OCL semantic mapping phase.

4) Mapping OCL Semantics. Logical formulations were
defined that were based on the concrete structures of the
OCL constraint expressions: operators, binary operations,
implication rules, constraints, and collections as given
below:

TABLE III. OCL OPERATORS FOR SBVR CONSTRUCTS

Logical Formulation OCL Logical Formulation OCL
Structure SBVR rule a.b b is data type of a a:b

Behavioral SBVR rule a•b b is return type of a a():b

method a of class b a::b comments – –

TABLE IV. BOOLEAN AND ARITHMETIC OPERATIONS OF OCL

Logical Formulation OCL Logical Formulation OCL
b1 is less than b2 b1<b2 b1 is added with b2 b1+b2

b1 is less than OR
equals to b2 b1<=b2

b1 is subtracted from
b2 b1-b2

b1 is greater than b2 b1>b2 b1 is multiplied with b2 b1*b2

b1 is greater than OR
equal to b2 b1>=b2 b1 is divided by b2 b1/b2

b1 is equal to b2 b1=b2 b1 is not equal to b2 b1<>b2

TABLE V. OCL LOGICAL STATEMENTS

Logical
Formulation

OCL Logical Formulation OCL

a is T and b is T a AND b a is T or b is T: any one a or b

b is T then T a implies b a is T or b is T: not both a xor b

a is F Not a

TABLE VI. OCL INVARIANTS AND OTHER RELATED EXPRESSIONS

Logical Formulation OCL Logical Formulation OCL
a is context Context a Variable’s initial value init

Constraint/Invariant Inv Derive variable Derive

If TRUE then a else b If T then
a else b

Define public variable Define

Group classes context Package Define private variable Let

Pre-condition Pre operation post-condition Post

209

TABLE VII. OCL COLLECTIONS

Logical Formulation OCL
More than One Elements Collection(T)

Unique AND Unordered list of elements Set(T)

Unique AND Ordered list of elements OrderedSet(T)

Non-Unique (Repeating) AND Unordered list of
elements Sequence(T)

Non-Unique (Repeating) AND Ordered list of
elements Bag(T)

In the OCL semantic mapping phase, the defined logical

formulations in table III to table VII were mapped with the
target OCL statements. Here, we generate the constraint
body and replace it with the Constraint-Body parameter in
the constraint rule used in the syntax mapping phase. As the
source SBVR rule is structure rule, hence we use a.b OCL
construct and replace a with the class name or slef
Keyword and b is replaced with the attribute name to
generate the following expression:

inv: self.cAge

Here, the OCL expression self.cAge is yet to be
evaluated with the logical condition. The logical condition is
created by transforming the quantification ‘less than or equal
to 18’ to the OCL Boolean operation self.cAge >=18 and
complete the OCL expression as following:

context customer
inv: self.cAge >= 18

V. A SKETCH OF IMPLEMENTATION
In this research, the proposed framework for NL to OCL

transformation is based on model transformation. This
section presents how model transformation rules have been
employed to translate natural language text to OCL code.

A typical model transformation is carried out by using a
rule based approach to translate source text or a model
conforming to its metamodel into a target text or model
conforming to its metamodel [3]. Rule based model
transformations employee set of transformation rules to map
source model to a target model. A transformation rule r maps
one component of the source model using a source
transformation rule rs with the one component of target
model using a target transformation rules rt. We can
represent it as r: S � T [12].

Transformation rules were individually defined for both
parts of NL to OCL transformation: NL to SBVR and SBVR
to OCL. Defined transformation rules were based on If-then-
Else structure [4]. Each rule consists of a component from
the source model (NL or SBVR) and one component from
the target model (SBVR or OCL) inspects source input and if
the mapping [8]. We have defines a number of states for the
source model, e.g. Y = {y1, y2,….., yn} is a set of states for
source model. Similarly, a number of states for the target
model have been defined, e.g. Z = {z1, z2, ….., zn} is a set of
states for target model. For mapping, the states of input
source model are matched with possible states of the target
model. An occurrence of X from the source model is looked
within the all occurrences of Z from the source model and if
the match is found, the matched state of source model is

given concrete syntax of the target model. The following
section elaborate how a SBVR rule is transformed to OCL
constraint using transformation rules as follows:

Step I – It is necessary that each customer should be at least 18

years old.

Step II – It is necessary that <Quantification> <actor> should be
<Quantification> years <attribute>.

This generalized representation is finally transformed to
the OCL constraint by using the defined transformation
rules. A typical model transformation rule comprises of the
variables, predicates, queries, etc [17]. A transformation rule
consists of two parts: a left-hand side (LHS) and a right-hand
side (RHS) [11]. The LHS is used to access the source model
element, whereas the RHS expands it to an element in the
target model. The transformation rules for each part of the
OCL constraints are based on the abstract syntax of SBVR
and OCL that are given in the following section. Rule 1
transforms the noun concept (actor) in SBVR rule to OCL
context for an invariant and the Rule 2 transforms the noun
concept (actor) and verb (action) in SBVR rule to OCL
context for a pre/post condition.

Rule 1

T[context-inv(actor)] = context-name

Rule 2
T[context-cond(actor, action)] = context-name :: operation-
name

To generate the body of an invariant and pre/post-
conditions a complete set of rules were defined. Due to
shortage of space we present few of them. Here the rules 3
transforms SBVR information to the OCL invariant, while
rule 4 and 5 are used to transform SBVR rules to OCL
preconditions and post conditions.

Rule 3
T[invariant(context-inv, inv-body)]
 = context context-inv\
 inv: inv-body

Rule 4
T[pre-cond (context-cond, pre-cond-body)]
 = context context-cond
 pre: pre-cond-body

Rule 5

T[post-cond (context-cond, post-cond-body)]
 = context context-cond
 post: post-cond-body

These are some of the rules that were used for SBVR to
OCL transformation. Our approach only addresses the
invariants and pre/post conditions. We have not addressed
yet the OCL queries.

210

VI. TOOL SUPPORT
OCL-Builder tool was implemented to translate SBVR to

OCL constraints. Translation rules and the abstract syntax of
OCL and SBVR were implemented in .NET platform using
Visual Basic Language. LESSA [22] syntax analyzer was
used to syntactically analyze SBVR rules and map them with
given UML class Model in XMI 2.1 format. OCL-Builder
tool then finally translates the UML-SBVR specification to
OCL constraints by using translation rules. Figure 8 shows a
screen-shot of OCL-Builder tool.

Figure 8. OCL-Builder tool – Transforming SBVR to OCL

OCL-Builder tool generates one OCL constraint for one
UML-SBVR specification. SBVR rule is transformed to
OCL constrain in five steps. First of all, a XMI file is read as
input for the target UML class model. Then, the input SBVR
rule is syntactically analyzed and mapped with the given
UML class model. All the classes and associations in given
UML class model are mapped to the input SBVR rule. The
output of this activity is UML mapped SBVR rule that is
named UML-SBVR specification. Then, the Structured
English formatting is applied in it. The last step is the
generate OCL from the UML-SBVR specification.

VII. RELATED WORK
In the last decade, a number of software tools has been
designed and implemented to facilitate OCL code parsing
and validation. Common examples of such OCL tools are
Dresden OCL Toolkit [32], IBM OCL Parser [33], USE
[19], ArgoUML [34], Cybernetic OCL Compiler [35], etc.

But these tools are limited to verify the syntax and type
checking of the already written OCL code. Currently, no
suitable tool is available that is capable of automatic
generation of OCL code from natural languages. This is the
major reason that after more than ten years of introduction
of OCL, OCL is yet no fully adapted in software developer
communities as other language of UML. The related work is
briefly expressed in reaming part of the section.

In last decade, many automated solutions for
transformation of natural language software requirement
specification (SRS) to UML based formal presentation have
been presented [36], [37], [38], [39], [40]. Introduction of
frameworks and tools for automated transformation NL to
UML model have made things very easy and time saving for
the software designers.

J. Cabot also presented some transformation techniques to
get semantically alike representations of an OCL constraint
[7]. The proposed technique assists in simplifying the
modeling phase of software development by increasing the
understanding level of the designer by providing him more
than one alternate OCL representations. The presented work
can also help out in future for PIM-to-PIM, PIM-to-PSM
and PIM-to-code transformations. In the same direction of
research, Bryant presented a system that used natural
language processing for developing a business domain
model from system requirements given in natural languages
[41]. First of all simple pre-processing actions were
performed on the input text i.e. spelling and grammar
checking, use of consistent vocabulary and appropriate
sentence usage. Afterwards this pre-processed text was
translated into XML representation with the help of domain
specific knowledge. Bryant has also proposed that business
domain model created by his work can be further
transformed into UML representation.

The transformation of formal specifications (e.g. OCL) to
information specifications (e.g. NL) is another recent trend
of research regarding OCL. Transformation of OCL into NL
has been addressed by Kristofer J. where he presented a rule
system. The rule system annotates an OCL syntax tree with
OCL semantic annotation on it and also performs
disambiguation of syntax trees [21]. This work is part of the
project for translating OCL code into a natural language
representation e.g. English or German. The major
limitations of this work are that it supports OCL 1.5. J.
Linehan presented his work for the translating Structured
English representation to predicate logic [25] and then
finally this mathematical representation is transformed into
equivalent OCL structures. In the context of our proposed
research, his work is not helpful because, writing SBVR
rules in Structured English representation is itself an
overhead.

On the other hand, some work has been done to transform
OCL and UML to SBVR by Cabot [8]. He proposed
automatic transformation of UML and OCL schema to
SBVR specification. This work is basically reverse
engineering of software modeling and better for generating

211

business vocabularies from the already designed software
models. In the akin trend, Amit presented his work to
transform SBVR business design to UML models [9]. He
has used model driven engineering approach to transform
SBVR specification into different UML diagrams e.g.
activity diagram, sequence diagram, class diagram. His
research work is a millstone in reducing gap between SBVR
and UML based software modeling.

All the related work, highlights that lot of work has been
done in the area of proposed research but the presented area
is yet unaddressed. The related work also clarifies the
pressing need of a mechanism that is capable of providing
assistance for OCL coding.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS
This research paper presents a framework for dynamic

generation of the OCL constraints from the NL specification
provided by the user. Here, the user is supposed to write
simple and grammatically correct English. The designed
system can find out the noun concepts, individual concepts,
verbs and adjectives from the NL text and generate a
structural or behavioral rule according to the nature of the
input text. This extracted information is further incorporated
to constitute a complete SBVR rule. The SBVR rules are
finally translated to OCL expressions. SBVR to OCL
translation involves the extraction of OCL syntax related
information i.e. OCL context, OCL invariant, OCL
collection, OCL types, etc and then the extracted information
is composed to generate a complete OCL constraint, or
pre/post-condition.

As this paper aims to address a major challenge related to
usability of OCL, we have presented a method of applying
model transformations to create OCL statement from Natural
Language expressions. The presented transformation makes
use of SBVR as an intermediate step to highlight the
syntactic elements of natural languages and make NL
controlled and domain Specific. The use of automated model
transformations ensures seamless creation of OCL
statements and deemed to be non-intrusive. The presented
method is implemented as prototype tool which is being
extended to be integrated into the existing tools. As a next
step, we are hoping to investigate usability aspects of the tool
directly via empirical methods involving teams of
developers.

REFERENCES
[1] Warmer Jos, Kleppe A.: The Object Constraint Language – Getting

Your Models Ready for MDA. Second Edition, Addison Wesley
(2003)

[2] Ceponiene L., eta al: Separation of Event and Constraint Rules in
UML & OCL Models of Service Oriented IS. Information Tech. and
Control, 38 (1), pp. 29--38 (2009)

[3] Dang D., Gogolla M., Precise Model-Driven Transformations Based
on Graphs and Metamodels, 7th IEEE International Conference on
Software Engineering and Formal Methods 23-27 November, 2009,
Hanoi, Vietnam, p:307-316 (2009)

[4] Gogolla M., Büttner F., Dang D., From Graph Transformation to
OCL Using USE. The third International Workshop and Symposium
on Applications of Graph Transformation with Industrial Relevance,
pp.585--586 (2007)

[5] Linehan M.: SBVR Use Cases. In International Symposium on Rule
Representation, Interchange and Reasoning on the web, RuleML,
LNCS Vol. 5321 pp. 182--196 (2008)

[6] Tae Y. K., Yun K., Heung S.: Towards Improving OCL-Based
Descriptions of Software Metrics. In 33rd IEEE COMPSAC, pp. 171-
-179 (2009)

[7] Cabot J., Teniente E.: Transformation Techniques for OCL
constraints, J. of Science of Computer Programming, 68(03) Oct
2007, p.152--168 (2007)

[8] Cabot J., et al.: UML/OCL to SBVR Specification: A challenging
Transformation, Journal of Information systems
doi:10.1016/j.is.2008.12.002 (2009)

[9] Raj A., Prabharkar T., Hendryx S.: Transformation of SBVR
Business Design to UML Models. In ACM Conference on India
software engineering, pp.29--38 (2008)

[10] Burke D., Kristofer J.: Translating Formal Software Specifications to
Natural Language. Springer LNCS, Vol. 3492, pp. 51--66 (2005)

[11] Raquel R., Cabot j.: Paraphrasing OCL Expressions with SBVR, 13th
International C. Natural Language and Information Systems:
Applications of NL to IS, pp.311--316, (2008)

[12] Bajwa I. S., Hyder I., "UCD-Generator - A LESSA Application for
Use Case Design", Proceedings of IEEE- International Conference on
Information and Emerging Technologies- ICIET, pp-182-187 (2007)

[13] OMG: Semantics of Business vocabulary and Rules (SBVR), OMG
Standard, v. 1.0, (2008)

[14] Spreeuwenburg S., Healy K.: SBVR’s Approach to Controlled
Natural Language. Workshop on Controlled Language – CNL 2009,
Marettimo, Italy (2009)

[15] Kleiner M.: ATL Parsing SBVR-Based Controlled Languages, LNCS
– Model Driven Engineering and language systems, Vol. 5795,
pp.122--136 (2009)

[16] Mathias K., Patrick A., Bezivin J.: Parsing SBVR-Based controlled
Languages, In Models’09 Colorado USA, p: 122-136, (2009)

[17] Silvie S., Keri A., SBVR’s Approach to Controlled Natural
Language, Workshop on Controlled Natural Language 8-10 June,
2009, Marettimo Island, Italy (2009)

[18] OMG: Object Constraint Language (OCL), OMG Standard, v. 2.0,
(2006)

[19] Gogolla M., et al.: USE: A UML-Based Specification Environment
for Validating UML and OCL. Science of Computer Programming,
Vol. 69 pp. 27--34 (2007)

[20] Brucker A., Doser J., Wolff B.: An MDA Framework supporting
OCL. In Electronic Communications of EASST, 2006, Vol. 5, pp. 2--
19 (2006)

[21] Kristofer J.: Disambiguation Implicit Constructions in OCL. In
Conference on OCL and Model Driven Engineering, October 12,
2004, Lisbon, Portugal, pp. 30--44 (2004)

[22] Yu, F., Bultan, T., and Peterson, E.: Automated size analysis for
OCL. In ACM Symposium on the Foundations of Software
Engineering, pp. 331--340, (2007)

[23] Warmer Jos, Kleppe A.: The Object Constraint Language – Getting
Your Models Ready for MDA. Second Edition, Addison Wesley
(2003)

[24] Engels G., Heckel R., K¨uster J.: Rule-Based Specification of
Behavioral Consistency Based on the UML Meta-model, LNCS Vol.
2185, pages 272--287 (2001)

[25] Linehan M.: Ontologies and rules in Business Models. In 11th IEEE
EDOC Conference Workshop, pp. 149-156, (2008)

[26] Meyer. B.: Object-Oriented Software Construction. International
Series in Computer Science, Second Edition, Prentice-Hall (1997)

212

[27] Wahler M.: Using Patterns to Develop Consistent Design Constraints,
PhD Thesis, ETH Zurich, Switzerland, (2008)

[28] Shah A., Anastasakis K., Bordbar B.: From UML to Alloy and Back,
In ACM International Conference Proceeding Series, Vol. 413, pages
1--10 (2009)

[29] Scott W. Ambler. The Object Primer: Agile Model-Driven
Development with UML 2.0. Cambridge University Press, 3rd
Edition, 2004.

[30] Linehan M.: Semantics in Model Driven Business Design. In 2nd
International Conference on Semantic Web Policy Workshop,
Athens, GA, USA, pp.1--8 (2006)

[31] Cate T., Kolaitis P.: Structural characterizations of schema-mapping
languages. In 12th International Conference on Database theory, Vol.
361, pp.63--72 (2009)

[32] Demuth B, Wilke C.: Model and Object Verification by Using
Dresden OCL. In R.G. Workshop on Innovation Information
Technologies: Theory and Practice, pp. 81--89 (2009)

[33] IBM OCL Parser, Sep 2009 http://www-
01.ibm.com/software/awdtools/library/standards/ ocl-download.html,
(2009)

[34] Bart V. R., et al.: On the Detection of Test Smells: A Metrics-Based
Approach for General Fixture and Eager Test. IEEE T. on Software
Engineering 33(12) pp. 800--817 (2007)

[35] Emine G. A., Richard F. P., Jim W.: Evaluation of OCL for Large-
Scale Modelling: A Different View of the Mondex Purse. Springer
LNCS Vol. 5002, pp. 194-205 (2008)

[36] Ilieva M., Olga O.: Automatic Transition of Natural Language
Software requirements Specification into Formal Presentation.
Springer LNCS Vol. 3513, pp.392--397 (2005)

[37] Whittle J., Jayaraman P., et al.: MATA: A Unified Approach for
Composing UML Aspect Models on Graph Transformation: Springer
LNCS Vol. 5560, p. 191--237 (2009)

[38] Oliveira A., Seco N., Gomes P.: A CBR Approach to Text to Class
Diagram Translation, In TCBR Workshop at the 8th European
Conference on Case-Based Reasoning. (2004).

[39] Bajwa I., Samad A., Mumtaz S.: Object Oriented Software modeling
Using NLP based Knowledge Extraction, European Journal of
Scientific Research, 35(01), p.22--33 (2009)

[40] Kovacs L., Kovasznai G., Kusper G.: Metamodels in Generation of
UML Using NLI-Based Dialogue. In 5th International Symposium on
ACII, pp. 29--33 (2009)

[41] Bryant B., et al.: From Natural Language Requirements to Executable
Models of Software Components. In Workshop on S. E. for
Embedded Systems pp.51-58 (2008)

213

