
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS 1

A Framework for the Analysis of
Process Mining Algorithms

1

2

Philip Weber, Behzad Bordbar, and Peter Tiño3

Abstract—There are many process mining algorithms and rep-4
resentations, making it difficult to choose which algorithm to use5
or compare results. Process mining is essentially a machine learn-6
ing task, but little work has been done on systematically analyzing7
algorithms to understand their fundamental properties, such as8
how much data are needed for confidence in mining. We propose9
a framework for analyzing process mining algorithms. Processes10
are viewed as distributions over traces of activities and mining11
algorithms as learning these distributions. We use probabilistic12
automata as a unifying representation to which other represen-13
tation languages can be converted. We present an analysis of the14
Alpha algorithm under this framework and experimental results,15
which show that from the substructures in a model and behavior16
of the algorithm, the amount of data needed for mining can be17
predicted. This allows efficient use of data and quantification of18
the confidence which can be placed in the results.19

Index Terms—Business processes, machine learning, Petri nets,20
probabilistic automata, process mining.21

I. INTRODUCTION22

BUSINESS processes describe activities carried out to ful-23

fill a business function, such as providing a service or24

producing a product. Processes may be designed to dictate work25

patterns, or result de facto from working practice. Either way,26

as activities take place, systems involved record information in27

workflow (WF) logs. Process mining [1], [2] uses these logs to28

discover and analyze models of business processes.29

Fig. 1 shows the “control flow” of a simple example process,30

as a Petri net. An order is received, stock checked, and the item31

is picked from the warehouse, or the order rejected. Despatch32

and billing take place in parallel. After checking payment, a33

receipt is issued or payment chased, before closing the order.34

Abstracting from detail, the “trace” of one possible enactment35

of the process might be recorded in a WF log as a string36

“iabdefgo.” We use this process as a running example.37

Process discovery algorithms use logs of such traces to38

produce models of process control flow. Process mining also39

addresses performance analysis [3], troubleshooting, auditing40

conformance [4]–[6], mining decision rules [7], or interaction41

between resources [8]. A current focus is on managing complex42

processes or logs, by abstracting from detail or separating43

multiple processes recorded together [3], [9]–[13].44

Manuscript received September 16, 2011; revised January 26, 2012; accepted
April 1, 2012. P. Weber is supported by a Doctoral Training Grant funded by
EPSRC and the School of Computer Science. This paper was recommended by
Associate Editor M. Jeng.

The authors are with the School of Computer Science, University of
Birmingham, B15 2TT Birmingham, U.K. (e-mail: p.weber@cs.bham.ac.uk;
b.bordbar@cs.bham.ac.uk; p.tino@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TSMCA.2012.2195169

Fig. 1. Simplified business process for fulfilling an order (Petri net N0).

Process mining is therefore a wide-ranging tool set, inter- 45

facing between business users and the highly complex and 46

multifaceted real-world behavior of businesses. This behavior is 47

manifested in designed or de facto business processes, evidence 48

for which is found in possibly complex, detailed logs. Process 49

mining aims to enable understanding of process behavior and 50

in this way to facilitate decision-making to control and improve 51

that behavior. 52

Process discovery is essentially a machine learning task. 53

However, little work has been done on systematically analyzing 54

process mining algorithms in this context, to discover their 55

fundamental properties, or to answer questions such as how 56

much data is necessary for mining. Yet, such understanding is 57

of critical importance to give confidence that a log file is an 58

adequate sample of the true behavior, and thus in the correctness 59

of the mined model. 60

There are many process discovery algorithms, e.g., 61

[14]–[20], and various representation notations. Since the core 62

interest is in process control flow, many algorithms learn only 63

the process structure, without attempting to recover probabil- 64

ities. Probabilities in the model may be of interest, as where 65

business rules restrict the frequency of costly patterns of ac- 66

tivity. However, even where there is no interest in producing 67

a probabilistic model, it must be appreciated that traces are 68

generated randomly according to an underlying probability 69

distribution unknown to the mining algorithm. Not all activities 70

or decisions are equally likely, and their probabilities may have 71

a dramatic effect on the amount of data needed for mining. 72

Because of this diversity of algorithms and representations, 73

methods are needed for analyzing the behavior of algorithms. 74

This paper aims to introduce a framework for one such method. 75

Given a probability and a process mining algorithm, how much 76

data of a given, finite process do we need to, with a stated 77

probability, produce a business process “close enough” to the 78

original? There are two main prerequisites to answering this 79

question. First, a unifying view of processes to allow objective, 80

language-independent analysis, and second, a notion of “close- 81

ness” to evaluate how similar two processes are. 82

To satisfy these requirements, we consider business pro- 83

cesses as probability distributions over traces of activities and 84

1083-4427/$31.00 © 2012 IEEE

IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

mining algorithms in terms of their ability to learn such distri-85

butions. We use probabilistic automata (probabilistic determin-86

istic finite automata (PDFA) [21]) as a unifying representation,87

as these represent a large class of probability distributions over88

sequences and act as a lowest common denominator to which89

to convert models in other languages. The distance between90

processes can be calculated from PDFA with various metrics.91

In this paper, we use the d2 distance, and metrics based on92

the Bhattacharyya coefficient [22], [23] and on the Kullback-93

Leibler divergence.94

Sections II and III introduce relevant concepts and our95

view of business processes. In Section IV, we describe our96

framework and apply it in Section V to the Alpha algorithm97

[14]. We show how a process model can be broken down into98

substructures and the probability of correct mining of those99

substructures, and thus of the full model, accurately calculated.100

In Section VI, we apply the analysis to our running example,101

and to a larger model to illustrate larger systems and show that102

our method gives insights into the behavior of the Alpha algo-103

rithm when mining these models. In Section VII, we support104

our probabilistic view of processes with a comparison of the105

distances which we use to compare processes, with existing106

metrics. Section VIII concludes the paper.107

II. PRELIMINARIES AND RELATED WORK108

A. Business Processes and Their Representations109

A business process describes the activities which take place110

to fulfill a particular function, from various perspectives [1] in-111

cluding relationships between activities (control flow), timing,112

resources, decision rules. In this paper, we focus on the control113

flow perspective.114

We assume that processes have single input (start) and output115

(end) activities (or tasks), and the events of activities’ occur-116

rence are recorded as they occur. Events are atomic (take no117

time), and are uniquely labeled, the same label always referring118

to the same event, and vice versa. No use is made of additional119

information (such as timing) about events, merely the order120

in which they are recorded. The underlying process model is121

assumed to be fixed (unlikely in reality, but change is assumed122

to be slow enough to be ignored over the period that data123

is collected). These restrictions are equivalent to those used124

elsewhere in the literature, e.g., [14], [24], [25].125

Traditionally, business processes have been viewed as lan-126

guages over activities, with no probabilistic structure. Various127

representational mechanisms have been suggested for capturing128

process control flow. Business Process Model and Notation [26]129

is widely used for business process modeling. It uses an ex-130

tensive notation to allow description of complex, hierarchical,131

executable processes, but has not been used for process mining.132

Early process mining work [25], [27] used simple directed133

graphs which did not specify the types of splits and joins.134

More recently, simple precedence diagrams [3] are similar,135

loosely capturing process structure to semiformally describe136

processes. Nodes describe activities or groups of activities.137

WF schemas [9] model structures such as splits and joins in138

acyclic processes, while block-structured diagrams [17] enforce139

Fig. 2. Reachability graph for Petri net N0 (Fig. 1).

rigid nesting of substructures and focus on the description of 140

concurrence. Other languages which support concurrence and 141

complex synchronization structures [28] include Adonis [29] 142

and Petri nets [30]. 143

Causal nets [15] have been proposed to allow flexible def- 144

inition of splits and joins using logical expressions, without 145

introducing constructs such as hidden transitions, needed by 146

Petri nets. Petri nets however remain the most common rep- 147

resentation employed in the process mining community to 148

describe processes under this view (e.g., [14], [16], [19]). We 149

introduce Petri nets in the following section. 150

B. Petri Nets 151

There are various types of Petri net, details of which with 152

their properties and executable behavior can be found in [30]. 153

For a discussion of WF nets, a restriction of Petri nets used in 154

business processes, see [14], [31]. 155

In general, a Petri net is a four-tuple N = (S, T,W,M), 156

where T and S are finite sets of transitions and places, re- 157

spectively, such that T ∩ S = ∅. W ⊆ (S × T) ∪ (T × S) is a 158

flow relation, defining the directed arcs of the graph, connecting 159

places and transitions. M is a multiset over S called a marking 160

M : S → N, describing the distribution of tokens over places, 161

defining the state of the process. 162

The workings of the Petri net are defined by the marking 163

and the firing of transitions. A transition t may fire when there 164

is a token in each of its input places, whereupon a token is 165

removed from each of the input places of t and a token added 166

to each of the output places of t. Fig. 1 shows a Petri net N0. 167

S = {p0, p1, . . .}, T = {i, a, . . .}, W = {(p0, i), (i, p1), . . .}, 168

M = (1, 0, . . .). Solid rectangles represent transitions, model- 169

ing process activities. Places are shown by circles, and tokens 170

by black dots in places. Only transition i can fire, consuming 171

the token in p0 and creating one in p1, thus enabling transition 172

a. The Reachability Graph of Petri net N is the state space of 173

the net, the set of markings reachable from M0 by firing a series 174

of transitions. Fig. 2 shows the reachability graph of Petri net 175

N0 (Fig. 1), as a transition system. Each reachable marking is 176

represented by a state, labeled with the places of the Petri net 177

which contain tokens in that marking. The arcs are labeled by 178

the transitions which are fired to move from one state to the 179

next. 180

Sometimes, business processes are constrained to a conve- 181

nient subset of Petri nets, called sound WF nets [6], [14]. A 182

sound WF net is a Petri net with a single start and single end 183

place and every transition on a path between these two places. 184

Its marking is a mapping S → {0, 1}, i.e., any place may hold at 185

most one token. Initial marking M0 is a single token in the start 186

place, and final marking MF a single token in the end place. 187

When a process is started from M0, all transitions must be 188

IE
EE

Pr
oo

f

WEBER et al.: FRAMEWORK FOR THE ANALYSIS OF PROCESS MINING ALGORITHMS 3

potentially executable, and the process must terminate properly,189

i.e., in marking MF . Sound WF nets allow for all the basic190

routing constructs found in business processes. Structured WF191

nets [14] restrict the allowed structure of places and transitions192

to ensure each split corresponds with a join of the same type.193

Fig. 1 is both a sound and a structured WF net, in its initial194

marking M0.195

Different measures have been proposed to quantify how well196

a given Petri net N conforms to a WF log W . For example,197

“Token-based fitness” [6], used as a recall metric in process198

mining, measures the ability of N to support the traces in W199

f =
1

2

(
1−

∑n
i=1 mi∑n
i=1 ci

)
+

1

2

(
1−

∑n
i=1 ri∑n
i=1 pi

)

where n is the number of traces in W , pi the number of tokens200

produced during replay of trace i, ci the number consumed, mi201

the number of tokens missing (had to be artificially created to202

enable trace to be replayed), and ri the number remaining after203

replay of the trace. Behavioural appropriateness a′B [6] mea-204

sures the precision of the model, penalizing behavior supported205

by the model but not the log.206

C. Process Mining207

Process mining algorithms aim to reconstruct the underlying208

business process structure based on a sample WF log. They are209

broadly split into “local” and “global” approaches [1]. “Local”210

build models from relations between activities, e.g., Alpha [14],211

Alpha++ [16], Heuristics Miner [15]; while “global” methods212

start with and refine a full model, e.g., genetic [32], [33]213

and region mining [18], [19]. Recent approaches aim to mine214

complex or noisy processes using clustering and abstraction215

at the level of traces [9]–[11], or activities [3], [12], [13].216

Other work includes artificially generating negative examples217

to improve learning [34], and mining from logs lacking case218

IDs [20] to identify process instances. Process mining has also219

been used as an assistive tool, e.g., with distributed workflow220

execution [35] or detection of anomalous event behavior [36].221

The Alpha algorithm [14] can mine processes representable222

by Structured WF-Nets, from noise-free logs. A net is inferred223

based on local relations between pairs of activities recorded224

in a workflow log W . Transitions represent atomic activities.225

Single start and end places are assumed; the remaining places226

are inferred using the basic relations:227

• a > b (b directly follows a in at least one trace);228

• a → b (b always follows a, never vice-versa);229

• a#b (a and b never follow each other);230

• a‖b (both ab and ba occur in the log).231

Two activities are always related by either →, →−1, #, or ‖,232

and these partition the set of activities [14, Property 3.1].233

Various methods have been proposed for comparing process234

models, often based on the syntax of the representations used.235

Examples are replaying training or reference logs [9], [12],236

[15], [32], measuring Petri net token behavior [4], [34] or237

string edit distances [37], comparing incidence matrices [38]238

TABLE I
NOTATION FOR BUSINESS PROCESS

or coding costs using the minimum description length principle 239

[39]. Measures may be along different “dimensions” [5], [6] 240

depending on the type of differences to be measured. 241

The review in [2] concludes “more research is required to 242

enable the production of a generic framework for the quantified 243

comparison of processes.” In [5], an architectural framework is 244

proposed, to include algorithms, methods for comparison, and 245

a repository of logs and tools. Existing metrics and a method 246

of assessing algorithms using a k-fold cross-validation method 247

are compared. Metrics have the advantage of allowing different 248

aspects of models’ behavior to be compared and differences 249

localized in the representation in use, but do not provide a com- 250

mon basis for comparing models in different representations, 251

or upon which to objectively discuss other process mining tasks 252

such as generalization, clustering, or abstraction. The k-fold ap- 253

proach uses an experimental method from machine learning and 254

allows the significance of differences to be quantified. However, 255

it does not provide a theoretical foundation for analyzing the 256

learning behavior of algorithms and predicting how much data 257

are needed for mining. The paper concludes that more research 258

is needed. 259

Alpha is one of many process mining algorithms imple- 260

mented as plug-ins in ProM [40]. Commercial tools include 261

Fujitsu’s automated process discovery, while many products 262

address business process modeling and automation. 263

III. BUSINESS PROCESSES AS DISTRIBUTIONS 264

OVER TRACES 265

We propose to view business processes as probability distri- 266

butions over strings of symbols a ∈ Σ representing activities. In 267

this paper, such distributions will be described using stochastic 268

automata. In other words, a business process can be considered 269

a stochastic regular language M that describes the probability 270

distribution PM over Σ+ (the set of all nonempty strings of 271

activities):
∑

x∈Σ+ PM(x) = 1. Each trace begins with the start 272

activity i and finishes with the end activity o. The finite (we are 273

not considering cycles) set of valid process traces T consists 274

of strings x ∈ Σ+ such that no activity a ∈ Σ occurs more 275

than once in x, and x = iwo, w ∈ (Σ \ {i, o})∗ (w may be 276

empty). An overview of our notation is presented in Table I. The 277

next section introduces our main representational framework 278

for describing PM (see also [20], [29]). 279

IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 3. PDFA A0 corresponding to Petri net N0 (Fig. 1), with the addition of
transition probabilities.

A. Probabilistic Automata280

To provide a “common denominator” to which processes in281

other modeling languages can be converted and analyzed, we282

use transition-labeled PDFA [21] to represent the probability283

distributions as process models. Briefly, a PDFA is a five-tuple284

A = (QA,Σ, δA, q0, qF):285

• QA is finite set of states;286

• Σ is an alphabet of symbols;287

• δA : QA × Σ×QA → [0, 1] is a mapping defining the288

conditional transition probability function between states,289

δA(q1, a, q2) = Pr(q2, a|q1), i.e., the probability to parse290

symbol a and arrive in state q2 given currently in q1;291

• q0 ∈ QA is a single start state; and292

• qF ∈ QA is a single end state; such that:293

∀q∈QA,
∑

q′∈QA,a∈Σ
δA(q, a, q

′)=1, and Pr(q′|a, q)=1.

The probabilities on arcs outgoing from a state sum to 1 and294

given a current state and symbol, the next state is certain. There295

is a unique state path through the automaton for any string x296

that it can parse.297

Example PDFA A0 (Fig. 3) represents the same model as298

Petri net N0 (Fig. 1). It has the same structure as the reach-299

ability graph, with the addition of probabilities of following300

each arc, or parsing each symbol. Here, Q = {q0, q1, . . .},301

Σ = {i, a, . . .}, δ = {(q0, i, q1) → 1.0, (q1, a, q2) → 1.0, . . .},302

q0 = ‘q0’, qF = ‘q9’. States are shown by circles, the start state303

is indicated by an arrow and the final state by a double border.304

Every PDFA A describes a distribution PA over Σ+305

PA(x) = δA(q0, s0, qs0)

×
(

n−2∏
i=1

δA
(
qsi−1

, si, qsi
))

× δA
(
qsn−2

, sn−1, qF
)

where x is a string of symbols s0s1 . . . sn−1 which can be306

parsed by the automaton to the unique final state qF ; qsi denotes307

the state reached after symbol si is parsed. PA(x) = 0 for308

strings which cannot be parsed.309

In A0 (Fig. 3), PA(iaco) = δA(q0, i, q1)× δA(q1, a, q2)×310

δA(q2, c, q8)× δA(q8, o, q9) = 1.0× 1.0× 0.1× 1.0 = 0.1.311

Note that the structure of allowed traces defined by sound312

WF nets can be naturally captured by the support structure of313

distributions described by PDFA in the sense that:314

• there is a single start and end state;315

• all states are accessible (reachable from the initial state);316

• from any state, it is possible to reach the final state;317

• for any given string x, the sequence of state transitions to318

generate x is unique;319

• given a state and a symbol, the next state is certain.320

A sound WF net does not hold any probability information, but 321

has finite state space, so the net’s structure can be converted to 322

an automaton with a finite number of states,1 via its reachability 323

graph, e.g., [30]. Transitions can be allocated uniform probabil- 324

ities, or estimated maximum likelihood probabilities from a log 325

file. The structure of a PDFA may be converted to a Petri net 326

using the theory of regions, e.g., [18, Sec. 4]. 327

B. Distances Between Probability Measures 328

Viewing business processes as probability distributions, we 329

can quantify differences between two business processes P1 330

and P2 (e.g., the “ground truth” and its inferred proxy) via 331

distances on the space of distributions over traces, e.g., 332

Euclidean Distance 333

d2(P1, P2) =

√∑
x

(P1(x)− P2(x))
2

Bhattacharyya Distance [22] 334

dBhat(P1, P2) =

√
1−

∑
x

√
P1(x)P2(x)

Kullback-Leibler Divergence 335

dKL(P1, P2) =
∑
x

P1(x) log
P1(x)

P2(x)
.

Note that Kullback-Leibler Divergence is not a distance mea- 336

sure since it is not symmetric. Also, it requires P1 and P2 to 337

have the same support. This is straightforward to work around, 338

e.g., by postulating the Jensen-Shannon Divergence [41] 339

dJSD(P1, P2) = dKL(P1, ψ) + dKL(P2, ψ)

where ψ(x) = (1/2)(P1(x) + P2(x)). 340

C. Process Mining: A Machine Learning View 341

We formalize a machine learning view of process mining, 342

noting that some of these ideas are implicit in other work, 343

e.g., [25], [29]. In particular, in [20] a stream of symbols 344

representing activities is produced by multiple random sources. 345

We rather consider a single source generating traces. 346

A process discovery algorithm is essentially a learning ma- 347

chine, whose task is to model the control flow of a business 348

process, using traces of the execution of the process, recorded 349

in a WF log W , which is a multiset over traces. Each trace 350

represents a single run through the process from start to end. 351

Traces can be encoded as strings x ∈ Σ+, where Σ is an 352

alphabet of symbols representing activities. 353

We assume that an unknown probability distribution D over 354

traces (from Σ+) is responsible for generating the traces in 355

the log W . Although various factors affect what activities take 356

place, such as business needs or user preferences, different 357

1The “state space explosion” may be a problem, particularly in the con-
version of large Petri nets with high concurrence (although the structural and
marking limitations of sound WF nets should alleviate this).

IE
EE

Pr
oo

f

WEBER et al.: FRAMEWORK FOR THE ANALYSIS OF PROCESS MINING ALGORITHMS 5

traces in fact occur with specific probabilities, and thus it can358

be argued that the underlying process is inherently stochastic.359

From the machine learning point of view, the primary task of360

the process mining algorithm is to construct a model M of D361

from a finite sample of traces (WF log W).362

The log file W will contain only a finite number of process363

traces and therefore is a stochastic sample drawn independently364

and identically distributed from the unknown distribution D365

(the “ground truth”). In other words, each trace occurs with366

probability according to the same distribution D, and one trace367

occurring does not change the probability of others. Since the368

log is of finite size, we expect the frequency of traces in the log369

to vary from their probabilities under D.370

The challenge for the learning machine (process discovery371

algorithm) is to use this finite sample to construct a model M372

of D which does not simply represent the data in the finite373

log, but is as “close” as possible to the true generating source374

D, i.e., generalizes well. This raises questions such as: How375

much data is needed to do this with certain (given) confidence376

and precision?2How to quantify the learning machine’s perfor-377

mance? Since both D and M are distributions, it is natural378

to assess the learning machine’s performance by quantifying379

how “close” M is to D, for which there are various measures.380

This allows direct comparison of the “reality” represented381

by the models, rather than similarity/dissimilarity of syntactic382

representations of M and D in the modeling language in use,383

which seems to be a common theme [4], [9], [32], [38].384

Machine learning theory is concerned with the convergence385

properties of machine learning algorithms, in terms of the386

circumstances in which they can be expected to converge387

to the ground truth and the amount of data needed. While388

different process discovery algorithms have different strengths389

and weaknesses, they can be compared under this unifying390

framework, i.e., in terms of their convergence properties within391

the restrictions within which they operate. From the ground392

truth and an understanding of the behavior of an algorithm,393

one can predict, and experimentally verify, how fast the mined394

model will converge to the ground truth model.395

While in real applications, the process discovery algorithm396

will not have access to the ground truth distribution governing397

trace generation, it is standard practice in machine learning398

[42], [43] to study learning algorithms by imposing a certain399

class of ground truth distributions and then to verify empirically400

and/or theoretically how fast and how well the ground truth401

can be “learnt” by the algorithm from finite samples. In this402

framework, the algorithm does not know the ground truth,403

but because we have access to it, the success of the learning404

algorithm as more samples become available can be measured.405

IV. FRAMEWORK FOR THE ANALYSIS OF406

PROCESS MINING ALGORITHMS407

In this section, we outline a framework within which to408

analyze process mining algorithms with regard to their proba-409

bilistic behavior, process substructures, and number of traces; in410

2This corresponds to, e.g., the so-called probably approximately correct
framework.

the context of their ability to discover a probability distribution 411

over traces, which converges to a “ground truth.” 412

The steps below describe the approach taken here to analyze 413

and experimentally validate process mining algorithms. 414

Step 1) Analyze the algorithm to develop formulas for the 415

probability of discovery of all important process 416

substructures (e.g., splits and joins, or parallel action 417

flows). 418

Step 2) Extend to aggregate the substructure results (joining 419

substructures from the previous step into the full 420

model) to enable calculation of overall discovery 421

probability of arbitrary models. 422

Step 3) Analyze the algorithm’s characteristics, such as rate 423

of convergence, issues affecting convergence, possi- 424

ble relation to other algorithms, etc. 425

Theoretical analysis will be complemented by empirical 426

investigations as follows. 427

1) Design “ground truth” test models with varying 428

topological and probability structures. 429

2) From the test models, generate multiple sample sets of 430

WF logs of various sizes, to test for convergence. 431

3) Run process mining algorithms under investigation on 432

such data, converting mining results to PDFA as neces- 433

sary (Section III-A), and compare distributions of traces 434

represented by these automata with the “ground truth.”3 435

In the following, we introduce the important process sub- 436

structures, and in Section V, we apply the framework to an 437

analysis of the Alpha algorithm [14]. 438

A. Process Substructures 439

Business processes are composed of substructures [17], [28]. 440

We consider only acyclic structures in this paper. A few basic 441

structures are sufficient, although more complex patterns exist 442

[28]. The substructures in our example process are highlighted 443

in Fig. 4. We next define process substructures in terms of the 444

set T of valid process traces starting with i and ending with o. 445

1) Sequences: If tasks a and b form a sequence (e.g., Fig. 4, 446

substructure A), then if a occurs, it is immediately followed 447

by task b, and no other, in the model. In the log, other parallel 448

tasks may “interfere,” so the following will hold: if a occurs in 449

a trace, b will occur before the end of the trace, i.e., 450

if uav ∈ T , then v = wbq,
where a, b ∈ Σ, and u,w, q ∈ {Σ \ {a, b}}∗ .

2) Exclusive-OR Split: An m-way XOR split [Fig. 5(a)] oc- AQ1451

curs where there is a choice between m mutually exclusive 452

paths through the model after task a, each path starting with 453

a task t ∈ {bi|1 ≤ i ≤ m}. If a occurs in a trace, then exactly 454

one t ∈ {bi|1 ≤ i ≤ m} will occur in the rest of the trace 455

if uav ∈ T , then ∃i : 1 ≤ i ≤ m, such that v = wbiq,
where a, bi ∈ Σ, and u,w, q ∈ {Σ \ {a, b1, . . . , bm}}∗ .

3Where algorithms produce nonprobabilistic models, heuristic methods can
be used to allocate uniform or maximum likelihood probabilities to transitions.

IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 4. Example of process substructures in Petri net N0 and PDFA A0.

Fig. 5. Petri net and PDFA fragments depicting various substructures.
(a) XOR split. (b) Parallel (AND) split. (c) Complex splits and joins (substruc-
tures A and B) and “extra” parallel activities (dotted ellipses).

3) Exclusive-OR Join: An m-way XOR join (e.g., Fig. 4,456

structure F) occurs where m mutually exclusive paths rejoin457

before task c. The final task in each path prior to c is a task458

t ∈ {bi|1 ≤ i ≤ m}. If c occurs in a trace, then exactly one task459

t ∈ {bi|1 ≤ i ≤ m} will be in the trace before c460

if ucv ∈ T , then ∃i : 1 ≤ i ≤ m, such thatu = wbiq,

where c, bi ∈ Σ, and v, w, q ∈ {Σ \ {c, b1, . . . , bm}}∗ .

4) Parallel Split: An m-way AND split [Fig. 5(b)] occurs461

where m paths through the model proceed in parallel, following462

task a, each path starting with a task t ∈ {bi|1 ≤ i ≤ m}. If463

each path contains only a single task bi, and there are no464

restrictions on the order of the tasks, and no other parallel465

parts of the model, then the next m tasks in the trace will be466

b1, b2, . . . , bm, in one of m! permutations. Otherwise, there will467

be more possibilities for the trace following a. In reality, it is468

likely that only a subset of the possible orderings will be highly469

probable. If a occurs in a trace, then the remainder of the trace 470

following a will contain each t ∈ {bi|1 ≤ i ≤ m} 471

if uav ∈ T , then ∀i : 1 ≤ i ≤ m,

(∃w, q ∈ {Σ \ {a, bi}}∗ : v = wbiq),

where a, bi ∈ Σ, u ∈ {Σ \ {a, b1, . . . , bm}}∗ .

A PDFA fragment to depict a parallel split is visually more 472

complex than its Petri net equivalent, as all possible task se- 473

quences are shown explicitly [Fig. 5(b)]. After the first parallel 474

task, there are
(
m
1

)
states,

(
m
2

)
after the second, to

(
m

m−1

)
states 475

before the last parallel task. 476

5) Parallel Join: An m-way AND join occurs where m 477

parallel paths rejoin (synchronize) before a task c. The final task 478

in each path is one of b1, b2, . . . , bm. If c occurs in a trace, then 479

the trace up to c will contain each t ∈ {bi|1 ≤ i ≤ m} 480

if ucv ∈ T , then ∀i : 1 ≤ i ≤ m,

(∃w, q ∈ {Σ \ {c, bi}}∗ : u = wbiq),

where c, bi ∈ Σ, v ∈ {Σ \ {c, b1, . . . , bm}}∗ .

6) Nonexclusive OR Splits and Joins: These occur where one 481

or many of several paths may be taken. They can be modeled as 482

combinations of XOR and parallel structures. 483

V. APPLICATION TO THE ALPHA ALGORITHM 484

The Alpha algorithm [14] is relatively simple and forms the 485

basis for several other algorithms, so is appropriate for a first 486

analysis under this framework. The four relations →, →−1, #, 487

and ‖, on a pair of tasks a, b partition the set of all logs of n 488

traces [Fig. 6(a)]. In this paper, we write the relations as a >n b, 489

etc., to indicate discovery within n traces. The event space Ω is 490

the set of all logs of n traces, A the set of these logs that include 491

at least one trace containing substring ab(a >n b), and B those 492

with at least one trace with ba(b >n a). Then 493

• A \B is the set of logs that cause Alpha to infer the causal 494

relation a →n b; 495

• B \A those for which Alpha infers b →n a; 496

• A ∩B those for which Alpha infers a‖nb; 497

• ¬(A ∪B) those for which Alpha infers a#nb. 498

We next apply the steps described in Section IV to Alpha. 499

IE
EE

Pr
oo

f

WEBER et al.: FRAMEWORK FOR THE ANALYSIS OF PROCESS MINING ALGORITHMS 7

Fig. 6. (a) The Alpha relations on a pair of tasks partition the possible logs of
n traces, (b) illustration of (C ∩D) \ (A ∪B) for Proposition 5.

A. Step 1: Probability Formulae for Basic Substructures500

To analyze algorithms’ behavior, we assume that we have501

access to the ground truth and know probabilities of all strings502

(sequences of tasks). We give formulas for the probability of503

discovery of the Alpha relations and process substructures,504

based on these string probabilities, agnostic of whether these505

substructures are “correct,” i.e., assuming nothing about the un-506

derlying model, save that it is acyclic, and traces are generated507

according to an unknown probability distribution.508

Given an underlying source M, let PM(a|x) denote the509

probability that after seeing the sequence of tasks given by510

string x, the next symbol to be seen will be a511

PM(a|x) = PM(xaΣ∗)

PM(xΣ∗)
.

This extends naturally to substrings y ∈ Σn512

PM(y|x) = PM(xyΣ∗)

PM(xΣ∗)
, where

∑
y∈Σn

PM(y|x) = 1.

We also introduce some shorthand notation: We write π(ab)513

for PM(iΣ∗abΣ∗o), the probability of ab occurring in a trace,514

and π(b| → a) for PM(b|iΣ∗a), the conditional probability that515

given that a occurs in a trace, the next symbol will be b. We516

define πn(E) as “the probability of complex event E holding517

true in a log of n traces.” For example, πn(A) for set A in518

Fig. 6(a), is “the probability that at least one trace in a log of n519

traces contains substring ab.” Finally, Pα(a >n b) means “the520

probability that Alpha infers the relation a >n b over n traces,”521

and similarly for the other Alpha relations.522

1) Activity Ordering Relations: These are the basic relations523

between tasks in the log which Alpha uses to construct a Petri524

net model.4 The following propositions give the probability of525

Alpha inferring these relations between two tasks a and b, from526

a log of n traces, based on the substring probabilities described527

above. We give the proofs in the Appendix.528

Proposition 1: The probability that Alpha infers a >n b is529

Pα(a >n b) = 1− (1− π(ab))n .

Proposition 2: The probability that Alpha infers a#nb is530

Pα(a#nb) = (1− π(ab)− π(ba))n .

4Alpha+, which is implemented in the ProM framework [40] as Alpha,
modifies these to allow for short loops.

Proposition 3: The probability that Alpha infers a →n b is 531

Pα(a →n b) = (1− π(ba))n − (1− π(ab)− π(ba))n . (1)

Proposition 4: The probability that Alpha infers a‖nb is 532

Pα(a‖nb) = 1− (1− π(ab))n − (1− π(ba))n

+(1− π(ab)− π(ba))n .

2) Sequences: Discovery of a basic sequence of two tasks a 533

and b simply requires discovery of a →n b. 534

3) Splits and Joins: Alpha uses the relations a →n b, 535

a#nb, and a ‖n b to identify Petri net places, which deter- 536

mine the types of splits and joins (XOR or AND). Since the 537

events of the discovery of these relations between several 538

tasks arise from Alpha’s interpretation of a log of n traces, 539

they are not independent: any, all or no relations may be 540

discovered. Thus Pα((a →n b) ∧ (a →n c)) ≤ Pα(a →n b)× 541

Pα(a →n c). Therefore, for exact probabilities for discovery of 542

splits and joins, the basic substring probabilities (probabilities 543

of task pairs which must/must not be seen in the log) must be 544

used. 545

4) Exclusive Choice—XOR Split: To discover an m-way 546

XOR split from a to b1, b2, . . . , bm [Fig. 5(a)], denoted a →n 547

(b1# . . .#bm): Alpha must infer the relations a →n b1, a →n 548

b2, . . . , a →n bm, b1#nb2, b1#nb3, . . . , bm−1#nbm [14, Def. 549

4.3, step 4]. Hence, over a log of n traces, Alpha must: 550

see at least one of each of m substrings representing pairs of 551

tasks ab1, ab2, . . . , abm; and 552

not see any of the m “reverse” pairs b1a, b2a, . . . , bma, 553

or any of mP2 pairs of “postsplit” tasks: 554

b1b2, b2b1, . . . , bm−1bm, bmbm−1 (where mP2
Δ
= 555

(m!/(m− 2)!)). 556

Let N = {Ni = (ti, t
′
i)|1 ≤ i ≤ (m+ mP2), ti �= t′i} be the 557

set of task pairs which must not be seen in the log, and Y = 558

{Yi = (ti, t
′
i)|1 ≤ i ≤ m, ti �= t′i} be the set of task pairs which 559

must be seen in the log. 560

We define Sn(X) → [0, 1], where X = {Xi = (ti, t
′
i)|1 ≤ 561

i ≤ |X|} as the probability of not seeing any of the |X| task 562

pairs (ti, t′i) ∈ X in n traces, and π(Xi) = π(tit
′
i). 563

Proposition 5: Probability that Alpha infers an XOR split is 564

Pα (a →n (b1# . . .#bm))

= Sn(N)−
∑

1≤i≤m

Sn (N ∪ {Yi})

+
∑

1≤i<j≤m

Sn (N ∪ {Yi, Yj})− · · ·

+ (−1)mSn(N ∪ Y), where (2)

Sn(X)

=

(
1−

∑
1≤i≤|X|

π(Xi) +
∑

1≤i<j≤|X|
π(Xi ∧Xj)

− · · ·+(−1)|X|π
(
X1∧X2∧. . .∧X|X|

))n

. (3)

IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Given knowledge about the underlying model, many of the565

terms may be zero, significantly simplifying the formulas.566

Nevertheless, they can become cumbersome to work with,567

requiring knowledge of many probabilities. Nor do they relate568

intuitively to the working of the algorithm. However, these569

formulas can be effectively simplified without loss of accuracy570

to give formulas which intuitively follow from the working of571

the Alpha algorithm and are simpler to calculate. Theorem 1572

illustrates for Proposition 5 the discovery of an XOR split.573

Theorem 1: The probability of discovery of an XOR split574

may be approximated by assuming independence between dis-575

covery of Alpha relations over n traces. The probability is over-576

stated, but error rate decreases exponentially with increasing n577

Pα (a →n (b1# . . .#bm))

≤
∏

1≤i≤m

Pα(a →n bi)×
∏

1≤i<j≤m

Pα(bi#nbj). (4)

The proof is given in the Appendix. In what follows, we578

use the approximation in Theorem 1 to derive formulas for579

discovery of XOR joins and analogous results (not presented580

here) for AND splits and joins.581

5) Exclusive Choice—XOR Join: To discovery of an m-way,582

XOR join can be approximated in a similar way583

Pα ((b1# . . .#bm) →n c)

≤
∏

1≤i≤m

Pα(bi →n c)×
∏

1≤i<j≤m

Pα(bi#nbj). (5)

6) Parallelism—AND Split: The behavior of the Alpha al-584

gorithm when mining an AND split is similar to that when585

mining an XOR split, with more “must see” and fewer586

“must not see” substrings. To discover a m-way parallel587

split from a to b1, b2, . . . , bm, denoted a →n (b1 ‖ . . . ‖ bm):588

Alpha must infer the relations a →n b1, a →n b2, . . . , a →n589

bm, b1 ‖n b2, b1 ‖n b3, . . . , bm−1 ‖n bm[14, Defn 4.3 Step 4].590

Thus,591

Pα (a →n (b1 ‖ . . . ‖ bm)) ≤
∏

1≤i≤m

Pα(a →n bi)

×
∏

1≤i<j≤m

Pα(bi ‖n bj). (6)

7) Parallelism—AND Join: Similarly592

Pα ((b1 ‖ . . . ‖ bm) →n c) ≤
∏

1≤i≤m

Pα(bi →n c)

×
∏

1≤i<j≤m

Pα(bi ‖n bj). (7)

B. Step 2: Aggregation of Substructures to Full Model593

Having dealt with substructures, we now need to derive594

probability ψ(M) of correctly mining the full process model595

M (e.g., Fig. 4 with substructures labeled A . . . F). For exact596

calculation the approach of Proposition 5 could be extended597

to consider the probabilities of all the substrings which Alpha598

must/must not see in the log to construct the Petri net correctly,599

as these probabilities are not independent (Section V-A3). This 600

is infeasible and does not reduce the problem complexity. 601

As discussed (Theorem 1), we can treat substructures as built 602

from independent Alpha relations rather than from individual 603

substrings. Three further areas then need to be considered in 604

analyzing full models. 605

1) Compound Splits/Joins: A single WF net substructure 606

as mined by Alpha may combine both join and split 607

(Fig. 5(c) substructure B) or combine parallel and ex- 608

clusive behavior (Fig. 5(c) substructure A). In general, 609

if m paths of which p are XOR (the remainder parallel) 610

join and then split to n paths of which q are XOR, 611

the probability of discovery is approximated using the 612

approach of Theorem 1, multiplying probabilities for the 613

relevant →n, #n, and ‖n relations. 614

2) Extra Parallelism: Where parallel paths contain more 615

than one task, such as a, b, c, d in Fig. 5(c), for each 616

pair of tasks a, b not part of the split or join, either 617

a‖nb or a#nb must be discovered, to prevent extra 618

dependencies from being inferred. Let a �n b denote 619

(a‖nb) ∨ (a#nb). These are independent [Fig. 6(a)], so 620

Pα(a �n b) = Pα(a‖nb) + Pα(a#nb). 621

3) Combining Probabilities for Substructures: Let PS(X) 622

be the probability of discovering substructure X . Intu- 623

itively, if a split has been mined correctly, then mining 624

the corresponding join is “almost certain,” as each path 625

between the split and join should be in the log. Hence, 626

substructures in the model can be considered as depen- 627

dent on “previous” substructures, e.g., 628

ψ(M) = PS(A)× PS(B|A)× PS(C|B)

×PS(D|C)× PS(E|D)× PS(F |B,E).

PS(F |B,E) indicates the probability of discovering F con- 629

ditional that B and E have been mined correctly. This affects 630

the formulas from Section V-A in two ways. For each event 631

(such as “see no ab in the log of n traces”), 632

1) the probabilities of the substrings are conditioned by the 633

probabilities of the prefix strings leading up to those 634

substrings, i.e., π(ab) becomes π(b| → a)); and 635

2) we only consider the traces within which those substrings 636

are expected to occur. 637

To illustrate, for Alpha, the relation a >n b becomes 638

Pα(a >n b) = 1−
(
1− π(ab)

π(→ a)

)n·π(→a)

. (8)

C. Step 3: Analysis of Alpha Algorithm 639

We look briefly at some of the behavior of Alpha shown by 640

the probability formulas. 641

Fig. 7(a) shows Pα(a →n b) increasing sharply with increas- 642

ing π(ab) (probability of trace including string ab), but reducing 643

sharply with any probability of the “reverse” string, π(ba). The 644

effect is stronger as n increases, since this also increases the 645

chance of at least one ba in the log. Nonzero probability of ba 646

may be due to errors in logging, or indicate that the real relation 647

IE
EE

Pr
oo

f

WEBER et al.: FRAMEWORK FOR THE ANALYSIS OF PROCESS MINING ALGORITHMS 9

Fig. 7. Probabilistic behavior of Alpha relations. (a) Probability of discovery of a →n b for 10 traces, varying π(ab), π(ba). (b) Probability of discovery of
a‖nb for varying numbers of traces and π(ab)(π(ab) + π(ba) = 1.0). (c) Number of traces for 95% discovery probability of three-way XOR substructure.

is parallel but with ab more likely than ba. In Fig. 7(b), the648

parallel relation a ‖n b, for which both ab and ba must be seen,649

is seen to be most likely when the probability of either order is650

similar (note that here, π(ba) = 1− π(ab)). This is important,651

since when multiple activities are allowed to occur in any order652

(parallel), in practice, certain orderings may be more likely,653

reducing the probability of discovering the true parallelism and654

necessitating more data.655

Fig. 7(c) shows the behavior of Alpha when mining a three-656

way XOR split. All possible combinations of probabilities are657

indicated by points on the triangular base, with each edge repre-658

senting the range of probabilities from 0 to 1 of one of the three659

exclusive tasks, such that the probabilities sum to 1. The graph660

shows the number of traces required to achieve 95% probability661

of discovery. The greatest number of traces is needed where662

the probabilities are most imbalanced, i.e., around the edges,663

with the peaks at each corner showing where only one path has664

a nonnegligible probability. The corresponding graph for the665

parallel split shows similar behavior.666

VI. ANALYSIS OF EXAMPLE PROCESS MODELS667

We used the presented methods to predict the number of668

traces needed for the probability of successful mining of the669

running example5 (Fig. 1) to exceed various thresholds. Au-670

tomaton A0 (Fig. 3) was specified as the ground truth and671

simulated by random walk to produce 30 sets of MXML format672

WF log files of increasing size from 1 to 45 traces. A “ground673

truth” log of 1000 traces was also simulated.674

We mined Petri net models from these files using Alpha675

as implemented in ProM [40] and calculated the fitness (f)676

[6] and behavioral appropriateness (a′B) [4] values using the677

conformance analysis plugin. The Petri nets were converted678

to PDFA by labeling their reachability graphs with maximum679

likelihood probability estimates derived from the ground truth680

log file. The d2 and Bhattacharyya (dBhat) distances, and681

Jensen-Shannon divergence (dJSD) were calculated between682

the distributions represented by these PDFA and the ground683

truth distribution represented by A0.684

5This model has not been benchmarked but designed for this test.

Fig. 8. Results showing convergence of Alpha to the ground truth, mining
from logs of increasing size simulated from PDFA A0. (a) Average metrics
against number of traces. (b) Probability of approximately correct model.

The graph in Fig. 8(a) shows the average approximate cor- 685

rectness of the models mined by Alpha from logs of increasing 686

size, as measured by the metrics and distances, plotted against 687

the number of traces in the log. The numbers of traces predicted 688

IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

TABLE II
METRICS AND NUMBERS OF TRACES AT THRESHOLD

POINTS FOR MINING EXAMPLE MODELS

for 90%, 95%, and 99% confidence in correct mining are689

indicated by the vertical rules. The graph shows:690

1) Probability distance measures converge in a similar way691

to f , but the distances from the ground truth are dis-692

tributed over a clearer scale, from almost 1 for the693

very unfit models produced by few traces, through to 0,694

whereas f ranges from approx 0.8 to 1 (see Section VII).695

2) The distance measures show convergence to approximate696

correctness at the predicted points.697

3) Irregularities may indicate points of interest in the behav-698

ior of the algorithm, worthy of further investigation.699

4) a′B was 1 for each model, indicating that none of the700

models allowed behavior not found in the logs.701

Note that close convergence to predictions is possible, because702

the distribution to be learnt is known in advance, and test data703

drawn from that distribution. Also, exact formulas rather than704

bounds are used to predict the numbers of traces.705

The graph in Fig. 8(b) shows the probability of mining an706

approximately correct model, measured by f exceeding 0.9,707

0.95, and 0.99, and dBhat not exceeding 0.1, 0.05, and 0.01. A708

single data point is calculated for each size log; the percentage709

of mined models for which f was above, or dBhat was below710

the threshold. The probability distance (solid lines) is less sen-711

sitive to the threshold used (all three lines are superimposed),712

due to operating over a greater range, whereas f (dashed lines)713

indicates convergence too soon.714

Table II (top part) shows the predicted and actual numbers of715

traces and corresponding values of the metrics.716

A. Larger Example Process717

The running example is rather simple. To validate the718

methods and probabilistic analysis of Alpha, we used a larger719

example (Petri net Fig. 9, “ground truth” PDFA Fig. 10), which720

permits more detailed analysis and interpretation. This model721

is a sound WF net, and so is mineable by Alpha. It shows the722

handling of a request placed with a technical support call center.723

After the call is received (task i), three streams of activity run in 724

parallel, synchronized at η6 Next either g or h occurs, followed 725

by a series of nested choices (e.g., various actions to resolve the 726

call), before the call is closed (o). 727

This model has been artificially designed as a realistic pro- 728

cess with a mix of simple, compound and nested substructures, 729

and “extra” parallelism (parallel activities not part of a split or 730

join substructure). Splits in the PDFA were allocated uniform 731

probabilities. The PDFA was simulated to produce event logs 732

from 5 to 150 traces in increments of 5 traces. 733

Table III shows for each substructure in the model the 734

number of traces needed for 95% probability of mining the 735

substructure correctly. “Global” indicates the number of traces 736

calculated using the ground truth probabilities for each sub- 737

string, e.g., π(km) in the XOR split G. “Local” gives the 738

number of traces using the local probabilities in each substruc- 739

ture, assuming traces that include that part of the model, e.g., 740

π(km| → k). “Context” shows the number of traces given the 741

substructure in its context in the model, i.e., for G, only p(→ k) 742

of the traces are expected to reach k, so the number of traces 743

estimated in the “Local” column is divided by p(→ k). 744

The graphs (Fig. 11) again show convergence as predicted 745

(Table II). The shapes of the graphs suggest correspondence 746

with the numbers of traces predicted for discovery of substruc- 747

tures (Table III), e.g., the “plateaus” between 30–35, 40–45, 748

and 50–55 traces. By 30 traces a � f (and XOR split H) will 749

be mined correctly, with high confidence. By 40 traces, all 750

the “extra parallelism” will be, and by 50 traces A should be 751

discovered, giving confidence that most of the first (complex) 752

part of the model will be correct. Finally, by 60 traces, with 95% 753

confidence all substructures will be mined correctly. Between 754

these points (35, 45, and 55 traces), there are no additional 755

structures which are expected to be mined correctly. Fitness and 756

behavioural appropriateness are both below 1 at low numbers 757

of traces, indicating that the mined models do not fit all the 758

traces in the log, and are also too general, allowing behavior 759

not seen in the log. This is captured in the shape of the distance 760

graphs at low numbers of traces, showing that convergence is 761

initially slow. 762

VII. DISCUSSION OF MEASURES FOR ASSESSMENT 763

OF PROCESS MINING RESULTS 764

The experimentation (Section VI) showed that distances 765

between distributions give a clearer view of how different two 766

process models are, than do the existing Petri net metrics. In this 767

section, we discuss this further using the running example. Let 768

PDFA A0 (Fig. 3) describe the ground truth distribution over 769

process traces for a simple process. Fig. 12(a) shows PDFA 770

A1 produced by a hypothetical process mining algorithm L1, 771

mining from a particular log W1, a finite sample from the 772

ground truth distribution. The trace frequencies in W1 vary 773

from the ground truth probabilities, preventing L1 from creating 774

PDFA A1 with the exact ground truth probabilities. 775

6“Hidden” transition, not recorded in the log, which simplifies the depiction
of the net. Alpha produces a behaviorally equivalent net without η.

IE
EE

Pr
oo

f

WEBER et al.: FRAMEWORK FOR THE ANALYSIS OF PROCESS MINING ALGORITHMS 11

Fig. 9. Petri Net N3 representing more complex example process with a selection of basic substructures and “extra” parallel relations.

Fig. 10. PDFA A3 corresponding to Petri net N3, with the addition of
transition probabilities, used for producing simulated event logs.

TABLE III
PREDICTED NUMBERS OF TRACES TO MINE SUBSTRUCTURES IN N3

Petri net N0 (Fig. 1) models the same process without prob-776

ability information, in that it supports the same set of traces as777

the ground truth. The Petri net can be compared with the ground778

truth by converting to a PDFA by labeling its reachability graph779

(Fig. 3) with probabilities (Section III-A).780

Another algorithm L2 might mine a Petri net directly, pro-781

ducing net N1 [Fig. 12(b)]. This algorithm has failed to discover782

the parallelism, instead using an XOR split/join. This net and its783

corresponding PDFA A2 [Fig. 12(c)] are structurally different784

from the ground truth, therefore supporting a different set of785

traces. This is a serious problem, as this model does not allow786

for both despatch of the product and billing.787

Fig. 11. Results showing convergence of Alpha to the ground truth, mining
from logs of increasing size simulated from larger process model (PDFA A3).
(a) Average metrics against number of traces. (b) Probability of approximately
correct model.

Table IV shows the distances between these PDFA and the 788

ground truth, using the distance measures described (scaled 789

and subtracted from 1 to allow comparison with Fitness f). 790

Models A0, A1 are measured as quite similar, but A0, A2 as 791

almost 100% different. Although structurally “similar,” they 792

support fundamentally different behavior since the split/join 793

type has been changed. What is more, this part of the model 794

accounts for 90% of the probable traces. Conversely, fitness 795

IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 12. PDFA and Petri nets produced by various mining algorithms.
(a) PDFA A1 differing from A0 (Fig. 1) in probabilities only. (b) Petri net N1

structurally different from N0 (Fig. 1). (c) PDFA A2 corresponding to Petri
net N1.

TABLE IV
ILLUSTRATION OF DISTANCES BETWEEN PROCESS MODELS

Fig. 13. Comparison of metrics: varying probability of parallel substructure.

f measures A2 as relatively well fitting. Although it takes796

account of the frequency of nonfitting traces, it penalizes traces797

only (approximately) at the level of the nonfitting events. Thus,798

effectively, only event d or e is penalized in a nonfitting trace,799

while i, a, b, c, f, g, h, o are not. This leads to a misleading800

picture of the correctness of this model.801

This can be seen further in the graph in Fig. 13. Here, we802

varied the probability of the part of the model containing the803

parallel substructure. The graph shows the closeness of the804

mined model to the ground truth, for the various metrics, as805

the probability of the parallel part of the model varies from806

very low, to very high. Fig. 13 suggests the distance metrics to807

be more analyzable [6] than Fitness (f), measuring the mined808

model to be almost optimal where the parallel substructure is809

unlikely to be involved (where the error in the model does not810

affect many traces), reducing to zero as traces involving the811

parallel substructure form the majority of the behavior.812

VIII. CONCLUSION AND FUTURE WORK 813

Many process discovery algorithms assume complete logs or 814

only recreate the behavior in the log and do not recover model 815

probabilities. However, real processes are probabilistic, so a log 816

is only a sample of the true behavior. The amount of data needed 817

to be confident in mining depends on the underlying distribution 818

and on the behavior of the algorithm. 819

We discussed process mining from a machine learning view- 820

point and introduced a probabilistic framework for consider- 821

ing processes and mining algorithms. We proposed that the 822

primary task of mining the control flow of the process is to 823

learn the ground truth distribution over process traces, from 824

a finite random sample of process traces drawn from the 825

ground truth. Process mining algorithms secondarily address 826

additional requirements such as the representation language7 827

to use, abstraction from detail, etc. Within this framework, 828

process models may be compared using distances between the 829

distributions which they generate, rather than representation- 830

dependent methods and the behavior of algorithms considered 831

in terms of their convergence to the ground truth. 832

We applied this framework to the Alpha algorithm [14], 833

developing formulas for the probability of discovery of process 834

substructures and using these to give the probability of mining 835

a correct model of a specified accuracy. This analysis was then 836

applied to two example models, confirming experimentally that 837

the number of traces required to mine to a stated accuracy can 838

be predicted. 839

We plan to extend this framework to other algorithms, to 840

allow for models involving arbitrary substructures including 841

cycles, and to simplify the prediction mechanism. This will 842

allow us to apply the framework to the comparison of the 843

behavior of different process mining algorithms and to develop 844

deeper learning theory relating to process mining. 845

APPENDIX 846

A. Proof of Proposition 1 847

Proposition 1: The probability that Alpha infers a >n b is 848

Pα(a >n b) = 1− (1− π(ab))n .

Proof: To infer that b can follow a, at least one of the 849

n traces must contain substring ab, so the relation will be 850

discovered unless all traces do not contain ab. A single trace 851

contains ab with probability π(ab), so all n independent traces 852

fail to contain ab with probability (1− π(ab))n. � 853

B. Proof of Proposition 2 854

Proposition 2: The probability that Alpha infers a#nb is 855

Pα(a#nb) = (1− π(ab)− π(ba))n .

7For example, [20] constructs probabilistic models of observed traces in the
form of stochastic automata

IE
EE

Pr
oo

f

WEBER et al.: FRAMEWORK FOR THE ANALYSIS OF PROCESS MINING ALGORITHMS 13

Proof: To infer no relationship between a and b, each trace856

in the log must contain neither ab nor ba. This is ¬(A ∪B)857

in Fig. 6(a). Since we assume no cycles, a single trace cannot858

contain both ab and ba, so π(ab ∧ ba) = 0. �859

C. Proof of Proposition 3860

Proposition 3: The probability that Alpha infers a →n b is861

Pα(a →n b) = (1− π(ba))n − (1− π(ab)− π(ba))n .

Proof: This is represented by the set A \B in Fig. 6(a),862

which can be seen to be equivalent to ¬B \ ¬(A ∪B)863

πn(B)=1− (1− π(ba))n (by Prop. 1)

⇒ πn(¬B)= (1− π(ba))n , and by Prop. 2 (9)

πn (¬(A ∪B))= (1− π(ab)− π(ba))n . (10)

From (9) and (10), because ¬(A ∪B) ⊂ ¬B864

Pα(a →n b) =πn (¬B \ ¬(A ∪B))

=πn(¬B)− πn (¬(A ∪B))

= (1− π(ba))n − (1− π(ab)− π(ba))n .

This is intuitively interpretable as the probability of not seeing865

ba in any of n traces (good), minus the probability of also not866

seeing ab in any of those n traces (bad). �867

D. Proof of Proposition 4868

Proposition 4: The probability that Alpha infers a‖nb is869

Pα(a‖nb) = 1− (1− π(ab))n − (1− π(ba))n

+(1− π(ab)− π(ba))n .

Proof: The relations partition the set of possible logs870

[Fig. 6(a)]; thus, Pα(a‖nb) = 1− Pα(a →n b)− Pα(b →n871

a)− Pα(a#nb), following the previous results. �872

E. Proof of Proposition 5873

Proposition 5: Probability that Alpha infers an XOR split is874

Pα (a →n (b1# . . .#bm))

=Sn(N)−
∑

1≤i≤m

Sn (N∪{Yi})

+
∑

1≤i<j≤m

Sn (N∪{Yi, Yj})

−. . .+ (−1)mSn(N∪Y), where (11)

Sn(X)=

(
1−

∑
1≤i≤|X|

π(Xi)+
∑

1≤i<j≤|X|
π(Xi ∧Xj)

−. . .+(−1)|X|π
(
X1∧X2∧. . .∧X|X|

))n

. (12)

Proof: We begin with the probability that the pairs of tasks 875

which must not be seen in the log do indeed not occur in the 876

log, then use the “inclusion-exclusion principle” to remove the 877

probability that any of the pairs of tasks which must be present 878

in the log are also missing from the log. 879

For events Ei in a probability space with N events 880

πn

(⋃
1≤i≤N

Ei

)
=

∑
1≤i≤N

πn(Ei)−
∑

1≤i<j≤N

πn(Ei ∩ Ej)

+ · · ·+ (−1)N−1πn

(⋂
1≤i≤N

Ei

)
(13)

As a simplified example, we consider discovery of a two-way 881

XOR split from a to b, c, and assume π(ba) = π(ca) = 0. For 882

Alpha to discover the split, the log must include ab and ac, but 883

not bc or cb. If Fig. 6(b) represents the set of all logs of n traces, 884

then let set A contain all logs which contain no ab, Bno ac, Cno 885

bc, and Dno cb. Then, we need the probability contained in the 886

shaded area 887

πn ((C ∩D) \ (A ∪B))

= πn(C ∩D)− πn ((C ∩D) ∩ (A ∪B))

= πn(C ∩D)− πn ((C ∩D ∩A) ∪ (C ∩D ∩B))

= πn(C ∩D)− πn(C ∩D ∩A)− πn(C ∩D ∩B)

+ πn(C ∩D ∩A ∩B) (by equation 13).

Sn(N) is represented by (C ∩D), Sn(N ∪ Y1) by (C ∩D ∩ 888

A), etc. If we make no assumptions about the ground truth, then 889

a single trace may include any of these substrings, so the same 890

approach is needed to calculate Sn(X). � 891

F. Proof of Theorem 1 892

Theorem 1: The probability of discovery of an XOR split 893

may be approximated by assuming independence between dis- 894

covery of Alpha relations over n traces. The probability is over- 895

stated, but error rate decreases exponentially with increasing n 896

Pα (a →n (b1# . . .#bm))

≤
∏

1≤i≤m

Pα(a →n bi)×
∏

1≤i<j≤m

Pα(bi#nbj). (14)

Proof: To demonstrate, we assume that an underlying 897

model with an XOR split from a to (b1, b2, . . .) is followed 898

without error, and traces are recorded without error (“noise- 899

free”). Thus, π(b1a) = π(b1b2) = 0, etc., and the previous 900

equations may be simplified. Equation (1) reduces to Pα(a →n 901

b) = 1− (1− π(ab))n, and so on. 902

Let bi be shorthand for π(abi), and label (2) as F (n) and (14) 903

as G(n). Equation (2) (discovery of multiple Alpha relations 904

from one log not independent) reduces to 905

F (n)=1−
∑

1≤i≤m

(1− bi)
n+

∑
1≤i<j≤m

(1−bi−bj)
n

−
∑

1≤i<j<k≤m

(1−bi−bj−bk)
n+. . .+(−1)m

(
1−

∑
1≤i≤m

bi

)n

IE
EE

Pr
oo

f

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

while (14), which assumes that discovery of the relations can906

be treated as independent, to907

G(n) =
∏

1≤i≤m

Pα(a →n bi) =
∏

1≤i≤m

(1− (1− bi)
n)

= 1−
∑

1≤i≤m

(1− bi)
n +

∑
1≤i<j≤m

(1− bi)
n(1− bj)

n

− · · ·+ (−1)m
∏

1≤i≤m

(1− bi)
n.

The error in assuming independent relations is given by908

H(n) = |F (n)−G(n)|. The first two terms of F (n) and G(n)909

cancel, leaving (m− 1) terms. The difference between the third910

terms of F (n) and G(n) determines the rate of decay of the911

error, since the absolute values of subsequent terms in F (n)912

will be not greater than the third term. This is because the value913

of each term, and all bi, will be between 0 and 1, so the terms914

are decreasing in absolute value. Similarly for G(n), because915

each subsequent term is multiplied by a further factor between916

0 and 1, itself decreasing exponentially. Now, let917

fij(n) = (1− bi − bj)
n hij(n) = gij(n)− fij(n)

gij(n) = (1− bi)
n(1− bj)

n λij = 1− bi − bj

=(1− bi − bj + bibj))
n μij = λij + bibj .

Then, hij(n) = μn
ij − λn

ij , so the error is bounded by918

H(n) ≤ (m− 1)

⎡
⎣ ∑
1≤i<j≤m

(
μn
ij − λn

ij

)⎤⎦ . (15)

This is always positive, since μij > λij for all i, j, and decays919

exponentially in n after a maximum at relatively low n.920

The rate of decay of the error is also exponential921

h′
ij(n) = μn

ij lnμij − λn
ij lnλij .

This is always negative after hij(n) reaches its maximum and922

decays exponentially in n, as the log factors are relatively923

negligible. The maximum error in term hij(n) is reached when924

h′(n) =μn
ij lnμij − λn

ij lnλij = 0

⇒ n =
ln
(

lnλij

lnμij

)
ln
(

μij

λij

) . (16)

n will be largest when λij ≈ μij , when the denominator of925

(16) tends to 0. This occurs when when the probabilities are926

small, as the difference between λij and μij is π(abi)π(abj).927

However, the discovery probability F (n) or G(n) will be corre-928

spondingly small, due to the second terms of F (n), G(n). With929

the number of traces required to give only a 50% probability of930

discovery across all possibilities for the probabilities in a three-931

way split, the difference in the number of traces predicted using932

F (n) and G(n) is negligible. �933

REFERENCES 934

[1] W. M. P. van der Aalst and A. J. M. M. Weijters, “Process mining: A 935
research agenda,” Comput. Ind., vol. 53, no. 3, pp. 231–244, 2004. 936

[2] A. Tiwari, C. Turner, and B. Majeed, “A review of business process 937
mining: State-of-the-art and future trends,” Bus. Process Manag. J., 938
vol. 14, no. 1, pp. 5–22, 2008. 939

[3] B. F. van Dongen and A. Adriansyah, “Process mining: Fuzzy clustering 940
and performance visualization,” in Proc. BPM Workshops, S. Rinderle- 941
Ma, S. W. Sadiq, and F. Leymann, Eds., 2009, vol. 43, pp. 158–169. 942

[4] A. K. Alves de Medeiros, W. M. P. van der Aalst, and A. J. M. 943
M. Weijters, “Quantifying process equivalence based on observed behav- 944
ior,” Data Knowl. Eng., vol. 64, no. 1, pp. 55–74, 2008. 945

[5] A. Rozinat, A. K. Alves de Medeiros, C. W. Günther, A. J. M. M. Weijters, 946
and W. M. P. van der Aalst, “Towards an evaluation framework for process 947
mining algorithms,” BPM Center, Eindhoven, The Netherlands, BPM 948
Center Report BPM-07-06, 2007. 949

[6] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of pro- 950
cesses based on monitoring real behavior,” Inf. Syst., vol. 33, no. 1, pp. 64– 951
95, Mar. 2008. 952

[7] A. Rozinat and W. M. P. van der Aalst, “Decision mining in ProM,” 953
in Proc. Bus. Process Manag., S. Dustdar, J. L. Fiadeiro, and A. P. 954
Sheth, Eds., 2006, vol. 4102, pp. 420–425. 955

[8] W. M. P. van der Aalst, H. A. Reijers, and M. Song, “Discovering 956
social networks from event logs,” Comput. Supported Cooperative Work, 957
vol. 14, no. 6, pp. 549–593, Dec. 2005. 958

[9] G. Greco, A. Guzzo, and L. Pontieri, “Discovering expressive process 959
models by clustering log traces,” IEEE Trans. Knowl. Data Eng., vol. 18, 960
no. 8, pp. 1010–1027, Aug. 2006. 961

[10] M. Song, C. W. Günther, and W. M. P. van der Aalst, “Trace clustering in 962
process mining,” in Proc. BPM Workshops, D. Ardagna, M. Mecella, and 963
J. Yang, Eds., 2008, vol. 17, pp. 109–120. 964

[11] R. P. J. C. Bose and W. M. P. van der Aalst, “Context aware trace clus- 965
tering: Towards improving process mining results,” in Proc. SDM, 2009, 966
pp. 401–412. 967

[12] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining—Adaptive 968
process simplification based on multi-perspective metrics,” in Proc. 969
BPM, G. Alonso, P. Dadam, and M. Rosemann, Eds., 2007, vol. 4714, 970
pp. 328–343. 971

[13] C. W. Günther, A. Rozinat, and W. M. P. van der Aalst, “Activity mining 972
by global trace segmentation,” in Proc. BPM Workshops, S. Rinderle-Ma, 973
S. W. Sadiq, and F. Leymann, Eds., 2009, vol. 43, pp. 128–139. 974

[14] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: 975
Discovering process models from event logs,” IEEE Trans. Knowl. Data 976
Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004. 977

[15] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. Alves de Medeiros, 978
“Process mining with the HeuristicsMiner algorithm,” in Proc. BETA 979
Working Paper Series 166, 2006, pp. 1–34. 980

[16] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining process 981
models with non-free-choice constructs,” Data Mining Knowl. Discovery, 982
vol. 15, no. 2, pp. 145–180, Oct. 2007. 983

[17] G. Schimm, “Mining exact models of concurrent workflows,” Comput. 984
Ind., vol. 53, no. 3, pp. 265–281, Apr. 2004. 985

[18] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen, 986
E. Kindler, and C. W. Günther, “Process mining: A two-step approach to 987
balance between underfitting and overfitting,” Softw. Syst. Model., vol. 9, 988
no. 1, pp. 87–111, 2010. 989

[19] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser, “Process mining 990
based on regions of languages,” in Proc. BPM, G. Alonso, P. Dadam, and 991
M. Rosemann, Eds., 2007, vol. 4714, pp. 375–383. 992

[20] D. R. Ferreira and D. Gillblad, “Discovering process models from un- 993
labelled event logs,” in Proc. BPM, U. Dayal, J. Eder, J. Koehler, and 994
H. A. Reijers, Eds., 2009, vol. 5701, pp. 143–158. 995

[21] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco, 996
“Probabilistic finite-state machines—Part I,” IEEE Trans. Pattern Anal. 997
Mach. Intell., vol. 27, no. 7, pp. 1013–1025, Jul. 2005. 998

[22] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” 999
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–577, 1000
May 2003. 1001

[23] A. Bhattacharyya, “On a measure of divergence between two statistical 1002
populations defined by their probability distributions,” Bull. Calcutta 1003
Math. Soc., vol. 35, pp. 99–109, 1943. 1004

[24] J. E. Cook and A. L. Wolf, “Discovering models of software processes 1005
from event-based data,” ACM Trans. Softw. Eng. Methodol., vol. 7, no. 3, 1006
pp. 215–249, Jul. 1998. 1007

[25] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models 1008
from workflow logs,” in Proc. EDBT , H.-J. Schek, F. Saltor, I. Ramos, 1009
and G. Alonso, Eds., 1998, vol. 1377, pp. 469–483. 1010

IE
EE

Pr
oo

f

WEBER et al.: FRAMEWORK FOR THE ANALYSIS OF PROCESS MINING ALGORITHMS 15

[26] OMG, Business Process Model and Notation (BPMN), 2009. [Online].1011
Available: http://www.omg.org1012

[27] A. Datta, “Automating the discovery of AS-IS business process models:1013
Probabilistic and algorithmic approaches,” Inf. Syst. Res., vol. 9, no. 3,1014
pp. 275–301, Sep. 1998.1015

[28] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and1016
A. P. Barros, “Workflow patterns,” Distrib. Parallel Databases, vol. 14,1017
no. 1, pp. 5–51, Jul. 2003.1018

[29] J. Herbst, “A machine learning approach to workflow management,” in1019
Proc. ECML, R. L. de Mántaras and E. Plaza, Eds., 2000, vol. 1810,1020
pp. 183–194.1021

[30] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, no. 3, pp. 223–1022
252, Sep. 1977.1023

[31] W. M. P. van der Aalst, “The application of Petri Nets to workflow1024
management,” J. Circuits, Syst. Comput., vol. 8, no. 1, pp. 21–66, 1998.1025

[32] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M.1026
P. van der Aalst, “Genetic process mining: An experimental evaluation,”1027
Data Mining Knowl. Discovery, vol. 14, no. 2, pp. 245–304, Apr. 2007.1028

[33] C. J. Turner, A. Tiwari, and J. Mehnen, “A genetic programming ap-1029
proach to business process mining,” in Proc. GECCO, C. Ryan and1030
M. Keijzer, Eds., 2008, pp. 1307–1314.1031

[34] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens, “Robust process1032
discovery with artificial negative events,” J. Mach. Learn. Res., vol. 10,1033
pp. 1305–1340, Jun. 2009.1034

[35] S. Sun, Q. Zeng, and H. Wang, “Process-mining-based workflow model1035
fragmentation for distributed execution,” IEEE Trans. Syst., Man, Cybern.1036
A, Syst., Humans, vol. 41, no. 2, pp. 294–310, Mar. 2011.1037

[36] L. V. Allen and D. M. Tilbury, “Anomaly detection using model genera-1038
tion for event-based systems without a preexisting formal model,” IEEE1039
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 42, no. 3, pp. 654–668,1040
May 2012.1041

[37] J. E. Cook and A. L. Wolf, “Software process validation: Quantitatively1042
measuring the correspondence of a process to a model,” ACM Trans.1043
Softw. Eng. Methodol., vol. 8, no. 2, pp. 147–176, Apr. 1999.1044

[38] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae, “Development of1045
distance measures for process mining, discovery, and integration,” Int. J.1046
Web Serv. Res., vol. 4, no. 4, pp. 1–17, Oct.–Dec. 2007.1047

[39] T. Calders, C. W. Günther, M. Pechenizkiy, and A. Rozinat, “Using mini-1048
mum description length for process mining,” in proc. SAC, S. Y. Shin and1049
S. Ossowski, Eds., 2009, pp. 1451–1455.1050

[40] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M.1051
M. Weijters, and W. M. P. van der Aalst, “The ProM Framework: A new1052
era in process mining tool support,” in Proc. ICATPN, G. Ciardo and1053
P. Darondeau, Eds., 2005, vol. 3536, pp. 444–454.1054

[41] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Trans.1055
Inf. Theory, vol. 37, no. 1, pp. 145–151, Jan. 1991.1056

[42] D. Angluin, “Computational learning theory: Survey and selected1057
bibliography,” in Proc. STOC, 1992, pp. 351–369.1058

[43] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.1059

Philip Weber received the B.Sc. degree in1060
computer science from Loughborough University,1061
Leicestershire, U.K., in 1994, and the M.Sc.1062
degree in advanced computer science from1063
Birmingham University, Birmingham, U.K., in 2009.1064
Between these, he worked in industry designing,1065
analyzing, and implementing information tech-1066
nology systems, and in systems administration. He1067
is currently working toward the Ph.D. degree in1068
computer science at the University of Birmingham,1069
Birmingham.1070

His research interests include process mining, machine learning, data mining,1071
and information management.1072

Behzad Bordbar received the B.Sc., M.Sc., and 1073
Ph.D degrees in mathematics (Ph.D. from Sheffield, 1074
U.K.). 1075

Following the Ph.D. degree, he worked as a Re- 1076
searcher on a number of projects at the University 1077
of Ghent, Belgium, and the University of Kent, 1078
U.K. He is currently affiliated to the School of 1079
Computer Science, University of Birmingham, U.K., 1080
where he teaches courses in software engineering 1081
and distributed systems. In recent years, he has had 1082
close collaborative research with various academic 1083

and industrial organizations, among them Ghent University, Osaka University, 1084
Colorado State University, BT, IBM, and HP research laboratories. His research 1085
activities are mostly aimed at using modeling to produce more dependable 1086
software and systems in shorter development cycles and at a lower cost. His 1087
current research projects are dealing with formal methods, model analysis, 1088
software tools, model-driven development, and fault tolerance in service- 1089
oriented architectures and cloud. 1090

Peter Tiño received the M.Sc. degree from the Slovak University of Tech- 1091
nology, Bratislava, Slovakia, in 1988, and the Ph.D. degree from the Slovak 1092
Academy of Sciences, Bratislava, in 1997. 1093

From 1994 to 1995, he was a fulbright fellow with the NEC Research Insti- AQ21094
tute, Princeton, NJ. He was a Postdoctoral Fellow with the Austrian Research 1095
Institute for AI, Vienna, Austria, from 1997 to 2000, and a Research Associate 1096
with Aston University, Birmingham, United Kingdom, from 2000 to 2003. 1097
From 2003 to 2006, he was a Lecturer with the School of Computer Science, 1098
University of Birmingham, Edgbaston, Birmingham, United Kingdom, and has 1099
been a Senior Lecturer there since 2007. His current research interests include 1100
probabilistic modeling and visualization of structured data, statistical pattern 1101
recognition, dynamical systems, evolutionary computation, and fractal analysis. 1102

Dr. Tiño received the fulbright fellowship in 1994 and the United Kingdom- 1103
Hong Kong Fellowship for Excellence in 2008. He received the Outstanding 1104
Paper of the Year Award from the IEEE TRANSACTIONS ON NEURAL 1105
NETWORKS with T. Lin, B. G. Horne, and C. L. Giles in 1998 for his work 1106
on recurrent neural networks and 2010 IEEE CIS Outstanding Paper Award 1107
with S. Y. Chong and X. Yao for a paper in the IEEE TRANSACTIONS ON 1108
EVOLUTIONARY COMPUTATION on generalization on coevolutionary learn- 1109
ing. He received the 2002 Best Paper Award at the International Conference 1110
on Artificial Neural Networks with B. Hammer. He is on the editorial board of 1111
several journals. 1112

IE
EE

Pr
oo

f

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

Please note that your paper will incur an overlength page charge of $175 per page for every page over the
page limit. The page limit for regular papers is 12 pages, and the page limit for correspondence papers is 6
pages. If your paper exceeds these limits, you are responsible for payment of the pages beyond the limit.

AQ1 = Please define “XOR.”
AQ2 = Please expand “NEC.”

END OF ALL QUERIES

