
Modelling and Transforming the Behavioural aspects of Web
Services

Behzad Bordbar and Athanasios Staikopoulos

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
B.Bordbar@cs.bham.ac.uk, A.Staikopoulos@cs.bham.ac.uk

Abstract. This paper introduces the modelling, mapping and transformation of behavioural aspects
of interacting Web services, within the context of Model Driven Architecture (MDA). There are
certain systems, such as Web services, where the dynamic aspects are of high importance and need
to be considered during the modelling and transformation process, in order to create accurate
representations in their target domains. To demonstrate the approach, a realistic example is
presented, involving a number of Web services, participating in a business process expressed as
choreography of exchanged messages.

Introduction

Currently, the research on model transformations within Model Driven Architecture (MDA) is
restricted among models, including only their structural characteristics, such as their content and their
interrelations. In this paper we apply model mappings and transformations among behavioural models
and express the way the various components collaborate, in order to implement different system
functionalities and behaviours. Transforming the behaviour of a system as long as its structure results
to completely defined new models.

In particularly, if one considers a number of Web services standards, such as the Business Process
Execution Language (BPEL) [2] and the Web services Choreography Interface (WSCI) [17] that
represent business processes and choreographies of message exchanges among Web service
participants respectively, one then understands that representing and mapping their behaviours is of
primary importance.

In order to illustrate the applicability and feasibility of the approach presented, a case study based on
a realistic scenario is considered. Thus, specific models, metamodels, mappings and transformation
rules have been introduced, for modelling, mapping and transforming a UML activity diagram
accordingly to a scenario implemented with Web Services Choreography Interfaces.

Preliminaries

Web services [3][4] are a set of technologies allowing applications to communicate with each other
across the Internet. Among the technologies used are the Extensible Markup Language (XML) [16], the
Web Service Description Language (WSDL) [18] and the Web Services Choreography Interface
(WSCI) [17]. XML can be used either as a meta-language or for structuring and interchanging data.
WSDL provides a model in an XML format, for describing Web services as a set of exposed operations
and WSCI as an XML based interface, for describing the message exchanges among various Web
service participants and their choreography. WSCI works in conjunction with WSDL and describes the
dynamic interfaces of the Web services.

The Model Driven Architecture [1][7] is an emerging technology for software development. MDA
promotes the automatic creation of models and code by a series of transformations. Initially, models are
designed with a high level of abstraction that are independent of any implementation technology and
called Platform Independent Models (PIMs). Then a PIM may be transformed to a Platform Specific
Model (PSM) that is tailored to a specific implementation technology and finally to the actual code.

In MDA all models are based on a specific metamodel that defines the language that the model is
created in. Finally, all MDA metamodels are based on a common metamodel called Meta Object
Facility (MOF) [12]. Model transformations [6][11] are defined by transformation rules in a
transformation language like OCL [13], ATLAS [5] etc and they are executed by specialised tools.
According to a QVT RFP [14] the transformations are defined at metamodel level (M2) and executed at
model level (M1) as illustrated on the Figure 1.

Source Model
e.g. UML Activity Diagram (M1)

Source Metamodel
e.g. UML Lang (M2)

Transformation Rules

Transformation Engine TargetModel
e.g. WSCI model (M1)

Target Metamodel
e.g. WSCI Lang (M2)

 Automatic
code generation

Code
actual wsdl file

MOF
(M3)

Figure 1: Transformation in MDA

Case Study Example

In order to illustrate, our Model Transformation approach, we shall present an example, which uses
WSCI to model a business process. The example is a simplified version of an “airline ticket
reservation and booking” business process, presented in WSCI specification. For the complete
specification and example please refer to [17]. Here, the focus is on modelling the behaviour for only
one of the participants involved; the Traveller. A UML Activity diagram that specifies the behaviour of
the Traveller is presented. The model transformation converts such activity diagrams into an equivalent
WSCI MOF based model [12], which is very close to the implementation code.

There are three Web services involved in the example; a Traveller, a Travel Agent and an Airline
System. The business process “Planning and Booking a Trip” represents the interaction between the
above three Web services as described in the follows scenario:

Initially, the Traveller plans a trip by deciding the destination, the departure and return date and
time, and the preferred plan route. Then, she submits her request to the Travel Agent. The Travel Agent
will evaluate the best itinerary for a destination and will build a proposed itinerary for the traveller. The
proposed itinerary may not be satisfactory to the traveller, so she can submit a modified version and
wait for a reply in the form of a new proposal by the Travel Agent. The Traveller can also choose to
cancel the trip at any stage. In this case, the whole process terminates. However, if the plan is accepted,
she has to reserve the tickets and provide her credit card details. If the reservation is confirmed, the
Traveller can either book the tickets or cancel the reservation. There is a timeout for the booking
period, i.e. tickets can be reserved for a limited time, at the end of which, the Airline System issues a
notification and terminates the process.

At the end, the Traveller receives two set of items; an e-ticket from the e Airline System and a
statement containing the charge details and the description of the trip itinerary from the Travel Agent.
The process of “Planning and Booking a Trip” is completed upon the reception of both items.

UML Activity diagram

The process of “Planning and Booking a Trip” explained in the previous section can be modelled
with a UML Activity diagram, see Figure 2, which represents both the coordination and interaction
between the participants, either as a workflow or as choreography of message exchanges. The Activity
diagram consists of three partitions, corresponding to three involving Web services. However, to
reduce the size of the diagram, the Activities related to the Traveller and the flow of messages between
the Traveller and the other two participants are only included.

The Activity diagram of Figure 2 for “Planning and Booking a Trip” can be explained as follows:
The Traveller starts the process and triggers the message exchanges. Initially, she makes an order
request to the Travel Agent by using a request-response WSDL operation called OrderTrip. In that
case, the TripOrderRequest message is used to encapsulate the trip order details, where the
TripOrderAcknowledgement message is the Travel Agent’s response with the proposed itinerary.

If the Traveller is not happy with the itinerary, she may submit modifications by using the
ChangeItinerary operation and the ChangeItineraryRequest message with the proposed itinerary. If it is
accepted, a confirmation is returned. The whole process can be repeated as many times as the traveller
is not satisfied with the plan. Notice, that such action is likely, only if it is triggered externally by the
Traveller and not upon the arrival of a message or upon the satisfaction of a specific condition.

While there is an itinerary proposal, the Traveller has the choice to either reject the trip completely
or accept it. If the trip is cancelled, the Travel Agent is notified by using the CancelItinerary operation
with a CancelItineraryRequest. Then the Travel Agent will reply with a confirmation message. As a
consequence, a fault will be generated that will terminate the process. If the plan is accepted, which is
the default case, the Traveller has to reserve the tickets and provide her credit card information with a

ReserveTickets operation and a ReservationRequest message. Next, the TravelAgent confirms the
reservation of the seats to the Traveller.

Traveller

<<CallOperationAction>>
ReserveTickets

{correllation=reservationCorrelation}

AcceptCancellation
{correllation=reservationCorrelation}

ReservationTimedOut
{correllation=reservationCorrelation}

ReceiveStatement
{correllation=bookingCorrelation}

ReceiveTickets
{correllation=bookingCorrelation}

BookTickets
{correllation=bookingCorrelation}

<<RaiseExceptionAction>>
fault

{code=exit}

<<RaiseExceptionAction>>
fault

{code=exit}

<<CallOperationAction>>
Cancelitinerary

ChangeItinerary
{instantiation=other}

CancelReservation

OrderTrip

TravelAgent Airline

ReservationCancellationResponse

RequestCancellationRequest

ChangeItineraryConfirmation

CancelitineraryConfirmation

TripOrderAknowledgement

ReservationConfirmation

ChangeItineraryRequest

CancelItineraryRequest

BookingConfirmation

ReservationRequest

TripOrderRequest

BookingRequest

user event

exception

Statement

Tickets

instantiation=other

[CancelReservation=true]

<<else>> [CancelItinerary=true]

<<else>>

Figure 2: Activity diagram for Process “Plan and Book Trip”

Then, the Traveller can either book the tickets by the BookTickets operation and the Booking
Request as the actual message passed or request a reservation cancellation with a
RequestCancellationRequest message. In the first case, the TravelAgent will reply with a booking
confirmation, where in the second case, the process will trigger the AcceptCancellation operation as a
notification back to the Airline which as a result, it will generate an error and terminate. In the
meantime, there is a limited period for reserving tickets, which if exceeded, a ReservationTimeOut
exception is received. That in turn, it triggers again the AcceptCancellation operation and the process
will be terminated as previously.

Afterwards, the Traveller waits to both receive from the Airline her e-ticket, encapsulated within a
Ticket message through the ReceiveTickets operation, and from the Travel Agent a statement message,
providing charge details and description of the planed trip, through a ReceiveStatement operation. The
business process is then terminated.

Finally, one should notice the green (or grey in black and white) highlighted model elements, such
as the ReserveTickets that are specific stereotyped and tagged, in order to provide additional
information about their semantics. This information is necessary to direct an accurate transformation
(as it will be demonstrated later) and can be regarded as a refined version, when compared with the rest
of the modelling elements.

UML Metamodel

The following Figure 3, depicts a simplified UML metamodel, which includes UML activity and
action, related model elements. We have compiled the metamodel from the UML Superstructure
specification [15], containing the necessary modelling elements defined in the Actions and Activities
sections.

Metamodels create a clear view of the available model elements, their relations and dependencies. In
this case, the fundamental meta-elements are: Activity for expressing behaviour, Action for defining
fundamental units of behaviour, ActivityGroup for defining sets of nodes within an activity,
ActivityPartition for identifying actions with common characteristics, ObjectFlow for passing around
objects or data, ObjectNode for the actual data, ControlNode which represents a class of various nodes
used to coordinate flows in an activity, ConditionalNode for choosing among alternative options based
on conditions, CallOperationAction for making an operation call and StructuredActivityNode for
representing a structured portion within an activity. For further details regarding the model elements
used, please refer to [15].

CallOperationAction

Kernel::Namespace

AcceptEventAction

ExceptionHandler

InvocationAction
ConditionalNode

ExecutableNode

ActivityPartition

ActivityNode

ActivityGroup

InitialNode DecisionNode

ActivityNode

ActivityEdge

ControlNode

ControlFlow ObjectFlow

OutputPin

Classifier
Classifier

InterruptibleActivityRegion

StructuredActivityNode

Kernel::NamedElement

+name : String

RaiseExceptionAction

Kernel::Operation

ForkNode

Variable

InputPin

Activity

Clause

Pin

ObjectNode

MergeNode

CallAction

LoopNode

FinalNode

Trigger Port

Action

JoinNode

InputPin

+superPartition
0..1+subgroup

*

1
*

+handlerBody
1

+onPort0..1
+result

+argument

*

+result
*

0..1
+body

*

0..1+group* 0..1

+edge

+activity

0..1
+node*

0..1

+action
0..*

1
*

+target1

+exceptionInput

1

{derived}
+context

0..1

0..1 +test*

+superGroup
0..1+subGroup

*

+exceptionType

1..*

+inGroup
*

+edgeContents

+inGroup* +nodeContents
*

+scope

1

+variable
*

+source
1

+incoming
*

+target
1

+incoming
*

* +port
*

0..1

+decider
1

+protectedNode
1
+handler

*

+operation

1

+trigger
1 +exception

1

1
+clause

1..*

Figure 3: The UML Metamodel for Activities and Actions

WSCI Metamodel

This section presents the MOF metamodel for WSCI. The formal WSCI specification [17] makes
use of the XML Schema mechanism [20]. As a result, the schema (standard mechanism) provides an
XML based metamodel defining the framework’s internal structure and semantics. However, since the
MDA Model Transformation is in the context of MOF, we are interested in a WSCI metamodel that is
MOF compliant. The following metamodel has been generated manually and is based on the W3C
WSCI specification (version 1.0) [17].

The WSCI works in conjunction with the Web Service Description Language (WSDL) [18] and
retains its respective semantics. The WSCI describes the dynamic Web service interfaces and reuses
the operations and message types defined within the static interface parts (WSDL). For instance,
actions, which are basic constructs of WSCI, describe how the service performs a fundamental activity
as a WSDL operation.

The rest of this section, explains the metamodel of Figure 4. The wsdl:definitions element acts as a
container for all top level WSCI definitions such as interface, model and correlation. The model
describes how participants may interact through associated interfaces by connecting operations. The
correlation describes how subsequent conversations are structured, by indicating a particular execution
context (where the actions should be performed) and the interface provides the observable behaviour of
a service by containing all the process definitions.

Delay

+type : TimeConstraintType = duration
+reference : TimeReference

+property : QName

OnTimeOut

+type : TimeConstraintType = duration
+reference : TimeReference

+property : QName

Transaction

+type : TransactionType = atomic
+name : NCName
+retries : QName

Correlate

+instantiation : boolean = false
+correlation : QName

Correlation

+property : ListOfQName
+extends : QName

+name : NCName

Compensate

+transaction : NCName

While

+condition : Condition

Until

+condition : Condition

Case

+condition : Condition

Call

+process : NCName

Property

+select : Expression
+name : QName
+value : mixed

OnFault

+code : QName

Compensation

EventHandler

Documented

<<XSDany>>

<<XSDany>>

Exception

AnyEvent

AnyEvent

Process

+instantiation : InstantiationType = message

Connect

+operation : TwoOpNames
+any

+operation : OpName
+role : QName
+any

Action

Join

+process : NCName

Spawn

+process : NCName

+select : Expression

ForEach

Selector

+xpath : Expression

+element : QName
+property : QName

+type : QName

+any

Interface

+name : NCName

NameRequired

+name : NCName

wsdl:definitions

ActivitySet

Model

+name : NCName
+interface

Activity

+name : NCName

NameRequired

+name : NCName

Fault

+code : QName

Documented

OnMessage

<<xsd:element>>
Documentation

ActivitySet

Sequence

AnyEvent

Context

Default

Switch

Choice

Empty

All 1..*

0..1

<<XSDrestriction>>

2..*

1..*

0..*

{xor}

0..1

0..1

0..*

0..1

0..*

0..*

0..*

0..1

0..1

1..*
0..1

0..1

Figure 4: The MOF Metamodel for WSCI

The fundamental construct, which defines both simple and complex behaviour is the activity
element. It forms the base type (abstract) for all other more elaborate activity elements. The activities
can be distinguished into two conceptual categories, atomic and complex. The complex activities are
composed from a number of activities defining various choreography effects. For instance, such
activities may be performed in a sequential order (e.g. sequence element), after the validation of a
condition (e.g switch) or in iteration (e.g. while). On the other side, atomic activities represent units of
work (actions) that cannot be decomposed further. For example, the call activity triggers other
processes and waits for them to complete while the spawn activity triggers other processes and
continues without waiting them to complete.

A process is a special type of activity that establishes a context of execution, in which all activities
are performed in a sequential order. The execution context defines the environment in which the
activities should be performed and allows activities to share properties/variables. A Property is used to
reference values from message types and are the equivalent of variables.

Finally, to simplify the metamodel, the authors have not incorporated the WSCI simple type
elements, such as the “TransactionType” and “Expression”.

Mapping UML Activity diagram To WSCI

The first step of the Model Transformation was to generate MOF compliant metamodels for both the
source language and target language [6]. The next step is to identify corresponding model elements of
the two metamodels. The following table depicts the correspondence between the model elements of
metamodels of the UML Activity Diagram and WSCI. The shaded row is a model element from the
source, UML Activity Diagram and the following un-shaded row is the corresponding model element
from the destination, WSCI. The table also includes a description of each model elements based on the
specifications provided in [15] and [17].

Activity Partition: groups together a set of activities that have common characteristics. They often
correspond to organisation units, such as Traveller and Travel Agent in this case.
<interface>: contains the processes defining the behaviour of the Web service. For example, the
behaviour of the Traveller.
ConditionalNode: represents an exclusive choice among a number of alternatives. It consists of
one or more clauses. DecisionNode: is a control node that chooses between outgoing flows.
<switch> selects one activity set from a collection of two or more activity sets.
Clause’s Test association: is a nested activity that specifies the result of the test.
<condition>: specifies a Boolean condition defined by XPath [19], that must evaluated.
Clause: represents a single branch of a condition construct including a test and a body section.
<case>: selects an activity set based on the truth value of a condition.
An <<else>> stereotyped Clause: is a clause that is a successor to all other clauses and where the
test part always return true. It is similar to else in Java language.
<default>: selects an activity set in the event that no other condition has been met.
StructuredActivityNode: is an executable activity node. Subordinate nodes of such node must
belong to only one structured activity node. The activity can start the execution when it has
received its objects and control tokens.
<process>: is a special type of activity that establishes its own context of execution and where all
activities are performed in sequential order.
CallOperationAction: An action that transmits an operation call. If the action is marked
asynchronous the execution waits until the execution completes, otherwise it is completed when the
invocation of the operation is established.
<action>: An atomic activity describing how an elementary WSDL operation can be used. It can
be associated with either one-way, request response, notification and solicit response operations.
Operation association of CallOperationAction: The operation to be invoked.
operation: An attribute pointing at a WSDL operation. It can be associated with either one-way,
request response, notification and solicit response operations.
ControlFlow: To model the sequencing of behaviours. ObjectFlow: To model the flow of values
among activity nodes.
<sequence>: A complex activity that performs all its activities in sequential order.
StructuredActivityNode, InterruptibleActivityRegion: can be represented by a structured

activity node (accordingly stereotyped) and which it may contain an interruptible activity region.
<context>: It describes the environment in which a set of activities is executed.
RaiseExceptionAction: is an action that throws an exception.
<fault>: is an atomic activity that triggers a fault notification in the current context. This has an
attribute “code”, which specifies the course of action in case that fault was triggered.
 <<correlate>>: is a special stereotyped action.
<correlate>: is used to associate an action with a particular execution context in which the action
should be performed.
ExceptionHandler: An element that specifies a body to execute in case a specified exception
occurs. The exception type defines the instances the handler catches.
<exception>: An unexpected behaviour (event) is captured by defining an exception handler.
AcceptEventAction: An action that waits for the occurrence of an event meeting specified
conditions. The type of event accepted, it is specified by a trigger.
<onMessage>: An event handler that responses to an incoming message. The initial action defines
the event that triggers the handler.

Transformation Rules

In this section, we shall illustrate how the previous metamodel mapping can be applied, taking as an
input the UML activity model of this case study and generating (output), either as an equivalent MOF
[12] compliant WSCI model or as XML code. This is a type of an endomorphic transformation, as the
source and target metamodels are MOF compliant. The rules introduced at this point, are for
demonstrating purposes and are applied to a subset of modelling elements, which are highlighted in the
source model as green, please refer to Figure 2. The rules can be materialised either by a specific
transformation languages, OCL [13], OCL variations [5] or other languages [10].

In this case, the focus is on illustrating the principles behind the transformation rules, therefore we
do not use a specific QVT [10][14] proposed language, but standard Object Constraint Language
(OCL) statements, enhanced with a small number of conventions to support better the transformation
process. These have been introduced on [1][9] and in this case are; the <~> to highlight the mapping
rule and the try keyword following by the transformation rule to be performed. In addition, the
statements are annotated to aid understanding. The transformation process involves a series of
interlinked transformations, such as the UML ConditionalNode to a WSCI Switch, the UML
CallOperationAction to a WSCI Action, the WSCI action correlation by a UML tagged property and
the UML RaiseExceptionAction to a WSCI Fault. All these transformations have been named
accordingly and are as follows:

Transformation UMLConditionalNode2WSCISwitch
--input parameters received
param input: UML::ConditionalNode
param output: WSCI::Switch
def attr cases: OCL::Set(UML::Clause) = input.clause
-- get all the CallOperation Actions within the clause’s body
def oper getBodyActions(body: OCL::Set(UML::ActivityNode)):
OCL::Set(UML::CallOperationAction)= body->select(e: UML::ActivityNode |
e.oclIsTypeOf(UML::CallOperationAction))
-- get all the RaiseException Actions within the clause’s body
def oper getBodyFaults(body: OCL::Set(UML::ActivityNode)):
OCL::Set(UML::RaiseExceptionAction)= body->select(e: UML::ActivityNode |
e.oclIsTypeOf(UML::RaiseExceptionAction))
--mapping
cases->iterate(c: UML::Clause |
if c.oclIsTypeOf(<<else>>Action) then -– if it is a default case

getBodyFaults(c.body)-> forAll(e: UML::RaiseExceptionAction |
try UMLRaiseException2WSCIFault on e <~> output.fault)

else -– if it is a conditional case
if c.test->forAll(e: InputPin | e.value==true) –-if condition is true

output.case.condition <~> c
getBodyActions(c.body)-> forAll(e: UML::CallOperationAction |
try UMLCallOperation2WSCIAction on e <~> output.action)

endif
endif)

Transformation UMLCallOperation2WSCIAction

--input parameters received
param input: UML::CallOperationAction
param output: WSCI::Action
def attr port: String = input.oclAsType(InvocationAction).onPort.name
--mapping
output.name <~> input.name
output.role <~> “tns:”.concat(input.oclAsType(ActivityNode).inGroup->exists

(t:ActivityPartion).oclAsType(ActivityPartition).name)
output.operation <~> “tns:”.concat(port).concat(“/”).concat (input.operation.name)
post: -- any post conditions
--if there is a correlate attribute within the action
if input->attributes->exists(correlate)
try UMLCorrelateAction2WSCICorrelate on input <~> output.correlate

endif
Transformation UMLCorrelateAction2WSCICorrelate

--input parameters received
param input: UML::CallOperationAction
param output: WSCI::Correlate
pre: --any pre conditions
input->attributes->exists(correlate)
--mapping
output.correlation <~> input.correlation –- is a tag value
if input->attributes->exists(instantiation)
output.instantiation <~> input.instantiation – is a tag value

endif
Transformation UMLRaiseException2WSCIFault

--input parameters received
param input: UML::RaiseExceptionAction
param output: WSCI::Fault
--mapping
output.code <~> “tns:”.concat(input.exception.name)

Generated Models & Code

If we apply the metamodel mapping on a full set of transformation rules, like the ones introduced on
the previous section, a MOF based WSCI model can be derived from the initial case example, see
Figure 5 bellow. The model is an instance of the WSCI metamodel presented on Figure 4 and it is
stereotyped accordingly in order to illustrate the semantics of the classes.

<<wsci:case>>

+condition = cancelReservation

<<wsci:onMessage>>

<<wsci:sequence>>

<<wsci:sequence>>
<<wsci:exception>>

<<wsci:action>>
ReceiveStatement

<<wsci:process>>
PlanAndBookTrip

<<wsci:action>>
CancelItinerary

+operation = tns:TravelToTA/CancelItinerary
+role = tns:traveler

<<wsci:correlate>>

+correlation = reservationCorrelation

<<wsci:correlate>>

+correlation = bookingCorrelation

+condition = cancelItinerary

<<wsci:case>>

<<wsci:action>>
ReservationTimedOut

<<wsci:action>>
AcceptCancellation

<<wsci:action>>
CancelReservation

<<wsci:interface>>
Traveller

<<wsci:context>>

<<wsci:context>>

<<wsci:default>>

<<wsci:default>>

<<wsci:switch>>

<<wsci:all>>

<<wsci:action>>
OrderTrip

<<wsci:action>>
ReceiveTickets

<<wsci:action>>
 ChangeItinerary

<<wsci:switch>>

<<process>>
ChangeItinerary

<<wsci:action>>
BookTickets

<<wsci:action>>
ReserveTickets

<<wsci:fault>>

+code = tns:exit

<<wsci:fault>>

+code = tns:exit

<<wsci:fault>>

+code = tns:exit

Figure 5: The MOF Based WSCI model produced

Equivalently, the following Figure 6 depicts a snippet of the code generated after applying the
transformation rules. The code artefacts can be retrieved either from the WSCI model itself, as it
encapsulates all the necessary information by performing a PSM to Code transformation (semantically
they are very close), or directly, during the transformation process.

Figure 6: A snippet of the example code generated

Discussion / Conclusion

This work introduces the modelling, mapping and transformation of behavioural aspects of
interacting Web services, within the context of MDA [8][3]. In particularly, we have demonstrated how
a realistic scenario of Web service participants exchange messages in choreographed interactions via
the WSCI standard. Initially, the behaviour of one of the participants was modelled with a UML
activity diagram. Then the UML activity and WSCI metamodels are presented and a mapping among
their equivalent meta-modelling elements is defined. Afterwards, a set of transformation rules in OCL
was introduced to perform a transformation from the original UML model to a WSCI compliant MOF
model and code. As a result, the whole process was successful and highlighted the applicability of
MDA in transforming Web services standards, representing business processes, message interchanges
and workflow.

Finally, the case study pointed out the initial idea; that certain types of systems and standards like
the WSCI, BPEL etc are capable of capturing behaviour aspects, it is important to be modelled with
rich behavioural models. This accommodates both their accurate design and mapping to their
corresponding metamodels.

References

[1] A. Kleppe, J. Warmer, W. Bast, MDA Explained. The Model Driven Architecture: Practice and Promise, Addison-Wesley,
ISBN: 321-19442-X, April 2003

[2] BEA, IBM, Microsoft, SAP AG and Siebel Systems, Business Process Execution Language for Web Services (BPEL4WS),
Version 1.1, May 2003

[3] D. Lopes, S. Hammoudi, Web Services in the Context of MDA, University of Nantes, France, 2003
[4] David Frankel, John Parodi, White Paper: Using Model Driven Architecture to Develop Web Services, IONA Technologies

PLC, April, 2002
[5] J. Bezivin, E. Breton, G. Dupe, P. Valduriez, The ATL Transformation-based Model Management Framework, Research

Report, Atlas Group, INRIA and IRIN, September 2003
[6] J. Bezivin, S. Hammoudi, D. Lopes, F. Jouault, An Experiment in Mapping Web Services to Implementation Platforms,

Atlas Group, INRIA and LINA University of Nantes, Research Report, March 2004
[7] J. Siegel, Developing in OMG’s Model Driven Architecture, Object Management Group, November 2002
[8] J. Siegel, Using OMG’s Model Driven Architecture (MDA) to integrate Web Services, Object Management Group White

Paper, Nov 2001
[9] J. Warmer, A. Kleppe, The Object Constraint Language Second Edition, Addison Wesley, ISBN 0321179366, August,

2003
[10] K. Czarnecki, S. Helsen, Classification of Model Transformation Approaches, OOPSLA’03 Workshop on Generative

Techniques in the Context of Model-Driven Architecture, 2003
[11] M. Gogolla, A. Lindow, M. Richters, P. Ziemann,. Metamodel Transformation of Data Models, Position Paper, Proc.

UML'2002 Workshop in Software Model Engineering (WiSME 2002)
[12] OMG, Meta Object Facility (MOF) Specification, Object Management Group, Version 1.4, April 2002
[13] OMG, Object Constraint Language (OCL) Specification, Object Management Group, Version 1.5, 2003
[14] OMG, Request for Proposal: MOF 2.0 Query/View/Transformations RFP, Object Management Group, 2002
[15] UML Superstructure OMG, UML 2.0 Superstructure Spec., Object Management Group, Adopted Specification, 2003
[16] W3C, Extensible Markup Language (XML) 1.0, Third Edition, W3C Recommendation, February 2004
[17] W3C, Web Service Choreography Interface (WSCI) 1.0, W3C Note, August 2002
[18] W3C, Web Services Description language (WSDL) Version 2.0, W3C Working Draft, November 2003
[19] W3C, XML Path Language (XPath) 2.0, W3C Working Draft. July 2004
[20] XML Schema W3C, XML Schema Part 0: Primer, W3C Recommendation, May 2001

