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Abstract—Failure diagnosis is one of the key challenges of Service oriented Architectures. One of the methods of identifying
occurrences of failure is to use Diagnosers; software modules or services which are deployed with the system to monitor the interaction
between the services for identifying if a failure has happened or may have happened. This paper aims to present a suitable modelling
framework to allow automated creation of Diagnosers based on Discrete Event System (DES) theory. Coming up with an appropriate
modelling language framework is a prerequisite to applying DES techniques. Modelling languages popular in DES, such as Petri nets
and Automata, despite being sufficiently adequate for modelling, are not well adopted by the SoA community. Inspired by Petri nets
and Workflow Graph, the modelling suggested in this paper closely follows BPEL which widely used by the community. In particular,
our language includes constructs which are supported by major tool vendors. To demonstrate that the suggested formal language
is a suitable basis for the application of DES theory, we have extended one of existing DES methods for the creation of centralised
Diagnoser. Two algorithms for creating Diagnosers are put forward. These algorithms are applied into the models which are abstracted
from the BPEL representation of the involving services. As a proof of concept, an implementation of the suggested approach is
created as an Oracle JDeveloper plugin that automatically produces new Diagnosing services and integrates them to work with existing
services. The paper ends with a series of empirical results on the performance-related aspects of the proposed method.

Index Terms—Service oriented Architecture, Failure, diagnosis, Workflow Graph, BPEL.
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1 INTRODUCTION

S ERVICE oriented Architecture (SoA) provides a layered
architecture for organising software resources as services,

so that they can be deployed, discovered and combined to
produce new services [1]. SoAs can be involved in performing
crucial functions that the users are heavily dependent upon.
As a result, it is urgent to identify occurrences of failure,
so that suitable remedial actions can be adopted. In order
to identify the occurrence of failures a common method is
to create Diagnosers i.e. software modules or services which
monitor the interaction between the services to identify if a
failure has (or may have) happened [2], [3], [4], [5], [6], [7],
[8]. This paper deals with methods of automated creation of
Diagnosers for SoAs, which draw on Discrete Event System
(DES) theory [9], [10], [11], [12], [13].

To capture business process models, we adopt Workflow
Graphs as suggested by Vanhatalo et al. [14]. This modelling
language is suitable for our purpose for the following reasons.
Firstly, Workflow Graph is a rich modelling language. It
includes necessary constructs, such as Fork, Join, Merge and
Decision, which are commonly used in the modelling of
business processes. Secondly, Workflow Graphs have strong
semantics based on Petri nets which allows a formal ap-
proaches to formulating failure diagnosis. Thirdly, to the best
of our knowledge, the formalism of [14] is the closest to
the standards such as Business Process Execution Language
(BPEL) which are widely adopted by the industry and tool
vendors. An alternative approach for creating Diagnosers
would be to directly use conventional Petri nets [15], [16],
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and develop diagnosis for Petri net [10], [11]. This would
require the developers to adopt Petri nets as their modelling
language. Petri nets, despite being sufficiently adequate, are
not well adopted. Currently, developers and commercial SoA
tool vendors prefer BPEL [17] and BPMN [18]. Another
alternative would be to automatically transform BPEL to
Petri nets or Automata. In our earlier work [5], [6], [7], we
made use of Automata which meant that we relied on the
transformation of business process models to automata. Using
Workflow Graphs eliminates any need to transform a business
process, for example in BPEL, into a secondary language such
as Automata or Petri net, which may require bridging the
gap between modelling languages by proving the correctness
of the transformation. Indeed all exiting methods for using
Automata and Petri net are valid only if the correctness of the
transformation is proved. Proving the correctness of model
transformations, which is similar to proving correctness of
compilers, is a formidable task.

This paper makes three main contributions. Firstly, it ex-
tends the Workflow language suggested in [14] by providing
support for While loop as specified in the BPEL standard.
Indeed, Vanhatalo’s Workflow Graphs of [14] can express
repetitive behaviour by creating loops. However, creating
loops by making cycles in the Workflow Graph may lead
to unstructured cycles which have more than one entry or
exit points [19], [20]. Tools such as IBM WebSphere and
Oracle JDeveloper disallow creation of such unstructured
loops. Instead, they introduce high-level constructs in form
of “While loops” [21], [22], [1]. The formalism presented by
Vanhatalo et al. [14], although closely follows the standard,
does not support such While loop constructs. Our extension
of Workflow Graph called Extended Workflow Graph (EWFG)
results in a tree of Workflow Graphs where a While activity
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is a node with a (unique) child, which is also an Extended
Workflow Graph, representing the behaviour that should be
repeated when the While occurs. We also present a formalism
for supporting BPEL Invocation, which are widely used in
business process. The formalism is used to prove that the
language produced by EWFG is a Regular language. In other
words, the language underlying models supported by these
tools,BPEL, is a regular language. Secondly, two algorithms
are presented for the automated generation of Diagnosers. This
shows that our language is a suitable basis for developing
Diagnosers via DES techniques. The third contribution is a
report on an implementation of the method as an Oracle
JDeveloper Plugin, as a proof of concept. In SoA, due to
the distributed nature of services, it is crucial to present
suitable infrastructure and code for integrating the created
Diagnosers to the exiting services. There are various options
for integration of the Diagnoser, we have presented four in this
paper. The created tool has been used for the evaluation of the
performance of different methods of integrating the created
Diagnoser to the existing services.

The paper is organised as follows. Section 2.1 presents a
brief review of the business process modelling. Section 2.2
reviews the Workflow Graph model [14]. In Section 2.3 a
running example based on a scenario of failure detection in
an e-shopping system is described. Unstructured loops are
explained in Section 3. Extended Workflow Graphs and their
semantic are introduced in Section 4. Automated creation
of Diagnosers involves two steps. Firstly, in Section 5, an
algorithm for creating a graph called Coverability Graphs,
which extends the idea of Petri net Coverability Graph [13],
is presented. From this point of view our approach furthers
the method suggested by Giua and Seatzu [13], [23] and
Genc and Lafortune [10] in designing Diagnoser for Petri
net models. In Section 6, a second algorithm is put forward
which produces the Diagnoser. Section 7 presents an outline
of the implementation method which automatically produces a
Diagnoser service based on the two algorithms, and a sketch of
implementation as an Oracle JDeveloper’s plugin. The Section
ends by proposing and comparing four styles of interaction
between the Diagnoser service and existing systems.

2 PRELIMINARIES

2.1 Business Process Execution Language (BPEL)

There is an ever-increasing pressure on modern enterprises
to adapt to the changes in their environment by evolving to
respond to any opportunities or threats [24]. Service oriented
Architecture (SoA) provides a foundation for implementing
business processes via the composition of existing services.
Web services are software systems which make use of well-
accepted standards to support the creation of SoAs. The
interaction between services is facilitated via Web service
Description Language (WSDL). WSDL is an XML language
aimed at defining message formats, data-types and transport
protocols [25]. Web services interaction can be either orches-
tration or choreography [26], [27]. Orchestration relies on a
central Service coordinating and controlling the invocation

between a set of Web services. In contrast, the choreography
structure does not rely on any central entity [26], [27].

Interaction between services can be represented with the
help of Business Process Execution Language (BPEL) [1].
BPEL is used to express complex behaviour such as sequential,
parallel, iterative and conditional interactions. BPEL also has
model elements for specifying Reply, Receive, Invoke and
Terminate [1], [28] which are used in business process. For
general information on Web service we refer the reader to [1].

2.2 Workflow Graph

Workflow models are now widely used for specifying business
processes [15], [16], [29], [30]. Focusing on the analysis of
the systems, Van der Aalst et al. [15], [16] present a Workflow
modelling language, in which models are constructed from
blocks of Petri net models representing common workflow
constructs. The blocks of Petri nets are assembled together
to create new models of the overall business process. These
new models are used in conducting analysis to identify, among
other things, existence of deadlocks. Petri nets, despite being a
power representation, are not adapted by the SoA community,
which is more keen of modelling via BPEL [17] and BPMN
[18]. Such languages are also supported by tools vendors.
We find the modelling language suggested by Vanhatalo et
al. [14], which is also based on Petri net, the closest to the
style adopted by the major tools such as IBM WebSphere
and Oracle JDeveloper. As a result, our work builds on the
formalism suggested in [14]. For the rest of this section, we
will briefly review [14].

Definition 1: [14] A Workflow Graph is a graph G =
(N,E) where N is the set of nodes and E is the set of
edges. Each node n ∈ N represents an action such as Start,
Stop, Activity, Fork, Join, Decision and Merge. Each edge of
the Workflow Graph connects two nodes to each other i.e.
E ⊆ N ×N .

Notation 1: Every Workflow Graph has a unique Start and
Stop node. For a Workflow Graph G we shall denote them
with G.Start and G.Stop.

Fig. 2 is a graphical depiction of a Workflow Graph. Each
Workflow Graph has a single Start and Stop. These are denoted
by two circles in Fig. 2. Start Node has no input edge, whereas
Stop node has a single output edge.

Notation 2: For each node n, the set of Input/Output edges
of n are denoted by In(n) and Out(n).

Fork and Decision nodes have only one input edge, while
Join and Merge have only one output edge. Fork and Decision
edges are generally expected to have more than one output
edges, whereas Join and Merge nodes have more than one
input edges.
Semantic of Workflow Graph According to Vanhatalo et al.
[14] a state of a Workflow Graph is represented by assignment
of tokens to the Workflow Graph edges. An edge with a token
indicates that the action following the edge can be potentially
executed. This is very similar to assignment of tokens into the
places in Petri nets [31]. Also similar to the Petri net execution
of an event in a Workflow Graph results in the movement of
the tokens between the edges to capture the flow of actions.
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Notation 3: Suppose that G = (N,E) is a Workflow
Graph. A state in G is a mapping s : E → N which assigns
a number of tokens to each edge e ∈ E i.e. s(e) = k means
edge e carries out k tokens, where N = {0, 1, 2, . . . , }. An
execution of node n ∈ N results in changing the state from s
to s′ denoted by s

n−→ s′.
Definition 2: (Semantics of change of States) [14] Assume

that s, s′ are two states of a Workflow Graph and s
n−→ s′.

• if n is a Start node then:

s′(e) =

{
1 if e ∈ Out(n)
s(e) otherwise

• if n Stop node then:

s′(e) =

{
s(e)− 1 if e ∈ In(n)
s(e) otherwise

• if n is an Activity, Fork or Join:

s′(e) =

 s(e)− 1 if e ∈ In(n)
s(e) + 1 if e ∈ Out(n)
s(e) otherwise

• if n is a Decision and e′ is one of the output edges of n:

s′(e) =

 s(e)− 1 if e ∈ In(n)
s(e) + 1 e = e′

s(e) otherwise

In other words, Vanhatalo et al. [14] assume that an
execution of a Decision node n results in removing tokens
from an input edges of n and depositing it in one of the
output edges of n non-deterministically.

• if n is a Merge and e′ is one of the incoming edges of
n with s(e′) > 0:

s′(e) =

 s(e)− 1 e = e′

s(e) + 1 if e ∈ Out(n)
si otherwise

In the next section we will introduce our running example.

2.3 Example: E-Shopping System
This section gives an outline of a running example which is
used in the rest of the paper. To describe our approach, we
will make use of a modified version of the example given by
Guillou et al. [32], [33]. This example is based on a typical
on-line e-shopping system consisting of three main services:
Shop, Supplier and Warehouse.

As depicted in Fig. 1, the customer accesses the Shop
Web site to search for items. Then, he adds his items to the
Shopping Cart which is then passed to the Supplier service
by the Shop Service. For each item in the list, the Supplier
service sends a request to the Warehouse to check if the
item is available. If the item is available the Warehouse
service sends an acknowledgement to the Supplier to complete
processing the order. Next, the Supplier Service send back the
list of available items to the Shop service. Finally, the list is
forwarded to the customer who then confirms his order.

Fig. 2 depicts the Workflow Graph for the Shop service.
It can be seen that the Shop service receives the placed order
which is stored in its database. Shop will send the list of items

Fig. 1. E-shopping Scenario

to the Supplier to check their availability. After receiving the
list of available of items from the Supplier, the payment items
is calculated and a summary of the order is be sent to the
customer. Then, the customer has the option to either confirm
or cancel his order.

Fig. 2. Workflow Graph for the Shop and Supplier Ser-
vices

Fig. 2 also depicts the behaviour of the Supplier service
which receives the list of items sent by the Shop service. Then,
a request for each item in the list is sent to the Warehouse
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service. If the item is available at Warehouse, the list of items
is updated. After iterating through the processed items, the
final updated list is returned back to the Shop Service.

Fig. 3 depicts the Workflow Graph for the Warehouse
service which receives a request sent by the Supplier for an
item. If the item is available, it is reserved and subsequently
the list of item in the stock is updated. If not, the Supplier is
informed that the item is not available.

Fig. 3. Workflow Graph of the Warehouse Service

3 UNSTRUCTURED LOOP AND BPEL
In the Workflow Graph of Vanhatalo et al. [14], a repetitive
behaviour can be represented by a cycle in the graph created
by combining a Merge and Decision to link a node to an
earlier node on the path from the Start node. For example, the
iterative scenario to check the availability of each item in the
list of customer’s order can be captured as depicted in Fig.
2. This style of representing the repetitive behaviour, which
is known as unstructured loop, is very similar to using goto
command and allows loop with multiple entry and exit.

In programming languages the use of goto command is
discouraged [19], [20]. Creation of Workflow Graph models
using unstructured loop may result in an elimination of the
parallel behaviour producing inefficient code [34]. Eliminating
unstructured loops does not reduce the expressive power of the
Workflow Graph. There are various algorithms available which
allow elimination of the unstructured loops and replacing them
involving equivalent loops with a single input and output node
[35], [34].

Leading tool vendors do not support creation of unstructured
loop in a model. For example, it is not possible to produce
a Workflow Graph similar to Fig. 2 in Oracle JDeveloper.
Instead such tools adopt a hierarchical style similar to While
loop in conventional programming languages. A While loop is
designed to repeat a set of tasks as long as the loop condition
is valid. It also worth mentioning that BPEL does not support
For-Loops or Do-While Loops because they would prevent the
process from being exported [21], [22]. As a result, a repetitive

behaviour such as the Supplier behaviour captured in Fig. 2
must be converted to a While node as depicted in Fig. 4 which
includes internal repetitive behaviour as a separate Workflow
graph (B : While Block).

Fig. 4. Workflow Graph of the Supplier Service with While

4 EXTENDED WORKFLOW GRAPH MODEL

In this section, we shall extend the formalism presented by
Vanhatalo et al. [14] to support While loop of BPEL. We also
model Invocation nodes which are used to perform remote
invocation of another Services [1]. An Invocation activity in
BPEL can be either a one-way operation (i.e. it has only an
input message and does not expect a result to be returned from
the remote service) or a two-way operation which has an input
message and returns a result synchronously [1].

Extension of Vanhatalo et al. [14] is achieved in two steps.
Firstly, in definition 3 we shall present an enhancement of
Workflow Graph of [14], which we call a Workflow Graph
with Invocation and While nodes (WFGIW). A WFGIW is
an extension of Definition 1 to include Invocation and While
nodes. For example, the Workflow Graph at the left-hand-side
of Fig. 4 is WFGIW. Any conventional Workflow Graph, as
defined in [14], is also a WFGIW. Consequently, WFGIW
extends the conventional Workflow Graph.

WFGIW is used at the nodes of the tree that represents, for
example, the relation between a While loop and its repetitive
behaviour. Secondly, in definition 4 the tree representation
is enhanced to introduce the notation of Extended Workflow
Graph.

Definition 3: A Workflow Graph with Invocation and While
nodes (WFGIW) is a graph G = (N,E) where N is a set of
nodes representing one of the following: Start node, Stop node,
Activity, Fork, Join, Decision, Merge, Invocation and While.
The set of all Invocation nodes of G is denoted by I (G). The
set of all While nodes of G is denoted by W (G). E is the
set of edges E ⊆ N × N where each edge e ∈ E connects
two nodes with each other. Invocation and While nodes have
a single input and single output edge which are not identical
where: ∀n ∈ I (G)

∪
W (G) |In(n)| = |Out(n)| = 1 and

In(n)
∩

Out(n) = ϕ.
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Fig. 4 depicts the Supplier WFGIW in (A: Supplier WG).
The internal behaviour associated to the execution of the While
node is depicted as a second WFGIW (B: While Block). Such
an internal behaviour for the While node can be executed as
long as the condition attached to the While node is true1.
Similarly, there is an internal behaviour which itself can be a
WFGIW for each Invocation node. As a result, our proposed
models, called Extended Workflow Graph, are in form of tree
with a WFGIW on each node of the tree.

Definition 4: An Extended Workflow Graph (EWFG) is a
tree of form T = (V ,Σ) where V = {G1, . . . , Gn} is the
set of Workflow Graphs with Invocation and While nodes
(WFGIW). Each edge of the tree maps two Workflow Graphs
together e = (n,Gj) ∈ β where β is a function that maps
Invocation or While nodes to their corresponding internal
behaviour i.e.

β :
n∪

i=1

I (Gi) ∪ W (Gi) −→ V

For each Gi ∈ V , except the root node, β−1(Gi) is the unique
Invocation or While node associated to Gi.

The following properties can be inferred from the above
definition:

• There are no Invocations or While nodes in the final
Workflow Graph of an EWFG because T is a finite tree.

• If there are more than one Invocation or While nodes in
a Workflow Graph, there are more than one edges out of
that Workflow Graph. To be precise, for each node Gi

the number of Invocation and While nodes is exactly the
same as the number of edges starting at Gi. This ensures
assignment of a unique WFGIW to each Invocation or
While node as their internal behaviour.

• Invocation and While nodes can not call a WFGIW which
is their father node, because T is a tree.

Clearly, Workflow Graphs are special cases of Workflow
Graphs with Invocation and While nodes (WFGIW). Some-
times, when there is no chance of ambiguity, we shall abuse
the notation and refer to a WFGIW as simply a ”Workflow
Graph”. However, we will always use the phrase Extended
Workflow Graph for the tree which has WFGIWs as it nodes.

4.1 States of Extended Workflow Graph
Vanhatalo et al. [14] define the state of a Workflow Graph
G as a function s : E −→ N, where E is the set of
edges in G. This definition can be extended for Extended
Workflow Graph which has multiple set of edges E1, . . . , En.
Let us write E = E1 ∪ · · · ∪ En and define a function
sE : E −→ N for capturing the number of tokens on each
of the edges of an Extended Workflow Graph T = (V ,Σ)
where V = {G1, . . . , Gn} and E1, . . . , En are edges of
G1, . . . , Gn. However, this will not be adequate for capturing
the states of an Extended Workflow Graph. We shall explain

1. Modelling of such condition requires modelling of data. The focus of
this paper is on diagnosing of failure related to the flow of actions. Modelling
of data remains a topic for future research. In the absence of such a condition,
we will assume that an internal behaviour can occur any arbitrary number of
times.

this with the help of the Workflow Graph of Fig. 4. If one of
the edges in block B is marked with a token, we can infer
that the internal Workflow Graph related to the While loop is
executing. We need a mechanism to capture this information in
the Workflow Graph represented in block A. To achieve this,
we shall assign a token to each While node, which its internal
Workflow Graph is executing. Similarly, we shall assign a
token to each Invocation node, which its internal Workflow
Graph is executing. As a result, state of Extended Workflow
Graph consists of a trio of functions (sE , sI , sw) where sE is
the extend state as explained above, sI and sw are functions
to keep the number of tokens in Invocation and While nodes
respectively. This can be formalised as follows.

Definition 5: Suppose T = (V ,Σ) is an Extended Work-
flow Graph EWFG where V = {G1, . . . , Gn}. For each i, Ei,
I (Gi) and W (Gi) represent the set of edges, Invocation and
While nodes of Gi. Each state s of T is a trio of functions
s = (sE , sI , sw) so that:

• sE : E1 ∪ · · · ∪En −→ N where E = E1 ∪ · · · ∪En and
sE(e) = n means that there are n tokens on the edge e

• sI :
n∪

i=1

I (Gi) −→ {0, 1}, where sI(n) = 1 if and only

if the Workflow Graph representing the internal behaviour
of the Invocation node n is executing.

• sw :
n∪

i=1

W (Gi) −→ {0, 1}, where sw(n) = 1 if and only

if the Workflow Graph representing the internal behaviour
of the While node n is executing.

Notation 4: We will write each trio of functions s =
(sE , sI , sw) as the concatenation of the three parts involving
coordinates which are mapped to edges E1 ∪ · · · ∪ En,
Invocation nodes

∪n
i=1

I (Gi) and While nodes
∪n

i=1
W (Gi).

We shall use the example of e-shopping System to illustrate
the state of the Extended Workflow Graph with the help of
initial state. Fig. 5 depicts the initial state of the system which
is considered with having only one token in the output edge
of the Start node of the Shop service.

(

|s|=12︷ ︸︸ ︷
10000000000︸ ︷︷ ︸

Shop

|
|s|=5︷ ︸︸ ︷
00000︸ ︷︷ ︸
Supplier

|
|s|=7︷ ︸︸ ︷

0000000︸ ︷︷ ︸
While node

|
|s|=8︷ ︸︸ ︷

00000000︸ ︷︷ ︸
Warehouse

)

Fig. 5. Initial State of e-shopping system

4.2 Semantics of Extended Workflow Graph

Suppose that si and si+1 are two states of an Extended
Workflow Graph. We write si

n−→ si+1 to denote firing a node
n alters the state of si to si+1. In Section 2.2 the firing rules of
Merge, Activity, Decision, Fork, and Join have been defined.
Also for Start and Stop nodes of the root Workflow Graph the
firing rules have been explained. The same set of firing rules
can be applied to these nodes in EWFG. When these nodes fire,
obviously the value of coordinates corresponding to internal
actions of Invocations and While nodes remain unchanged i.e.
sIi+1 = sIi and swi+1 = swi .
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In the rest of this section we shall discuss the firing rules of
Invocation and While nodes. In such nodes, the tokens must
move into the children node to execute the internal behaviour
of the parent node. This is achieved by firing of the Start nodes
of the children node. Similarly, when the execution of the
internal Workflow Graph, i.e. the children node, is terminated,
the token must be removed. For example, in case of a While
node, either the internal behaviour repeats itself, which means
a new execution of the Start node, or the execution of the
While is terminated and it results in a removal of token from
the child Workflow. Consequently, as a part of describing the
firing rules for the execution of Invocation and While nodes,
we shall describe the execution for their Start and Stop node
of the children nodes, which is different from the execution
rules for Start and Stop node of the root of the EWFG.

Definition 6: (Change of States for Invocation and While)
Assume that si = (sEi , s

I
i , s

w
i ) and si+1 = (sEi+1, s

I
i+1, s

w
i+1)

with si
n−→ si+1. Suppose n is a While node such that

(n,G) ∈ β i.e. G is the internal behaviour associated to the
node n. The While node n is enabled when it has one token
in its input edge as shown in Fig. 6a. Firing n removes one
token from its input edge and add one token to the Start Node
of its associated Workflow Graph β(n).Start; the While node
n is marked by “1” token to indicate that the Workflow Graph
associated to n is executing i.e. swi (n) = 1 as shown in Fig.
6b.

• n is enabled if si(e) > 0 for e ∈ In(n) then

sEi+1(e) =

 sEi (e)− 1 if e ∈ In(n)
sEi (e) + 1 if e ∈ Out(β(n).Start)
sEi otherwise.

For the coordinates in the Invocation part sIi+1 = sIi . For
the coordinates in the While part:

swi+1(m) =

{
1 if m = n
swi if m ̸= n.

• Firing rule for the Stop node of a child node of a While
node as shown in Fig. 6c: if m is β(n).stop where n is
an While node, m is enabled if si(e) > 0 for e ∈ In(m).
If While should be repeated, firing m removes one token
from its input edge and adds one token to the Start
Node i.e. β(n).Start. Otherwise, firing of m removes
one token from its input edge and adds one token to the
output edge of While node n; the token held on the While
node n node is removed and the coordinate corresponding
to n in the vector of state is marked by ”0” to indicate
that the process on the Workflow Graph associated to n
has been completed as shown in Fig. 6d.

sEi+1 =


sEi (e) + 1 Repeat & e ∈ Out(β(n).Start)
sEi (e) + 1 No Repeat & e ∈ Out(n)
sEi (e)− 1 if e ∈ In(m)
sEi otherwise

For Invocation part sIi+1 = sIi .
For While part:

swi+1(m) =

{
0 if m = n
swi if m ̸= n

Suppose n is an Invocation node such that (n,G) ∈ β where
G represents the internal behaviour that should be performed
as n executes.
If n is an Invocation node with a one-way operation, the

Fig. 6. While loop Structure and Semantics

firing of n removes one token from its input edge and adds one
token to its output edge and one token to the Start Node of its
associated Workflow Graph β(n).Start. This means that the
parent Workflow Graph continues executing, and at the same
time, child Workflow Graph also start executing.

• n is enabled if si(e) > 0 for e ∈ In(n) then

sEi+1(e) =


sEi (e)− 1 if e ∈ In(n)
sEi (e) + 1 if e ∈ Out(β(n).Start)
sEi (e) + 1 if e ∈ Out(n)
sEi otherwise

In one-way operation, Invocation and While parts are not
changed and their value are still the same i.e. sIi+1 = sIi
and swi+1 = swi .

• Firing rule for the Stop node of a child node of one-way
operation: if m = β(n).stop where n is an Invocation
node. Firing m removes one token from its input edge. If
there is only one token on the input edge, m is terminated.
m is enabled if si(e) > 0 for e ∈ In(m) then

sEi+1(e) =

{
sEi (e)− 1 if e ∈ In(m)
sEi otherwise.

In this case the value of Invocations and While coordinates
remains unchanged i.e. sIi+1 = sIi and swi+1 = swi .

If n is Invocation with two-way operation, firing of n
removes one token from its input edge and add one token to the
Start Node of Workflow Graph associated to n i.e. β(n).Start.
In other words, in the two way operations the execution of
the parent Workflow Graph is blocked while the execution
of the internal behaviour, i.e. the child node, terminates. The
Invocation node n is marked by “1” token to indicate that
the Workflow Graph associated to n is currently executing i.e.
sIi (n) = 1.

• n is enabled if si(e) > 0 for e ∈ In(n) then

sEi+1(e) =

 sEi (e)− 1 if e ∈ In(n)
sEi (e) + 1 if e ∈ Out(β(n).Start)
sEi otherwise.

For Invocation part sIi+1:

sIi+1(m) =

{
1 if m = n
sIi if m ̸= n.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

However, the coordinates for the While part remain
unchanged, i.e. swi+1 = swi .

• Firing rule for the Stop node of a child node of a two-way
operations: If m = β(n).stop where n is an Invocation
node, firing of m removes one token from its input edge
and adds one token to the output edge of the Invocation
node n. The token in the Invocation n node is removed
and n is marked by “0” to indicate that the process of
executing the Workflow Graph associated to n has been
completed. m is enabled if si(e) > 0 for e ∈ In(m) then

sEi+1(e) =

 sEi (e)− 1 if e ∈ In(m)
sEi (e) + 1 if e ∈ Out(n)
sEi otherwise

For the Invocation part:

sIi+1(m) =

{
0 if m = n
sIi if m ̸= n

However, the While part remains unchangedswi+1 = swi .
Remark 1: Vanhatalo et al. [14] assign tokens to only the

edges of a Workflow Graph. In this paper, tokens are also
assigned to the nodes to indicate that the associated Workflow
Graph for Invocation and While node is executing. This seems
to be inevitable to have extra functions sI and sw as a part
of states, as we require a mechanism to capture the scenarios
that an internal Workflow Graph of an Invocation or While
nodes is executing. A naive approach would be to suggest
that if an internal Workflow Graph i.e. a child of a node n
had a token on its input edges, it would be sufficient to show
that n is executing. However, this may cause ambiguity if a
new token arrives at the input edge of n. In this case a new
execution of the internal Workflow Graph may be repeated.
This would result in a wrong execution of the Workflow Graph
such as execution of a Stop node, which implies execution has
terminated, while there are still tokens in the Workflow Graph.

We shall end this section by extending the definition of
execution traces from Petri net to EWFG.

Definition 7: Suppose that s0 is a state with s0(e) = 1 if
e ∈ Out(root.start) i.e. e is an edge out of the Start node
of the root and s0(e

′) = 0 for all other coordinates. We refer
to s0 as an initial state. For example, Fig. 5 represent the
initial node for the example in Section 2.3. Any sequence
s0

n1−→ s1 . . .
nk−→ sk is called an Execution Sequence of the

Extended Workflow Graph. Sometime, if there is no chance
of ambiguity, we write s0

n1...nk−→ sk to denote the Execution
Sequence. The set of all Reachable state of T is defined as
Reach(T ) = {sk|∃n1 . . . nk so that s0

n1...nk−→ sk}. We also
define the language of an Extended Workflow Graph T as
L(T ) = {n1 . . . nk|∃sk ∈ Reach(T ) so that s0

n1...nk−→ sk}.

4.3 Modelling Observability and failure in of Ex-
tended Workflow Graph
Assume that T = (V ,Σ) is an Extended Workflow Graph
EWFG. For each Gi ∈ V , Gi = (Ni, Ei) where Ni is the
set of nodes in Gi and Ei is the set of edges of Gi. Suppose
that N =

∪
Ni is the set of all nodes of the EWFG. N can

be partitioned into disjoint subsets of observable nodes Nobs

(i.e. their occurrence can be observed) and unobservable nodes
Nuo i.e. N = Nobs ∪Nuo and Nobs ∩Nuo = ϕ. For example,
we assume that Send Item to the Supplier node in the Shop

Workflow Graph is an observable action since it can be seen by
the Supplier service, whereas Calculate the Cost is considered
as unobservable node as it is considered an internal action of
the system.

Some of the events such as Fork and Join are used across all
Workflow Graph and system. We shall distinguish them from
the events which are directly represent the system events.

Definition 8: (Internal Actions [7]) Nint represents internal
action such as the Start node, Stop node, Fork, Join, Decision,
Merge and While which their execution is performed internally
and hence unobservable i.e. Nint ⊂ Nuo.

In our models some of the nodes represent occurrences
of failure. The set of failure nodes is denoted by Nf . For
example, a violation of a quality constraint is considered as
a failure. If a node which represents an occurrence of failure
is observable, then its execution can be seen and it can be
diagnosed trivially. So without any loss of generality we shall
assume that all failure nodes are unobservable Nf ⊆ Nuo.
A typical example of failure nodes which are observable are
faults in the software which are modelled as Caught Exception
which allow the system to continue with the execution of the
program. We are not interested in such failure. This is because
occurrences of such events is observable and can be detected
trivially. A system may have different types of failure. We
shall write Nf = Nf1 ∪ · · · ∪ Nfℓ to classify the the set of
failure into different categories.

From an outside services point of view only observable
event Nobs can be recognised. Suppose that the Extended
Workflow Graph executes a sequence of events σ = n1 . . . nr.
A Projection map is often used to erase unobservable actions
from σ to create the set of observable actions [36].

Definition 9: Suppose P : N → Nobs ∪ {ϵ} is defined by

P (n) =

{
ϵ if n ∈ Nuo

n otherwise

where ϵ is the identify of the alphabet N , i.e. for n ∈ N ,nϵ =
ϵn = n. Also assume extending P : N∗ → (N ∪ {ϵ})∗ by
defining for P (n1 . . . nr) = P (n1) . . . P (nr) representing the
sequence of observable events in n1 . . . nr in their right order.

The given example can be used to explain the observability
concepts of a Workflow Graph. The set of the observable and
unobservable nodes of the Workflow Graph of Supplier service
of Fig. 4 is defined as follow:
N ={Start Node, Receive Items List, While, Return Items List
to Shop, Stop Node}, where Nobs={Receive Items List, Return
Items List to Shop}, and Nuo={Start Node, While, Stop Node}

Some of the scenarios of the execution in the given ex-
ample can result in a failure action. In this paper, we have
selected two failures specified in [32], [33] to demonstrate
our approach:

• A failure Nf1 occurs when the customer makes a mistake
while placing his order. This failure is caused by a data
acquisition which may result in either billing of wrong
items or billing of wrong number of items. So, the
Receive Confirmation node in the Shop service is a failure
of type Nf1

• A failure Nf2 represents the case that the Supplier service
does not return back the same list of items to to the Shop
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service i.e. one or more items are missing from the list. In
other words, Nf2 is a failure, which may occur after the
execution of Return Items List to Shop node in Supplier
service.

4.4 Description of the problem
Diagnosing failure during the interaction between a set of
services is crucial and challenging task. The aim of our
approach is to produce Diagnoser service. As shown in Fig.
7, the Diagnoser service is designed to receive a sequence of
observable events to determine if a failure has happened, or
may have happened. This can be formalised as follows [7]:

Definition 10: Consider an Extended Workflow Graph G
with a set of nodes N . Also assume the set of failures
are divided into categories Nf1 , Nf2 , . . . , Nfℓ . Suppose that
σ = n1 . . . nr ∈ N∗

obs is an arbitrary sequence of observable
actions. We say:

1) σ ends in a Normal state if every execution sequence
of G with an observable sequence σ does not have any
failure events i.e.
∀µ1 = n′

1 . . . n
′
s ∈ L(G) P (µ1) = σ ⇒ ∀i n′

i /∈ Nfi

2) σ ends in a failure state of type Nfi if every reachable
sequence of events µ2 in N , which can be projected to
σ ends in a failure node of Nfi i.e.
∀µ = n′

1 . . . n
′
s ∈ L(G) P (µ2) = σ ⇒ ∀i < s n′

i /∈ Nfi

and n′
s ∈ Nfi

3) σ may end in a failure state of type Nfi , if some of the
execution sequence of G which map to σ end in failure
Nfi and some have no failure of type Nfi i.e.
∃µ1 = n′

1 . . . n
′
s, µ2 = n′′

1 . . . n
′′
q ∈ L(G) so that

P (µ1) = P (µ2) = σ and ∀i < s n′
i /∈ Nfi , n

′
s /∈ Nfi

and ∀i < q n′′
i /∈ Nfi

Fig. 7. An overview of the Diagnoser Service

The definition of diagnosability presented here is a weaker
version of the definition by Cabasino et al. [37] for Petri
nets. Cabasino et al. [37] requires an infinite trace to follow
occurrence of failure to model delay in discovering the failure.
We have not included that requirement in our definition.
However, adopting definition similar to [37] will not require
any changes to the rest of the paper, as infinite traces following
a failure map into circles of unobservable events, which can
be detected in the Coverability Graph. Cabasino et al. [37]
also shows that for regular languages the presented definition
is equivalent with a notion of diagnosability known as k-
diagnosability. In Section 5, we will demonstrate that the
languages of our models are regular. As a result, classical
methods of creating Diagnoser can be applied in this context.

In the rest of the paper we shall demonstrate that the
formalism presented in this paper is suitable for extending the
Diagnosability theory [9]. To do so, we shall present a method
of creating Diagnoser and integrate it into the system.

5 COVERABILITY GRAPH OF EXTENDED
WORKFLOW GRAPH

In Petri nets, Coverability Graph is used to analyse unbounded
nets [38]. In our earlier paper [7] we extended the idea
Coverability Graph from Petri nets to Workflow Graph [14].
In this paper, we shall further extend the Coverability Graph
to Workflow Graph with Invocation and While nodes. We also
prove that for Extended Workflow Graph consisting Workflow
Graph with Invocation and While nodes without unstructured
loop the Coverability Graph is the same as the Reachability
Graph. In other words we show that in such cases there are
only finite numbers of reachable states, which can produce
infinite repetitive behaviour by creating loops. The following
definition of Coverability graph is a direct extension of a
similar definition in Petri nets.

Definition 11: A Coverability Graph of an Extended Work-
flow Graphs T = (V ,Σ) is a graph Gcov = (Ncov, Ecov)
where :

I Each node of the Coverability Graph is marked by a
k−dimension vector of coordinates N

∪
{ω}, where

k is the number of coordinates in the state of an
EWFG as defined in Definition 4.1.

II Each edge of the Coverability Graph is marked by
a node of T, i.e. Ecov ⊆ N where N is the set of
all nodes of T .

III For each reachable set of states s0
n1−→ s1

n2−→
. . .

nr−→ sr, there is a path α0
n1−→ α1

n2−→ . . .
nr−→

αr such that si ≤ αr for 1 ≤ i ≤ r, where ≤ is
coordinate ordering of vector in N

∪
{ω}, in which

∀n ∈ N, n ≤ ω.2

Algorithm 1 is a direct extension of Algorithm [31], [38]
in Petri net. It is adapted to produce the Coverability Graph
of an Extended Workflow Graph.

Lemma 1: Algorithm 1 produces the Coverability Graph for
any given Extended Workflow Graph.

Proof: Similar to the proof of corresponding result in
Petri net [38] with replacing semantics of Petri net with the
semantics of Extended Workflow Graph.

The idea of Coverability Graph is to represent the behaviour
involving infinite number of states in a finite graph. Clearly if
a Coverability Graph for a Workflow Graph has no Structured
loop, then there is no chance of repetitive behaviour. In this
case, the set of reachable states is finite, which means that the
Coverability Graph is the same as the Reachability Graph.

In the representation of Workflow Graph introduced in Sec-
tion 4, repetitive behaviour is modelled in a controlled manner
using While loops. In this section we show that Extended
Workflow Graph, although include infinite behaviour, the set
of reachable states for them is finite. Intuitively, We will show
that the set of Reachable states of the Extended Workflow
Graph is a subset of the Cartesian product of the set of
all Reachable states of the Workflow Graph produced from
“Stripping” each WFGIW at the node of the tree from any
possible Invocation or While nodes. First we shall start by

2. Readers who are not familiar with the idea of Coverability Graph in Petri
net are invited to think of ω as a symbol that represents possibility of having
infinite token on an edge.
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Algorithm 1 The computation of Workflow Coverability
Graph

Output Gcov = (Ncov, Ecov)
Create an initial node (1 . . . 0| . . . |0 . . . 0)
Label the initial node as the root and tag it as ”new”.
while a node marked by ”new” in the Coverability Graph
exists do

Select a node marked by ”new” α
if α is identical with a node on a path from the initial
node to α then

tag α as ”old”
else

if no activities are enabled at α then
tag α as ”dead”

else
for all activities ni enabled at α do

compute the Marking α′ that results from firing
ni at α. The firing rules which are described in
Section 2.2 must be extended by ∀n n + ω =
ω + n = ω
On the path from the root to α if there exists a
Coverability Graph node such that α′′ ≤ α′ and
α′ ̸= α′′ i.e. α′′ is covered by α′, then replace
α′(e) = ω for each e such that α′(e) > α′′(e)
Introduce the new α′ as Coverability Graph node
Draw an arc with label ni from α to α′

Tag α′ ”new”
end for
Tag α ”old”

end if
end if

end while

“stripping” each node of the tree from all Invocation and While
node to create a conventional Workflow Graph without any
structured loops.

Notation 5: Suppose that G = (N,E) is a Workflow
Graph with Invocation and While nodes. Let us denote by
Ĝ = (N̂ , Ê) a Workflow Graph created by replacing each
Invocation and While nodes with an Activity node with the
same name.

Lemma 2: Suppose that T = (V ,Σ) is an Extended Work-
flow Graph (EWFG) where V = {G1, G2 . . . , Gn}. Then
for each i, πi(Reach(T )) ⊆ Reach(Ĝi)

∪
{−→0 } where πi

is the projection of the state vector of T to edge of Gi,−→
0 = (0, . . . , 0) is zero vector of dimension of | Ei |, where
Ei is the set of the edges of Gi.

Proof: The proof is by induction on r where σ = s0
n1−→

s1 . . .
nr−→ sr is an execution sequence of T and sr is the

r-th reachable state. The first step of induction is trivial as if
Gi is the root of the Graph πi(s0) would be (1, 0, . . . , 0),
otherwise πi(s0) =

−→
0 . Suppose that for 0 ≤ j ≤ r

πi(s0), . . . , πi(sr−1) ∈ Reach(Ĝi)
∪
{−→0 }, we must show that

πi(sr) ∈ Reach(Ĝi)
∪
{−→0 }. In sr−1

nr−→ sr if nr is not an
edge of Gi then πi(sr) = πi(sr−1) and there is nothing to
prove. Similarly if nr is not a While or Invocation node, the

change of state of the overall system and change of states of Ĝ
are identified. So the nontrivial cases are when nr is a While
or an Invocation node. The idea of the proof is that execution
of a While or Invocation node results in executing of a child
Workflow Graph which makes no changes to the state of Ĝi.

Lemma 3: Suppose that T = (V ,Σ) is an Extended Work-
flow Graph (EWFG) where V = {G1, G2 . . . , Gn}. Suppose
that none of the Gi have Structured loops, then the set of
reachable states of T is a finite set.

Proof: From lemma 2 we can show that Reach(T ) ⊆
(Reach(Ĝ1)

∪
{−→0 }) × · · · × (Reach(Ĝn)

∪
{−→0 }) as each

coordinate of a reachable state belongs to a coordinate of
one of Reach(Ĝ1) . . . Reach(Ĝn). If Gi has no Structured
loop, then Ĝi has no Structured loop. Creating Ĝi does not
modify the topology of G, while replacing Invocation and
While nodes with Activity nodes. Since Ĝi has no structured
loops, Reach(Ĝi) is finite. Hence Reach(Ĝ1) . . . Reach(Ĝn)
are all finite. As a result, Reach(T ) is finite

Theorem 1: Suppose that T = (V ,Σ) is an Extended
Workflow Graph (EWFG) where V = {G1, G2 . . . , Gn}.
Suppose that none of the Gi have unstructured loops, then
the language of T is a regular language.

Proof: Since the set of all Reachable states is finite, the
Coverability Graph captures all possible Reachable states as
an Automata. So, the language of T is regular.

Sampath et al. [9] present a necessary and sufficient condi-
tions for the diagnosability in DES of the regular languages.

Corollary 1: An Extended Workflow Graph language L is
diagnosable with respect to the projection P and the failure
partition Nf if and only if it does not include a cycle of
unobservable events.

6 THE DIAGNOSER OF EXTENDED WORK-
FLOW GRAPHS

Fig. 8 captures an overall picture of the behaviour of the
Extended Workflow Graph in terms of involving states and
evaluation from one state to another state when a node gets
executed. However, many of the nodes in the graph are not
observable. In this section, we shall introduce the idea of Diag-
noser Coverability Graph (DCG) which serves two purposes.
Firstly, a DCG is an approximation of the behaviour of the
EWFG to include only the behaviour which is observable. To
be precise, for any observable sequence of actions σ, there is
a path in the DCG marked by σ starting from the root of the
DCG to a node of the DCG which contains the set of all states
s so that there is a sequence µ with s0

µ−→ s with P (µ) = σ.
This would indeed provide an approximation of σ, as the node
of the DCG that contains s also included all states of the DCG
which are reached from s via firing of unobservable events. In
[36], [9], [11], this is refereed to as the Unobservable Reach
of s.

Definition 12: Suppose that T = (V ,Σ) is an Extended
Workflow Graph and s is a Reachable state of T. We shall
define the Unobservable Reach of s as follows: UR(s) =
{sr|s

n1−→ s1 . . .
nr−→ sr, ∀i ni ∈ Nuo}.
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Fig. 8. The Coverability Graph of the E-shopping Example

The second purpose of a DCG is to encode information
about the failure state of the system into the approximated
states. The encoded information represents the type of the
failure that can occur when the system arrives at a given state.

Definition 13: Suppose that T is an Extended Workflow
Graph. Each State of a Diagnoser of Extended Workflow
Graphs is denoted by (α, ϕ) where α is a state of the EWFG
T and ϕ ∈ {0, 1}ℓ in which ℓ is the number of categories of
failures. Intuitively speaking, if the coordinate i of ϕ is equal
to 1, we infer that “under the state α, a failure of type Nfi

has happened”.
We wish to warn the reader that the word ”state” is used

both for referring to the State of an EWFG and also the States
of a Diagnoser. If there is no chance of confusion, we shall
use the phrase ”state” for both of them.

Notation 6: We shall sometimes denote a State (α, ϕ) of
the Diagnoser

(s11 . . . s
1
n1
|s21 . . . s2n2

| . . . |sk1 . . . sknk︸ ︷︷ ︸
State of the EWFG︸ ︷︷ ︸

α

| ϕ(1) . . . ϕ(l)︸ ︷︷ ︸
encoding of failure︸ ︷︷ ︸

ϕ

)

where (s11 . . . s
1
n1
|s21 . . . s2n2

| . . . |sk1 . . . sknk
) is already defined

in Section 4.1 and ϕ = (ϕ(1) . . . ϕ(l)) is the encoding of
failure in which l is the number of failure specified for the
system, where ϕ(i) = 1 if a failure of type Nfi has occurred.

Each node of the DCG is marked by a set
{(α1, ϕ1), . . . , (αr, ϕr)}, where α1, . . . , αr are Reachable
states of the Extended Workflow Graph. As explained

earlier, α1, . . . , αr contains all states of the EWFG
obtained from firing of unobservable transitions, i.e.
{α1, . . . , αr} = UR(α1, . . . , αr). To obtain the failure
vector coordinates ϕ1, . . . , ϕr, a new function called Label
Propagation Function is required [9]. The function modifies
the failure state, in case of occurrence of a failure and also,
as the name suggests, propagates the information about the
failure in one state to a subsequent state.

Definition 14: Suppose that T is an Extended Workflow
Graph with the set of Reachable States Reach(T ) and the set
of nodes N. A Label Propagation Function is a function LP :
Reach(T )×{0, 1}ℓ×N → {0, 1}ℓ, so that LP (α, ϕ, n) = ϕ′

where the i−th coordinate of ϕ′ is defined by

ϕ′(i) =

{
1 if n ∈ Nfi executes at state α
ϕ(i) otherwise.

ϕ′ is the encoding of failure for the state which results from
the firing of n under the state α. If α0

n1−→ α1 . . .
nr−→ αr

we will abuse the notation and write LP (α, ϕ, n1n2 . . . nr) to
represent successive application of LP to n1, n2, . . . , nr. Next
we shall need a final piece of notation before presenting an
algorithm for creating the Diagnoser Coverability Graph of an
Extended Workflow Graphs (DCG).

Notation 7: Suppose that (αi, ϕi) appears in the labelling
of one of the nodes of the DCG. We write F(α, ϕ) to
denote the set of all (β, ϕ′) for which there is a sequence
of Unobservable events n1n2 . . . nr such that α n1...nr−→ β and
ϕ′ = LP (α, ϕ, n1 . . . nr).
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The function F will be used to calculate the nodes of the
Diagnoser Coverability Graph.

Algorithm 2 Creating Diagnoser Coverability Graph (DCG)
INPUT: Reachability Graph of an EWFG T
OUTPUT: Diagnoser Reachability Graph GDCG =
(NDCG, EDCG)
Create a first node of DCG, mark it ”new”, and include
in it a vector (α,0), where α is the initial node of the
Reachability Graph and 0 is a vector with coordinates 0 of
dimension l, the number of failure categories
while there exist a node of the DCG tagged ”new” do

Select a State of the DCG S = {(α1, ϕ1), . . . , (αr, ϕr)}
which is tagged by ”new”
Iterate through the list (αi, ϕi) one-by-one
for all observable actions which are enabled under αi

with αi
n−→ λ do

Let S′ := {(λ,LP (αi, ϕ, n))}
S′ := S′ ∪ F(S′)
if S′

i already exists in DCG then
discard it

else
Create a State node marked by S′ and tag it as ”new”
draw an arc from S to S′ marked by n

end if
Remove the tag ”new” from S after finishing the
iteration

end for
end while

Example: Applying the Diagnoser Coverability Graph
algorithm to the example of Section 2.3, has resulted in Fig.
10. It can be seen that the states of of the Diagnose are similar
to the states of the Coverability except there are new part add
to the vector to encode the failure information. The vector for
failure part has a length 2 since we assume that there are two
type of failures for this example Nf1 and Nf2 as explained
in Section 4.3. For example, Fig. 9 depicts the system state
which has a failure of type Nf1 . This state may be reached
after executing the node called Return Items to Shop in the
Supplier Workflow Graph as shown in Fig. 4. In the Shop part,
a token is assigned to the last coordinate which is associated
to the Invocation node to indicate that the Supplier Workflow
Graph is executing as an internal action of the Invocation node.
As explained in Section 4.1, a token is also assigned to the
4-th coordinate of Supplier part corresponding to the output
edge of the node called Return Items list to Shop. The failure
part shows that after this execution a failure of type Nf1 has
occurred.

(

|sE |=12︷ ︸︸ ︷
00000000001︸ ︷︷ ︸

Shop

|
|sE |=5︷ ︸︸ ︷
00010︸ ︷︷ ︸
Supplier

|
|sE |=7︷ ︸︸ ︷

0000000︸ ︷︷ ︸
While node

|
|sE |=8︷ ︸︸ ︷

0000000︸ ︷︷ ︸
Warehouse

|

|Nfℓ
|=2︷︸︸︷

10︸ ︷︷ ︸
Failures

)

Fig. 9. An example of Diagnoser state

7 IMPLEMENTATION AND EVALUATION

The presented approach has been implemented as a Plugin for
the Oracle JDeveloper. An outline of the stages involved in
the creation of the Diagnoser Service is depicted in Fig. 11.
Firstly, the user produces a model of the System in Oracle
JDeveloper or upload existing model into the tool. Then, our
tool extracts an equivalent Extended Workflow Graph from the
BPEL files and their XML Schema Definition (XSD). Then,
the tool applies the Algorithm 1 explained in Section 5 to
produce the Coverability Graph. We showed in Section 5 that
the Coverability Graph is the same as the Reachability Graph.
Next, the Algorithm 2, which was explained in Section 6, is ap-
plied to produce Reachability Graph to generate the Diagnoser
Coverability Graph (DCG). Finally, the DCG is implemented
as a working Diagnosing Service which is deployed with the
rest of the system. The remaining of this section discusses the
method of transforming the DCG to produce a Diagnosing
Service.

Fig. 11. An outline of the implementation method

One of the key tasks of the Diagnoser is to ensure that
any given execution sequence respects the language of the
system. This task is achieved by adopting the idea of the
lexical analysis used in Compilers theory [39] as a parse
function to check whether the grammatical structure of a
given text respects a specific regular language. Theorem 1
shows that the Extended Workflow Graph presented in this
approach is considered as a regular language. After ensuring
the correctness of the execution trace, the Diagnoser applies
the diagnosability theory presented in Section 6 to infer
whether the execution results in a failure or a normal state.

7.1 Implementing the Diagnoser
There are various ways to implement the Diagnoser. We shall
next present two possible methods of Implementation.
Creation of Diagnoser as a BPEL Service: The produced
Diagnoser can be implemented as BPEL service interacting
with already existing services. In a nutshell, such a BPEL
service includes a Switch activity involving a number of Cases
corresponding to the observable events in the Diagnoser model
which capture all possible observable traces. Each Case is used
to evaluate the current status of the services according to the
approximation captured in the Diagnoser Coverability Graph
(DCG) and returns N for a normal state or the information
related to the occurrence of a failure as described in Section
4.3. In particular, in case of a failure, the type of failure and
the event which has caused the failure will be included in the
diagnosis result.
Creation of Diagnoser as Web Service: The produced
Diagnoser can be implemented as a stand-alone Java class
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Fig. 10. The Diagnoser Coverability Graphs of Extended Workflow Graphs of the E-shopping Example

deployed Web service. In this case, similar to the previous
implementation, conditional statements in form of if-then-else
will be used.

In both ways, as shown in Fig. 7 the Diagnoser Service is
incorporated into the system to receive the observable events
that has been executed, then it responses with the diagnosing
result describing the behaviour of the system which is either
in normal state or a failure has occurred.

7.2 Integrating the Diagnoser into the system

After producing the Diagnoser, there are various ways to
integrated the created Diagnoser into the system to interact
with a bunch of exiting services. We shall present two of such
methods.

Fig. 12. Example of method 1

Integrating the Diagnoser by adding extra Invocations: To
fulfil the diagnosing task in this way each business process is
automatically annotated by including extra Invoke activities to
execute the Diagnoser Service after each invocation task. Fig.
12 represents the interaction between the Diagnoser Service
and three services, which are Shop, Supplier and Warehouse,
which are explained in Section 2.3. This interaction is a Chore-
ography since the interaction is is achieved by a collaboration
between a collection of services.
Integrating the Diagnoser by adding a Protocol Service:
In this method the Diagnoser is produced with a new service

Fig. 13. Example of method 2

called a Protocol Service. The Protocol Service is generated
automatically to accomplish the interaction between the Diag-
noser Service and the existing services. The Protocol Service
should interact with the generated Diagnosing Service after
each invocation. Then, the Diagnosing Service will return the
overall result of its diagnosing to the Protocol Service. The
diagnosing result includes information about the behaviour
of the system after the invocation, which either in normal
behaviour or an indication that a failure has occurred. In
case that a failure has occurred, the type of the failure is
presented. As a result, in this method there is no need to
conduct any activity inside the BPEL Service for interacting
with Diagnoser.

7.3 Evaluation

Evaluating the amount of resources which are required to
implement the Diagnoser is a requisite task. For this reason
the evaluation of our approach is focused on the performance.
Our tool supports four different methods of implementations
to incorporate the the produced Diagnoser into the system as
described Table 1. For example, in Method 1, the Diagnoser
is created as BPEL file which is integrated into the system by
adding invocations.
Experimental Results
The presented four methods have been tested in terms of
performance. A common practise of evaluating of services
in term performance is Stress Testing which identifies and
verifies the stability, capacity and the robustness of services
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[17], [40]. The idea of Stress Testing is based on measuring
the execution time of a number of threads executing services.
The detail of the experiments test can be explain similarly to
our experiments on the classical Diagnoser [6].

Fig. 14 illustrates the result of the Stress Testing of process-
ing different number of threads in second. The result of the
experiments shows that integrating the Diagnoser with a help
of the Protocol Service results in slightly better performance
in term of maintainability and modularity point. However, it
can be argued that using the Protocol Service may result in
bottlenecks affecting the performance of the system. Various
distributed diagnosing scheme are proposed to enhance and
address this issue [41], [42], [43], which will be used as future
research. Data related to experiments is available at [44].

8 RELATED WORKS
Recently, several fault diagnosis methods for SoA based on
Discrete Event Systems theory have been proposed. Yan et al.
[8], [3] formalise BPEL model with synchronised automata.
The focus of this approach is on failures caused by exceptions
such as mismatching data. So, to diagnosis the failure the ex-
ecution traces of events leading to the exception are used. Our
methods differs from them in a number of ways. Firstly, they
do not distinguished between observable and unobservable
events. Secondly, a “While” activity in [8] results in a cycle
which is not compatible with BPEL [21], [22] as discussed
in Section 3. Thirdly, the method suggested here results in
automated creation of Diagnoser. Finally, they do not study
the integration of the produced Diagnoser.

Baresi et al. [45] propose a monitoring language called
Service Centric Monitoring Language (SECMOL) which is an
extension of WS-Agreements [46]. SECMOL is a specification
language based on run-time quality assessment for monitoring
data. In our approach, we do not focus on monitoring data,
as we aim to monitor systems which can fail because of
failure of the underlying services, or failures which can be
through erroneous interaction between services resulting in
undesirable scenarios. A failure caused by a breakdown of
each service is often dealt with exception handling, whereas
detection of failure caused by wrong execution of a business
process often requires provision of additional infrastructure to
monitor interactions of the services.

Giua and Seatzu [13], [23] and Genc and Lafortune [10]
deal with the diagnosis of failure in Petri net models. In
common with their approach, we are using Coverability Graph.
Coverability Graph of Petri net can include ω. In this paper, we
proved that the Coverability Graph of an Extended Workflow
Graph does not include any ω. This does not mean that
an EWFG can not include infinite behaviour. It is indeed
possible to include a repetitive behaviour in BPEL file. In
Genc and Lafortune [10], the presented algorithm results in
distributed fault diagnosis. Indeed in this paper, producing the
Diagnoser as a centralised service is used as proof of concept.
It can be argued that using distributed architecture would
be more realistic than the centralised one which may result
in bottlenecks affecting the performance. As future works,
We shall extend our theory to implement a Decentralised
Diagnosers.

TABLE 1
Different methods of implementations

hhhhhhhhhhhhhIntegration via
Diagnoser as

BPEL Web Service

adding extra Invocations Method 1 Method 3

Protocol Service Method 2 Method 4

In our earlier papers [5], [6], a Model Driven Development
approach to the design and implementation of Diagnoser
Service for a group of interacting services is proposed. The
method involves transforming BPEL files to automata auto-
matically. Then, DESUMA [47] framework is used to create
the Diagnoser. A second transformation maps the produced
Diagnoser back-into a BPEL service and deploys it to interact
with the existing services. Similarly, Li et al. [48] transform
BPEL into coloured Petri nets. It can be argued that such
approaches, including [5], [6], require proving the correctness
of the transformation which is a formidable task.

Failures caused by a violation of constraint have been also
studied in the past few years [49], [48]. For example, Baresi et
al. [49] propose a method to tackle the dependability of Busi-
ness processes modelled using Business Process Modelling
Notation (BPMN). This method is based on introducing a
concept of Supervision Rule as a set of defined constraints and
reaction strategies. The constraints are used to monitor how
the business process evolves, while reaction strategies specify
actions that must executed when constraints are violated. In
contrast to such approaches, we are interested in the failures
related to the underlying logic for the Business Process. A
main advantage of such research is the use of Data Flow
Models. Incorporating data flow into our approach remains
an issue for future work.

Fig. 14. Stress Testing Result

9 CONCLUSION
A main prerequisite for the creation of a model-based fault
tolerance approach is a suitable modelling language. This
paper extends an existing modelling language called Work-
flow Graph by including new constructs based on the well-
accepted stander BPEL. We demonstrated that adding the
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constructs in the present form avoids unstructured loops which
are neither supported by the standers nor adopted by tool
vendors. Building on the formalism underlying Workflow
Graphs, which itself has its roots in Petri nets, we have
formalised our modelling language. This is used to prove that
models created from this widely used subset of BPEL produce
regular languages. This result to the best of our knowledge
is original. To demonstrate that the presented formalism is
suitable for the model-based diagnosis, a method of generation
of Diagnosers based on Discrete Event System (DES) used as
a proof of concept. We have extended and adopted exiting
algorithms form DES for the new modelling language. The
approach is implemented in a tool, as a plugin to Oracle
JDeveloper, which allows multiple BPEL models of the system
to be uploaded. The tool automatically produce the Diagnoser
and the infrastructure for its integration into the system. The
production of the Diagnoser and integration mechanism is
automated. In total four types of integration mechanism are
presented and compared.
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