Verification of Spatio-Temporal Role Based Access
Control using Timed Automata

Emsaieb Geepalla
School of Computer Science
University of Birmingham
Birmingham, UK
Email:E.M.E.Geepalla@cs.bham.ac.uk

Abstract—The verification of Spatio-Temporal Role Based
Access Control policies (STRBAC) during the early development
life cycle improves the security of the software. It helps to identify
inconsistencies in the Access Control policies before proceeding to
other phases where the cost of fixing defects is augmented. This
paper proposes a formal method for an automatic analysis of
STRBAC policies. It ensures that the policies are consistent and
conflict-free. The method proposed in this paper makes the use
of Timed Automata to verify the STRBAC policies. This is done
by translating the STRBAC model into Timed Automata, and
then the produced Timed Automata is implemented and verified
using the model checker UPPAAL. This paper presents a security
query expressed using TCTL to detect inconsistency caused due
to the interaction between STRBAC policies. With the help of an
example, this paper shows how we convert STRBAC model to
Timed Automata models and verify the resulting models using
the UPPAAL to identify an erroneous design.

I. INTRODUCTION

The recent advances in mobile computing, wireless net-
works and other technologies involved in remote accessing
of resources has prompted an urgent need for the creation
of Access Control system which takes into consideration the
location of the user and the time of access. Such information
is essential for controlling various spatio-temporal sensitive
applications, which rely on the Access Control mechanism, in
organizations. For example, the access to some resources at an
organisation could be permissible only at a specific time and a
specific location. In order to be adaptable to the requirements
of such applications and technologies with both spatial con-
straint and temporal constraint, several Access Control models
have been proposed [3], [7], [8], [9]. The STRBAC model is
one of the Access Control models that has been presented to
cater for the need of context information [9]. The STRBAC
model incorporates various polices, such as, Role Hierarchy,
Separation of Duties constraints, and Cardinality constraints.

It is possible that STRBAC polices conflict with each other,
in particular when various policies interact with each others.
A typical situation is when User Role Assignment and Role
Hierarchy cause a violation of Separation of Duty constraints.
For example, an organisation may require that the same user
should not be assigned to the two conflicted roles Teller and
Loan Officer, at the same time and same location, whereas it
requires that a user u be the System Operator Manager and the
role System Operator Manager is a senior role to the Teller
and Loan Officer at any time and any location. Such situa-
tions are often referred to as inconsistencies in Access Control

978-1-4673-4723-5/12/$31.00 ©2012 IEEE

Behzad Bordbar
School of Computer Science
University of Birmingham
Birmingham, UK
Email:B.Bordbar@cs.bham.ac.uk

Kozo Okano
Information Science and Technology
Osaka University
Suita, Osaka Japan
Email:Okano@ist.osaka-u.ac.jp

policies. This example is inconsistent because the user « can
assign to the two conflicted roles; Teller and Loan Officer,
at the same time and same location because he/she is assigned
to the role system Operator Manager which is a senior to
the roles Teller and Loan Officer. Such scenario could pose
dangerous security issues that could even cause the downfall
of the organization [2]. It is therefore essential to perform an
analysis of STRBAC policies to identify inconsistencies in the
polices.

In this paper we propose a formal method to perform an
automated analysis on STRBAC policies in order to detect
inconsistencies. To achieve this, we shall first model the STR-
BAC using Timed Automata. To do so, we shall translate some
of the STRBAC features such as Users, Roles, Times, Location
and User Role Assignment to Timed Automata models and
the other features of STRBAC will be expressed using Timed
Computation Tree Logic (TCTL). Then we shall implement
and verify the Timed Automata models and the TCTL using
UPPAAL which provides an interactive environment for mod-
elling, simulating, and analysing of real time systems modelled
as Timed Automata.

The remainder of this paper is organized as follows. Section
2 provides a review of STRBAC model, Timed Automata as
well as a brief introduction to UPPAAL. In section 3 we
introduce an example, which will be used to describe our
approach. Section 4 describes our effort to use Timed Au-
tomata to analyse STRBAC policies to detect inconsistencies.
Section 5 briefly presents related works that have motivated
this research. The paper ends with a conclusion and future
work.

II. PRELIMINARIES

This section provides a brief introduction to Spatio Tem-
poral Role Based Access Control model (STRBAC), Timed
Automata as well as a brief introduction to UPPAAL.

A. Spatio Temporal Role Based Access Control

Several Spatio-Temporal Access Control model have been
presented recently to cater for the needs on many mobile
application [2], [7], [8], [9]. Our metaphor of Spatial Temporal
Access Control is based upon recent work of Inderakshi et al.
[10]. There, Access Control is governed by the time and the
location conditions, in which the right of assigning a user to a
role and permissions owned by that role is banked on spatial

kev
Text Box
978-1-4673-4723-5/12/$31.00 ©2012 IEEE

and temporal information. In this paper we restrict ourselves
to STRBAC without sessions and delegation. If there is no
chance of confusion we might use the words Access Control
instead of STRBAC in the rest of the paper.

1) The Basic Concepts of the STRBAC: The basic concept
of the STRBAC model shown in Fig.1, consists of the follow-
ing five component sets: Users (u), Roles (r), Permissions
(p), Times (r) and Locations (r) and the following two
relations sets: User Role Assignment (ura) and Permission
Role Assignment (PRra).

Locations

User Role
Assignmen
Times

Basic Concepts of STRBAC Model

Permission sermissions||
Role Assignment I

Fig. 1.

e U, R, P, T, L are respectively finite sets of users,
roles, permissions, times and locations

e User Role Assignment: ura is a relation that asso-
ciates users with roles based on the time and location,
URA C U X R x T x L. This means users can be
assigned to a set of roles at different points of time
and location and every role might be assigned to one
user or more users at different points of time and
location. We write URA(u,7,t,1), meaning that a user
u is assigned to a role r at time ¢ and location 1.

e Permission Role Assignment: pra is a relation that
associates roles with permissions based on the time
and location, PRA C R x P x T x L. This means
roles can be assigned to a set of permissions at differ-
ent points of time and location and every permission
might be assigned to one role or more roles at different
points of time and location. We write PRA(r,p,t,1),
meaning that a role r is assigned to a permission p
at time ¢ and location 1.

2) Role Hierarchy (RH) in STRBAC: RrH is a partial order
on the set of roles, R& C R x R x T x L. We write r; = r;
meaning that the role r; is a senior to the role r; at any time and
any location. This means r; inherits all the permissions of r;,
and if there is a user assigned to senior role r; then he/she could
also assign to the junior role ;. RH could be unrestricted, time
dependent, location dependent, or time and location dependent
and written as >, =, =; and >=,,, respectively.

3) Separation of Duty between Role (SoDR) in STRBAC:
SoDR is a constraint over roles, which specify that users should
not assign to exclusive roles, sobR C R x R x T x L, We
write sodr(r;,r;,t,1) meaning that the two exclusive roles r;
and r; should not be assigned by the same user at time ¢ and
location I. sopr can be unrestricted sodr(r;, r;), time dependent
sodr(r;,7;,t), location dependent sodr(r;,r;,1), or time and
location dependent sodr(r;,r;,t,1).

B. Timed Automata

Alur and Dill [13] introduced the idea of Timed Automa-
ton. A Timed Automaton is finite-state machine extended with
clock variables. It uses a dense-time model where a clock
variable evaluates to a real number. All the clocks progress
synchronously. A system is modelled as a network of several
such Timed Automata in parallel. The state of a system is
defined by the locations of all automata, the clock constraints,
and the values of the discrete variables. Every automaton
may fire an edge (sometimes called a transition) separately
or synchronize with another automaton, leading to a new
state. Timed Automata are extensions of the conventional
automata with variable and constraints for expressing real-time
dynamics. They are widely used in the modelling and analysis
of real-timed systems. For more information on TA the reader
is referred to [8], [13].

C. UPPAAL

UPPAAL is a famous model checker for extended Timed
Automata by Yi-Wang et al. [1], [6]. It also supports model
checking for the conventional Timed Automata. UPPAAL
allows verification of expressions described in an extended
version of CTL. In addition, it supports local and global
integers and primitive operations on integers, such as addition,
subtract and multiplication with constants. Such expressions
are also allowed on the guards of transitions. The model of the
system can be created from multiple Timed Automata which
are synchronised together via a CCS-like synchronisation
mechanisms [6]. For more information on TA the reader is
referred to [1], [6].

III. RUNNING EXAMPLE: SECURE BANK SYSTEM

In this section we introduce a simple Banking application
taken from [4] to illustrate our approach. The security policies
for the SECURE Banking system as given below.

A. Security Policies

1) User Role Assignment: Users are assigned to roles in
the Banking system as illustrated in Table 1.

2) Permission Role Assignment: Roles are assigned to
permissions in the Banking system as illustrated in Table 2.

3) Role Hierarchy: Some roles in the Banking system are
related using unrestricted Role Hierarchy as follows: Role
Hierarchy= {(soM, Teller, DayTime, officel), (SOM,
Loan Officer, DayTime, officel), (SOM, DSO, DayTime,
office2), (SOM, NSO, NightTime, office2)}.

4) Separation of Duty between Roles: There is only one
separation of duty constraint in the SECURE Bank system.
Separation of Duty Over Roles={(Teller, Loan Officer,
DayTime, officel)}

IV. MODELLING STRBAC MODEL USING TIMED
AUTOMATA

The aim of this section is to transform STRBAC model
into Timed Automata models. Our work is motivated by the
idea that an Access Control system designer should be able
to automatically analyse the system prior to its deployment.

TABLE 1. USER ROLE ASSIGNMENT CONSTRAINTS
Users Roles Times Locations
Dave Teller DayTime (9:00-16:00) officel
Sarah Loan Officer DayTime (9:00-16:00) officel
John DayTime System Operator (DSO) DayTime (9:00-16:00) office2
John NightTime System Operator (NSO) | NightTime (16:00-9:00) office2
Mark System Operator Manager (SOM) DayTime (9:00-16:00) office1/office2
TABLE II. PERMISSION ROLE ASSIGNMENT
Roles Permissions Times Locations
Teller WRTF: Read and Write Teller Files DayTime (9:00-16:00) officel
Loan Officer WRLF: Read and Write Loan Files DayTime (9:00-16:00) officel
DSO WRSOF: Read and Write System Operator Files DayTime (9:00-16:00) office2
NSO WRSOF: Read and Write System Operator Files NightTime (16:00-9:00) office2
We achieve this by mechanically translating STRBAC model Time
into Timed Automata models and then by verifying these P
1 & I.-.!\ ir -\.:
models using UPPAAL. The main challenge in this work is fickM! b
finding efficient ways of translating Access Control policies el 24
Daytime

into compact, manageable models. This is done through a
number of transformations showing in Fig 2, and described
below with the help of the example presented in section 3.

STEBAC Specification

User, Roles, Times, Permissions, PRA,
Locations,RH, & TRA| RH, SoDR & SoDP
= 7 T A
=N v =
g A y 2%
= L =5
-y \ 2)
(=N = ey
- .b}”—. y _,.‘E'.- L] = r

£
g

|

3

_auraychung
—

|:|“:-'

L
L
%
i

Analysis

Fig. 2. Our Approach

A. Modelling the Bank System using Timed Automata

The first step of the analysis of Access control policies (i.e.
the Bank System) using Timed Automata is to transform the
policies into Timed Automata. Some features of STRBAC will
be mapped to Timed Automatons. The set of Times which is
one of the basic components of STRBAC model is mapped to
Timed automaton called Time. For example, in the SECURE
Bank system the Time is divided into two periods DayTime
that is from 9:00 to 16:00, and NightTime from 16:00 to 9:00.
This will be mapped to a Timed Automaton as depicted in Fig

3.

Fig. 3. Timed Automaton for Times

The set of Users which is another component of the
STRBAC will be mapped to Timed Automatons. Each Timed
Automaton represents a user and the User Role Assignment
information for that user such as the roles that he/she could
has and the spatial and temporal constraints. For example, in
the SECURE Bank system the user pave and the User Role
Assignment information for pave (Dave. teller, DayTime,
officel) will be mapped to a Timed Automaton as illustrated
in Fig 4. The figure shows that the assignment between the
role Teller and the user pave is true only when the time is
DayTime and the location is officel.

Dave
DaytimeOffice2 NighttimeOffice2
kN
teller := false
DaytimeOfficel idle
Sk
teller = frue

Fig. 4. Timed Automaton for Dave

Similarly the other users John, sarah and Mark and the
User Role Assignment information for those users will be
mapped to Timed Automatons as illustrated in Fig 5, 6 and
7 respectively.

Some features of the STRBAC model such as Permission
Role Acquire will be expressed using TCTL, and then they will
be used as sub-expressions of queries for Timed Automata.
Firstly, we shall show how the set of Permission Role Acquire
presented in Table 2 is represented using TCTL. The first

John

NigttimeOffice2

®

DaytimeOfficet NightiimeOfice2

DaytimeOffice2 DSO = false,

NSO i= true NighttimeOfica2

loanOfficer := faise
DaytimeOfficet

S0 := true
NSO :=false loanDfficer = trua

Fig. 5. Timed Automaton for John Fig. 6. Timed Automaton for Sarah

Mark

NightimeOTice2

DaytimeCffea1

DaytimeOffice2

SOM := false

highttime

Fig. 7.
Mark

Timed Automaton for

element of Permissions Role Acquire set (Teller, RWTF,
DayTime, officel) Will be expressed using TCTL as follows:

RWTF (u) :=u.DayTime_officel & u.Teller
RWTF:=$\bigvee_{u \in Users}$ RWTFS (u)$

This means any user u who is a Teller can have the permission
Read and Write Teller File, where Users is a finite set, so
that we can have a finite expression of rwtr. For example in
the Bank system we have a finite set of Users consists of the
following four users: pave, Sarah, John and Mark. This will
result in a finite set of expression of rRwTF as follows:

RWTF:= Dave.daytime_officel & Dave.Teller
|| Sarah.DayTime_officel & Sarah.Teller
|| John.DayTime_officel & John.Teller
|| Mark.DayTime_officel & Mark.Teller

Similarly the Permission Role Acquire (Loan officer,
RWLF, DayTime, officel) will be expressed using TCTL as
follows:

RWLF (u) :=

u.DayTime_officel & u.LoanOfficer
RWLF :=

$\bigvee_{u \in Users}$ RWLFS$ (u)$

The Permission Role Acquire (Dso, RWSOF, DayTime,
office2) will be expressed using TCTL as follows:

RWSOF1 (u) :=
u.DayTime_office2 & u.DSO
RWSOF1 :=
S\bigvee_{u \in Users}$ RWSOF1S$ (u)$

The permission Role Acquire (NSO, RWSOF , NightTime,
office2) will be expressed using TCTL as follows:

RWSOF2 (u) :=

u.NightTime_office2 & u.NSO
RWSOF2:=

S\bigvee_{u \in Users}$ RWSOF2S$ (u)$

The Permission Role Acquire will be a conjunction of rRwTF,
RWLF, RWSOF1 and RWSOF2.

The Role Hierarchy can be expressed using Timed Au-
tomata and TCTL. As described in section 2 the Role Hier-
archy between roles means a user u who has the senior role
can inherit the junior role and all the permissions assigned
to the junior role and the senior role can inherit all the
permissions assigned to the junior role. This means new
User Role Assignment and Permission Role Acquire will be
added to the specification due to the effect of Role Hierarchy.
For example the following Role Hierarchy {(soM, Teller,
DayTime, officel) means that if there is a user u who is
assigned to the senior role soM during the payTime and at
officel, then that user can inherit the junior role Teller and
all the permission assigned to it such as the permission rwTF. In
addition to that, the senior role sou can inherit all the permis-
sions assigned to the junior role Te1ler.The new user to role
assignment information (Mark, Teller, DayTime, officel)
will be expressed using Timed Automaton. More precisely,
the Timed Automaton for the user Mark will be updated with
new assignment information as illustrated in Fig 8. While
the new permission to role assignment information (sou,
RWTF, DayTime, officel) will be represented using TCTL
as follows.

Mark

NightimeOfice2

DaytimeOffice2

SOM := truk,
teller .= lru(_‘\

Nighttime

Fig. 8. New Updated Timed Automaton for Mark

RWTF2 (u) :=u.DayTime_officel & u.SOM
RWTF2:=$\bigvee_{u \in Users}$ RWTF2S$ (u)$

The Separation of Duty between Roles can also be expressed
using TCTL. For example the the following Separation of
Duty between the Roles (Teller, Loan Officer, DayTime,
officel) will be expressed using TCTL as follows:

SoDP:=And_{u \in Users} (u.DayTime_officel
implies NOT (u.Teller & u.LoanOfficer)

This means there should be no user in the set of Users that is
assigned to the two conflicted roles Teller and Loan Officer
during payTime and at officel.

B. Model Verification

In the previous section, we have shown the translation
between the STRBAC model and the corresponding Timed
Automata. However, this work would be incomplete without
demonstrating how we can verify the produced Timed Au-
tomata models to detect inconsistencies. In This section, we
provide a brief description of the automatic verification task
by introducing a security query that will be implemented using
UPPAAL to be used to verify the Timed Automata models.

Before starting the automatic verification to detect inconsis-
tencies, we must establish what is meant by inconsistencies in
STRBAC policies. The STRBAC policies is called inconsistent
when, for specific situations different incompatible policies can
apply i.e. if User Role Assignment rule is conflicted with the
Separation of Duty between Roles. To ensure the consistency
of the SECURE Bank system we have formalised several
security query using TCTL. The following statement is an
example of the TCTL queries that we have formalised.

A[] ((RWTF & RWLEF & RWSOF1l & RWSOF2 &
RWTF2 & RWLF2 & RWSOF3 & RWSOF4)
implies SoDR)

The above security query means that if all the Permission
Role Acquire and the Role Hierarchy statements such as rRwTF,
RWLF, RWSOF1, RWSOF2, RWTF2, RWLF2, RWSOF3 and RWSOF4
hold, then sopr statement should also holds, for any time and
location configuration. To check whether all of these state-
ments hold or not we have implemented the Timed Automata
network presented in section 4.1 and the above security query
using UPPAAL. The execution of the verifier of UPPAAL has
found that the property is not satisfied as depicted in Fig 8.
This means the SECURE Bank system is inconsistent. This
is because the statements rRwTr2 and rwrr2 conflict the sopp.
This is because the the model checker UPPAAL has found that
the two conflicted roles Teller and Loan officer has been
assigned by the user Mark during the DayTime and at officel,
which is not permissible by the sobr.

File Edit View Toeols Options Help

Ral@ K e« {e-e

Editor | Simulator | Verifier

Qverview

A[] (Dave.DaytimeQfficel and Dave.teller or Sarah.DaytimeQffic...

Check
Insert
| [Remove |

Comments

Query
‘Al] (Dave.DaytimeOffice1 and Dave teller or

Sarah.DayimeOffice1 and Sarah teller or
lahn Nadimanffirad and lahn tallar nr

. D

Comment

Status
\(Academic) UPPAAL version 4.0. 13 (rev. 4577), September 2010 - server.
&[] (Dave.DaytimeOffice1 and Dave. teller or Sarah.DaytimeOffice1 and Sarah. teller or John.DaytimeOffice1 and John
Property is not satisfied.

« [T 3

»

1

Fig. 9. Verification of the SECURE Bank System via UPPAAL

C. Challenges of Using Timed Automata

Although, our approach makes it possible to perform an
automated analysis of the STRBAC model, there is a major
limitation of using this approach for verification of a large
scale STRBAC model. This is because we have found that the
security query that we have built to check one sopp statement
is very large queries. This is because the security query has to
be verified against the whole STRBAC specification such as
Permission Role Acquire and Role Hierarchy. Therefore, veri-
fying a large scale STRBAC specification using this approach
will be challenging, specially if the transformation between
STRBAC and Timed Automata is carried out manually.

V. RELATED WORK

This section briefly outlines the relevant work done by
other people in the field of Analysis of Access Control policies.
The use of formal methods in Analysis of Access Control has
introduced for a while and there are several other modelling
languages, besides Timed Automata [12], that have been used
to model and analyse Access Control policies such as Alloy
[31, [4], [10] and and Petri Net [11].

The use of Timed Automata in vitrification of Access
Control policies is not novel [12]. In [12], Samrat et al.
demonstrate how to analyse the properties of GTRBAC model
using Timed Automata. The authors show how to transform
GTRBAC into Timed Automata models, and then a desirable
set of liveness and safety security quires is constructed from
the GTRBAC constraints. These quires are later used for the
model verification process. Their approach is to verify the
liveness and safety queries, which is different from us; we use
Timed Automata to detect inconsistencies that might be caused
due to the interaction between Access Control rules. Another
point of difference is that we are dealing with a STRBAC
model which is an Access Control model that consider both
spatial and temporal constraints, which are required in many
application today, while the GTRBAC is an Access Control
model that only consider temporal information.

Shafiq et al. [11] show how the various constraints of
GTRBAC, such as, Cardinality constraints, SoD constraints,
and Role Hierarchy can be modelled using Petri Net. However,
identifying inconsistency caused by the interaction between
Access control policies is not discussed there. In this paper
we demonstrate how we can identify such inconsistencies in
the STRBAC model using Timed Automata.

Alloy [5] which is a SAT-solver based has been success-
fully used for the automatic analysis of Access Control [3],
[4], [10]. In [4], [10] Indrakshi et al. present formalization
for STRBAC model and they used Alloy for checking Access
Control models. In this paper we further the research of [4],
[10] by sharing our experience of dealing with inconsistencies
identified by automated checkers such as Alloy and Timed
Automata. Another effort to verify the consistency of Access
Control using Alloy was proposed by [3]. Paper [3] illustrates
how GST-RBAC can be analysed using Alloy. In this paper
we demonstrate how we could model STRBAC using Timed
Automata and then we implement and analyse the Timed
Automata models using UPPAAL. A Comparison between the
two methods Alloy and Timed Automata is a topic of our
future research.

VI. CONCLUSION AND FUTURE WORK

Using formal methods is always beneficial to model, check
and verify computer systems. This paper presents a method
that makes use of a formal method to model and check the
consistency of STRBAC policies. We have shown that we can
translate the STRBAC polices into Timed Automata models,
and thus, we can use UPPAAL to implement the produced
Timed Automata. To verify the produced Timed Automata we
have defined a security query using TCTL, and the model
checker UPPAAL has been used to perform the verification.

In the particular, we have used an Access Control example
(SECURE Bank System) to illustrate how this methodology
works. The translation presented in this paper has been made
manually, but our intention is to study if this translation can
be made automatically, and in that case to implement a tool
supporting this translation.

REFERENCES

[1] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John
Hakansson, Paul Petterson, Wang Yi, and Martijn Hendriks. UPPAAL
4.0. In Proceedings of the 3rd international conference on the Quantita-
tive Evaluation of Systems, pages 125126, Riverside, California, USA,
September 2006.

[2] Indrakshi Ray and Manachai Toahchoodee. A Spatio-Temporal Access
Control Model Supporting Delegation for Pervasive Computing Appli-
cations. In Proceedings of the Sth International Conference on Trust,
Privacy and Security in Digital Business, pages 48.58, Turin, Italy,
September 2008.

[3] Arjmand Samuel, Arif Ghafoor, and Elisa Bertino. A Framework for
Specification and Verification of Generalized Spatio-Temporal Role
Based Access Control Model. Technical report, Purdue University, Febru-
ary 2007. CERIAS TR 2007-08.

[4] Manachai Toahchoodee and Indrakshi Ray. On the Formal Analysis of
a Spatio-Temporal Role-Based Access Control Model. In Proceedings
of the 22nd Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, pages 17.32, London, U.K., July 2008.

[5] Jackson.Daniel (2006), Software Abstractions Logic, Language, and
Analysis, Cambridge: The Mit Press.

[6] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A
Tutorial on Uppaal. In 4th International School on FormalMethods for
the Design of Computer, Communication and Software Systems, pages
200236, Bertinoro, Italy, September 2004.

[7] Liang Chen and Jason Crampton. On Spatio-Temporal Constraints and
Inheritance in Role-Based Access Control. In Proceedings of the 2008
ACM Symposium on Information, Computer and Communications Se-
curity, pages 205.216, Tokyo, Japan, March 2008.

[8] J. Bengtsson and W .Yi. Timed automata: Semantics, algorithms and
tools. In Lecture Notes on Concurrency and Petri Nets, volume 3098,
pages 87124, 2004.

[9] Hsing-Chung Chen, Shiuh-Jeng Wang, Jyh-Horng Wen, Yung-Fa Huang,
Chung-Wei Chen: A Generalized Temporal and Spatial Role-Based
Access Control Model. JINW 5(8): 912-920 (2010)

[10] Indrakshi Ray and Manachai Toahchoodee. A Spatio-temporal Role-
Based Access Control Model. In Proceedings of the 21st Annual
IFIPWG11.3Working Conference on Data and Applications Security,
pages 211.226, Redondo Beach, CA, July 2007.

[11] Basit Shafig, James B. D. Joshi, and Arif Ghafoor. Petri-net model for
verification of RBAC Policies. Technical report, Purdue University, 2002.

[12] Samrat Mondal, Shamik Sural, and Vijayalakshmi Atluri. Towards
Formal Security Analysis of GTRBAC using Timed Automata. In Pro-
ceedings of the 14th ACM Symposium on Access control Models and
Technologies, pages 3342, Stresa, Italy, June 2009.

[13] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time
systems. In Proc. of the 5th Annual Symposium on Logic in Computer
Science, pages 414425. IEEE, 1990.

