
A framework for detecting malware in Cloud by identifying symptoms

Keith Harrison
1
, Behzad Bordbar

1,2

Hewlett-Packard Laboratories1,

Bristol, BS34 8QZ, UK

{keith.harrison, syed-taha-tariq.ali,

cid,andy.norman}@hp.com

Syed T.T. Ali
1
, Chris I.Dalton

1
, Andrew Norman

1

School of Computer Science2,

University of Birmingham,

B15 2TT, UK

B.Bordbar@cs.bham.ac.uk

Abstract—Security is seen as one of the major challenges

of the Cloud computing. Recent malware are not only

becoming more sophisticated, but has also demonstrated a

trend to make use of components, which can easily be

distributed through the Internet to develop newer and

better malware. As a result, the key problem facing Cloud

security is to cope with identifying diverse set of

malwares.

This paper presents a method of detecting malware by

identifying the symptoms of malicious behaviour as

opposed to looking for the malware itself. This can be

compared to the use of symptoms in human pathology, in

which study of symptoms direct physicians to diagnosis of

a disease or possible causes of illnesses. The main

advantage of shifting the attention to the symptoms is that

a wide range of malicious behaviour can result in the

same set of symptoms. We propose the creation of

Forensic Virtual Machines (FVM), which are mini Virtual

Machines (VM) that can monitor other VMs to discover

the symptoms. In this paper, we shall present a framework

to support the FVMs so that they collaborate with each

other in identifying symptoms by exchanging messages

via secure channels. The FVMs report to a Command &

Control module that collects and correlates the

information so that suitable remedial actions can take

place in real-time. The Command & Control can be

compared to the physician who infers possibility of an

illness from the occurring symptoms. In addition, as

FVMs make use of the computational resources of the

system we will present an algorithm for sharing of the

FVMs so that they can be guided to search for the

symptoms in the VMs with higher priority.

Keywords- Cloud; security; virtualisation

I. INTRODUCTION

Cloud Computing is increasingly being promoted as a

business model comprising of services that are marketed

and delivered in a mode similar to traditional utilities of

electricity, gas and water. In order for the Cloud

environment to be profitable, there is temptation to

homogenize the applications and Operating Systems used.

But as the Cloud becomes more homogenous, it will

provide bigger and richer targets for attackers; places

where the attacker may be confident to find lucrative

information or where disruption will have the greatest

impact. As a result, ensuring security of the cloud is seen

as a major Engineering challenge [1].

The malware’s landscape is rapidly changing. Malware is

getting ever more sophisticated. They are getting more

competent at mutating the target environment in order to

avoid detection [2-4]. The use of polymorphism and

metamorphism has become a common practice and Root-

kit technology is routinely being used [5-7]. Recent

malwares have also demonstrated a trend to make use of

components for their construction [3, 8]. These

components can easily be distributed through the internet

and could be easily used to develop newer and better

malware. It is possible to combine variants of such

components, which perform similar functionalities, to

produce even more diverse variants of malicious code that

can evade detection. As a result, a key challenge of Cloud

security is to cope with identifying diverse set of

malwares.

The key idea underlying this paper is to focus on

identifying the symptoms of malicious behavior as oppose

to directly looking for the malware within a Cloud. For

example, a wide range of malwares disable the defences

of the system by stopping the Antivirus software. Absence

of Antivirus software from the Process Table of a system

can be seen as a symptom that points to the possibility of

malicious behavior. Of course, it is possible that the

Antivirus has been stopped for various legitimate reasons.

The key point is that, appearance of the symptoms can be

a reason for further investigation. In particular, observing

more than one symptom can convince us of the higher

possibility of an undesirable behavior. This can be

compared to a patient who has more than one symptom:

headache, fever and etc. The main advantage of shifting

the attention to the symptoms is that a wide range of

malicious behavior can result in the same set of

symptoms.

The method suggested in this paper relies on the

Virtualization [9] which is widely used within the Cloud.

We propose creation of Forensic Virtual Machines

(FVM), which are mini Virtual Machines (VM) that can

monitor other VMs to discover the symptoms in real-time

via Virtual Machine Introspection [10]. Each FVM is

specialized to look for a unique type of symptom. The

FVMs are small, so that they can be checked manually to

ensure their integrity. In addition, FVMs exchange

messages via secure multicast channels to share

information about discovering of symptoms within VMs.

The discovery of symptoms within a VM is a

collaborative effort; identifying a symptom would result

in a chain of activities to direct other FVMs to the VM to

inspect for further symptoms. This is because the more

symptoms that are detected the higher is the chance of

finding malicious behavior in the VM. The FVMs report

to a Command & Control module that collects and

compiles the information and analyzes them. The

Command & Control module can use the virtualisation

mechanism to “freeze” the VM by denying it any CPU

cycles, as a result to stop the malicious activity. The

memory will remain frozen until it can be forensically

examined or copied for further analysis.

The paper is organised as follows. Section II presents the

preliminary material used in the rest of the paper. In

section III we shall describe the newly emerging trend of

Component based Malware, which motivates our idea of

looking for the symptoms rather than the malware itself.

Section IV describes the new trend of Component-based

malware and the challenges that it poses to security.

Section V formulates the problem addressed in the paper

followed by Section VI, which presents our sketch of the

solution. In Section VII we describe the Symptoms and

presents samples of symptoms appearing in a number of

high-profile malware. Design principles behind FVM are

explained in Section VIII. This section also illustrates

implementation of an example FVM. In Section VIII we

focus on Mobility algorithms and describe a simulator that

we have developed for the analysis of the mobility

algorithms. The paper ends with a brief conclusion.

II. PRELIMINARIES

A. Virtualization

Virtualisation is “A framework or methodology of

dividing the resources of a computer hardware into

multiple execution environments...” [9]. Virtualisation

relies on Virtual Machines, software that emulates or

simulates the capabilities of the hardware. It is capable of

running a complete operating system along with any

applications that runs on top of that OS [14]. SYMPTOMS

INDICATING MALICIOUS BEHAVIOUR

Definition: A symptom is an abstraction of an observable

(via VMI) characteristic, which can be linked to malicious

behaviour, so that appearance of a symptom indicates

possibility of a malicious behaviour.

Our approach relies on the FVMs to search for the

symptoms within the VMs. In what follows we shall

explain examples of the symptoms. Fig. 1 depicts a high

level view of Xen [9], which is an open source

virtualization software based on paravirtualization

technology. In this architecture, the Virtual Machine

Monitor (VMM) is an abstraction of the underlying

physical hardware and provides hardware access for the

different virtual machines. Xen includes a special VM

called Domain 0 (Dom0). Only Domain 0 can access the

control interface of the VMM, through which other VMs

can be created, destroyed, and managed. This powerful

VM is used to create other Virtual Machines that can

access the hardware through secure interfaces provided by

Xen. In addition it is possible to create other virtual

machines that can access the physical resources provided

by Domain 0’s control and management interface in Xen.

Virtual Machines are heavily used within the Cloud. In

addition to the advantage of running multiple Operating

Systems simultaneously, Virtualisation reduces the cost of

infrastructure implementation and the associated cost of

maintenance by optimising the utilisation of the resources.

A user can ask for new VMs when extra resources are

required and decommission some of the VMs, when they

are no longer required. In addition, Virtualisation provides

a powerful technique for securing the VMs, which is

commonly known as Virtual Machine Introspection.

A. Virtual Machine Introspection

Virtual Machine Introspection (VMI) can be defined as a

virtualisation based technique that enables one guest VM

to monitor, analyse and modify the state of another guest

VM by observing its virtual memory pages. Such

introspection can be carried out by a VMM that hosts the

VM or another VM which has been granted special

privileges by the VMM. VMI will allow product

developers and researchers to move the security related

software out of a probable target host/VM and take

advantage of the hosts lack of awareness to detect any

malicious events or code that is being executed in

runtime. One of the early methods of introspecting a

Virtual Machine from an external VM is by Garfinkel and

Rosenblum [10]. They used VMI to develop an Intrusion

Detection System (IDS), called Livewire, for a

customized version of VMWare Workstation for Linux.

VMI techniques have also been used in Digital Forensics

[13] and [15]. Hyperspector [16] implemented another

Intrusion Detection System for distributed computer

systems using VMI to isolate the IDS from the servers

that they monitor. These isolated IDSes are located inside

distinct VMs which are termed as IDS VM. There are also

commercial products built using VMI technology [17] .

Hardware Network
Physical

CPU

Physical

Memory

Xen Scheduling
Virtual

CPU

Virtual

Memory

Dom0

Split

Device

Driver

Xen Control

User Interface

Device

Driver

VM1

Split

Device

Driver

Application

Device Driver

Emulated

Devices

VM2

Split

Device

Driver

Application

VM3

Split

Device

Driver

Application

Guest OS

(Linux)

Guest OS

(Window 7)

Guest OS

(Linux)

Device Dri Device Dri

Figure 1: High-level view of Xen (see [9] for details)

IV. COMPONENT BASED NATURE OF MALWARE

There is a financial incentive for malware authors to write

“good” software [2-4]. Writing malware, particularly

malware that is designed to evade detection for a long

time, is hard. There are many problems to be solved: how

to gain entry to a machine, how to install itself, how to

evade detection, how to prevent the infected machine

informing the owner, how to propagate, how to make

analysis difficult and so on. Solving these for the first

time would indeed be a daunting task. The code would be

“flaky” and easily detected. Fortunately, for the attacker,

and unfortunately for the defender, there is the web.

Malware writers publish solutions (even code) to solve

these problems. As a result, it is common to come across

variants of the same script within various malware

products [18]. Toolkits and crimeware have been written

that allow the management of the Botnets from user-

friendly interfaces [8]. Radianti [3] compares the malware

market for the Skilled-Hacker, who are interested in “big”

0-day scenarios, and Script-kiddies who are not skilled

and only understand the effects and side effects of

executing malicious code. In the past component-based

malware was often used by the Script-kiddies; there is

clear evidence that Skilled hackers are also increasingly

relying on malware components. As new and more

sophisticated solutions become known, they are being

made available to even the novice attackers.

V. DESCRIPTION OF THE PROBLEM

Identifying malicious behaviour via VMI, which involves

automated inspection of a VM via another VM, must

address the following two challenges.

1) Diversity of Malware: Because of the polymorphic

nature of the malware, the inspection of a virtual machine

must identify potentially huge number of the variants of

the same malware which perform identical functionality.

One of the reasons for such diversity is the Component-

based nature of modern malware. Indeed, the malware is

becoming component-based. Modern malware reuse

snippets of malicious code to reduce the chance of bugs

and to produce better quality malware. Because of the

large number of combinations, it is not simply possible to

create Virtual Machine Inspectors which can identify all

such possibilities.

2) Efficient and scalable management of

computational resources required for Introspection:

VMI requires computational resources, which could

otherwise be allocated to the clients; indeed Computation

is one of the key commodities provided by the Cloud.

Producing a large number of virtual machines to monitor

a guest Virtual machine can result in a waste of the

valuable computational resources. Because Cloud systems

are expected to be very large, any practical method of

inspecting the host VMs must be scalable.

In addition to the above main challenges, any solution that

enhances and extends the system must not introduce new

attack vectors. It is crucial that the security experts and

mangers who work with the system can inspect any

enhancement so that to become convinced of its integrity.

VI. SKETCH OF THE SOLUTION

Modern malware, such as Rootkits, rely on being able to

modify their environment to remain undetected. They are

designed to prevent antivirus products from being able to

report their existence. However, it is very difficult to

remain invisible to someone viewing from “outside” when

VMI is used. Relying on VMI, the external viewer can

observe

 changing state of a VMs memory,

 processes that take inordinately long times to

initialize,

 snippets of program code that has been obfuscated,

 snippets of code containing known crypto algorithms,

 system code has been replaced,….

We refer to the above, which are indicators of possible

malicious behavior, as Symptoms. Symptoms are not

malicious on their own; each symptom can be seen as a

byproduct of one or more malicious activity. In reality a

symptom can be caused by a number of malicious

behaviors or an innocent system activity. One can draw an

analogy between the symptoms in this context and

symptoms associated with disease in human body. An

occurrence of a symptom such as headache can be a sign

of a number of illnesses. We may not know the cause of

the headache but it is likely to prompt us to action such as

visiting a doctor who may inspect for other symptoms or

arrange further examination to make a diagnosis. In

particular, appearance of more than one symptom can not

only narrow down to specific group of malware, but also

can alert us to take action rapidly, as the chance of

malicious behaviour increases. Figure 2 depicts outline of

the approach suggested in this paper. It shows a number

of small independent VMs, called Forensic Virtual

Machines (FVMs), which have been given the capability

to inspect the memory pages of specific Customer Virtual

Machines. Once a symptom has been detected, then the

FVM reports its findings to other FVMs. In such cases,

other FVMs will be prompted to inspect the VM for the

additional symptoms. In addition, when a symptom is

discovered, this fact is reported, via Dom0, to a Command

& Control centre. The Command and Control Centre

correlates this information with information from other

sources to identify an appropriate mitigation. For

instance, the Command & Control, through the Dom0 and

hypervisor, can “freeze” the Customers VM by denying it

any CPU cycles as a result to stop the malicious activity.

The memory will remain frozen until it can be

forensically examined or copied for further analysis.

FVMs make use of the computational resources that could

otherwise be allotted to the Cutomer’s VMs. As a result,

management of the efficient allocation of the resources to

the FVMs is crucial. In particular, creating and deploying

an FVM is computationally intensive. In addition,

permanent monitoring of an FVM is costly and wasteful,

as the symptoms are expected to appear sparsely. We have

designed the FVMs so that they regularly change their

target Customer’s VM. To achieve this, a distributed

algorithm is created to allow the FVM schedule moving

its searching process from one Customer’s VM to another.

We refer to such algorithms as mobility algorithms.

This paper addresses the two challenges posed in section

IV as follows. To deal with the Diversity of Malware, we

propose looking for the symptoms of the malicious

behaviour as oppose to looking for the symptoms

themselves. The infrastructure suggested will infer the

possibility of malicious behaviour from the list of

identified symptoms. Efficient and scalable management

of computational resources required for Introspection is

achieved by using mobility algorithms that share the

FVMs between the resources.

Figure 2: FVMs inspecting VMs

The infrastructure suggested in Figure 2 is a typical

autonomic system, which adapts itself to the changes in its

environment. The focus of this paper is not to report on

the whole infrastructure, instead we are interested in

dealing with the challenges described in Section IV,

which are essential for the creation of this infrastructure.

As a result, in this paper we shall report on our progress in

three directions. Firstly, we will report on our finding and

classifications of symptoms. In Section VI we will

describe six examples of symptoms. We have created

FVMs for the detection of some of the symptoms

described. Secondly, in section VII we will describe our

design of the FVMs, their lifecycle and an example of one

of the FVMs developed. We have also developed a

number of mobility algorithms. Mobility algorithms are

distributed and complex. As a result, we have developed a

simulator for studying the behaviour of the Mobility

algorithms. Thirdly, in section VIII, we will describe a

mobility algorithm, our simulator and its use in analysing

the presented algorithm.

VII. SYMPTOMS INDICATING MALICIOUS BEHAVIOUR

Definition: A symptom is an abstraction of an observable

(via VMI) characteristic, which can be linked to malicious

behaviour, so that appearance of a symptom indicates

possibility of a malicious behaviour.

Our approach relies on the FVMs to search for the

symptoms within the VMs. In what follows we shall

explain examples of the symptoms.

A. Examples of Symptoms

Missing processes: A key strategy of malware is to

remain hidden for as long as possible. A common

technique used by malware is to stop crucial processes

which might help in its detection. For example, in the

Conficker C, 23 processes are immediately aborted

whenever they are discovered running on the victim host,

among them sysclean, tcpview, wireshark, confik and

autorun, see page 12 of [11] for a list. Stopping such

processes helps the malware to remain hidden. It is

possible to develop FVMs to inspect the process tables

and alert if a process is missing.

Modification of in-memory code: To remain undetected,

a malware must make sure that the system continues with

its normal course of behavior. A common technique is to

inject code into the in-memory code. Doing so, the

victim’s DLL will remain unchanged. For example,

depending on the security product installed, Stuxnet [12]

injects itself into privileged processes. In one case the

malicious code was injected into winlogon, so that it can

run when a user logs in. Other applications that use the

DLL will remain unaffected. Subsequently, detection

mechanisms are not alerted towards the malicious

behavior. Injection of such code may leave fingerprints

that can be detected by an FVM. For example, we may be

able to hash a portion of the in-memory version of the

DLL for the authentication.

Tampering with the Registry keys: Some malwares

modify the state of the victim’s system by altering the

Registry keys. It is expected that a Cloud to follow a

homogenous structure consisting of a few similar

configurations. Small FVMs can check the registry to

identify any suspicious alterations in the values expected

within the hierarchy of directories associated to a registry

Key. In some cases, the malware attempts to obfuscate the

registry cases. For example, Conficker [11] adds strings

such as app, audio, image,... to the registry to obfuscate

registry configuration changes in svchost and netsvc.

FVMs can inspect the VM’s registry to spot unexpected

values.

Checking for symptoms at the startup: The Zeus

malware [8] appends the path
C:/Windows/System32/

sdra64.exe to HKEY_LOCAL_MACHINE/

SOFTWARE/Microsoft/WindowsNT/CurrentVer

sion/Winlogon/Userinit registry key. This entry

enables the Zeus malware to initiate its installation

process again during Windows startup. Inspection for

such symptoms can be carried out only at the startup time.

Another sign of malicious behaviour is when a process is

initialised for too long [11].

Modifying the time attributes of a file: Zeus [8]

modifies the time of the creation of some of the malicious

exe files to the time of the installation of the operating

systems. This is done to trick the human inspector by

implying that the file has been there from the beginning.

This is a symptom that can be detected easily by a simple

search.

Identifying suspicious snippets of code: Obfuscation

and use of crypto algorithms is very popular with malware

writers. Snippets of program code that has been

obfuscated or the code containing known crypto

algorithms can be a sign of malicious behavior. For

example, three variants of Conficker (A,B and C) make

use of RC4, RSA, and MD-6 and keep updating the

implementations, see [11] for details. Sometimes malware

carry keys used for encryption. In fact these keys have

been successfully used to search the memory for the sign

of an infected machine, as the key for Conficker variant

A, B and C are known. It is possible to develop FVMs for

look at high entropy pieces of bytes to identify keys [19].

It is reasonable to be suspicious of the DLLs which do not

require any encryptions and yet carrying high-entropy

pieces of code.

VIII. SYMPTOM DETECTION VIA FVMS

We conduct the process of Virtual Machine Introspection

through a number of Forensic Virtual Machines (FVM).

As depicted in Figure 2, an FVM is a virtual machine that

is configured by the user or administrator to observe and

examine the state of a Customers’ VM to detect presence

of a symptom. Not only integrity of an FVM is of crucial

importance, but also convincing the clients that an FVM is

not conducting undesirable activities is essential. As a

result, we follow the following four guidelines for the

FVM:

A. Guideline for designing FVMs

 1) FVM only reads: Virtualisation allows both reading

and writing into a VM. As a design principle, our FVMs

never alter states of a VM. This ensures the integrity of

the operation within the VM and also allows searching for

malicious behaviour while remaining hidden from

hackers.

 2) FVMs are small; one symptom per FVM: We design

the FVMs to be small so that the clients can manually

inspect their code and make sure of their integrity. In

addition, although it is possible to create super size

FVMs, in the interest of clarity, each FVM is designed to

deal with identifying a single symptom. Creating small

FVMs is a key step towards ensuring that our suggested

symptom detection scheme is not introducing an easy

attack vector into the overall system.

 3) FVMs inspect one VM at a time: To avoid any

possibility of leakage of information, an FVM will inspect

only one VM at a time and will flush its memory before

leaving to inspect another VM.

 4) Secure communication: FVMs communicate with

each other and the management system via sending

messages through a secure multicast channel.

B. Sketch of implementation for an FVM

In this section we shall present an example of

implementation sketch for an FVM that we have

developed. Suppose that we are interested in establishing

whether the address space of an Internet Explorer or

Firefox process running within a virtualized guest OS (the

target) contains a particular text string or section of

(malicious) machine code. To search for something in the

address space of a particular application process within

the target guest VM, the FVM would proceed roughly as

follows:

1) Locate the offset of the target guest kernel task

structures. For both Windows and Linux, the guest

(kernel) virtual address of these structures is either a well-

known value or easily determinable. A guest operating

system (Windows or Linux for example) maintains such

internal structures that describe the application processes

or tasks currently instantiated on the system. Included in

the task structure for a particular application process is a

pointer to region that contains the page tables that should

be loaded when that process is running. Also included in

that task structure is a list of areas of the application's

virtual address space that it is actual using. Even on 32bit

systems, the virtual address space of a process is very

large (usually 4GB) and in reality the application will

generally use a small fraction of that space. Together, the

page tables and virtual address space region structures

allow the determination of the actual system physical

memory being used by that application process.

2) Convert the known target guest kernel virtual address

of the task structures into a machine physical address so

that same physical page can be mapped into the FVM and

the contents examined, and the hence details found of the

specific process we are interested in inspecting.

Taking Linux as an example, the page tables of ANY

application process running within the OS contain a

mapping for kernel virtual addresses of that OS as well as

the application addresses (paging protection mechanisms

prevent application processes actually accessing kernel

memory).

On x86 based platforms, the root location of the set of

page tables from the currently running guest process can

be found by examining a particular system register (CR3).

This register machine state is available to the FVM from

the Hypervisor (Xen). Given that register value (which is

actually a physical memory address), the FVM maps the

physical page containing that physical address into its

own address space. From that it can traverse the page

tables being used by the target guest OS (mapping

additional physical pages from the guest as required) until

it finds the physical page corresponding to the virtual

address of the guest OS task structures.

3) From the now located target guest OS task structures, it

finds the actual page tables and memory regions being

used by the specific process of interest. By proceeding

along similar lines as step (2) including page table

traversing, the FVM can now map the physical memory

actually in use by the application process of interest into

its own address space and inspect the contents.

In our current implementation, we assume that the target

VM is running on top of a Xen hypervisor using the

library XenAccess, which is an API to allow both Xen's

priviliged VM, Dom0, and other suitably authorised VMs

to read a target VM's memory. In addition, the library,

XenAccess, provides an API which, along with other

functionality, allows the calling process to map the

contents of selected memory pages from a target VM into

its memory space. We have also developed a library for

conducting common task such as searching of a memory

space.

C. Formalising the Forensic Virtual Machines

Consider a set of virtual machines . To

discover an attack we inspect the VMs for discovering the

symptoms associated to it. Normally, an attack can be

related to more than one symptom. In addition,

appearance of a symptom ONLY points into the

likelihood of the malicious behaviour. We formalise this

with introducing the concept of Configurations. Suppose

that denotes the set of all

Configurations. For example, a Configuration c1 might be

detected by identifying symptoms s1, s3 and s6. Some of

the Configurations are more important than the others. As

a result, we attribute a value between 1 and 10 to each

Configuration ci, denoted by val(ci). The values of

Configurations are determined by the security experts. For

example, if the symptoms s1, s3 and s6 appear together in

an attack with serious consequences for the system, the

experts assign higher values. In contrast, the symptoms

which are signs of attacks that are either old or can be

dealt with via existing antivirus products, the value for the

Configuration would be low.

Figure 3: Life Cycle of an FVM

We make use of the Greek letters , , ,... for

referring to the FVMs. Each FVM is responsible for

detecting a unique symptom which we refer to its own

symptom. Each FVM deals with the symptoms within a

given Neighbourhood N(), which is a subset of all VMs.

Each FVM uses the messages received from other FVMs

to form a picture of its surrounding world. Part of this

involves establishing the symptoms which have been

discovered by other FVMs. This is done with the help of a

number of variables to record if the symptom si is

discovered in the virtual machine vj. In addition, in our

current implementation, an FVM is only interested in the

VMs within its own Neighborhood, the values for the

coordinates corresponding to its Neighborhood is updated.

Each FVM keeps a record of the last time that a VM is

visited with the help of the local variable lastVisited. To

be precise, lastVisited assigning the local time of the last

visit to a virtual machine in N() via an FVM of type .

This can be the itself or any other FVM which inspects

the same type of symptom . lastVisited is updated by the

messages arriving at the FVM.

To keep a balanced number of the FVMs visiting the

VMs, each FVM, is also interested to know the number

of other FVMs of its own kind which are visiting the

virtual machines in its neighborhood.

We impose an upper bound on the amount of time that an

FVM can inspect a VM. For each symptom there is an

assigned time interval, which the FVM can spend a

random amount of time from that interval in each virtual

machine. We refer to that time as Permissible Time to

Stay (PT2S).

D. Life cycle of an FVM
Each FVM follows the life cycle described in Figure 3.

Most of the time an FVM inspects (Inspecting) a virtual

machine. If the discovery is successful, a msg:Discovered,

which is of the form < Disc, si, vj >, is sent. The FVMs

also report the absence of the symptoms to clarify if the

symptom has disappeared. Otherwise, at the end of the

Permissible Time to Stay in the VM, it sends a

msg:Depart and changes its state to Deciding during

which on the basis of the information provided via the

messages chooses the next VM to be inspected. As soon

as the Deciding takes place, the FVM moves to Moving

step. Then a message msg:Arrive is sent and the

inspection is carried out on the new VM. msg:Depart and

msg:Arrive have the format < Dept, si, vj > and < Arriv,

si, vj >.

IX. MOBILITY ALGORITHM

One of the key challenges of security of the Cloud is to

cope with a large infrastructure. It is not possible to

deploy many FVMs for each VM. This would be a drain

on the computational resources as the FVMs will be

wasting computational resources continuously, while the

symptoms may appear sparsely. Instead, we introduce the

concept of Mobility algorithms. An FVM, which is

programmed to look for a symptom, regularly changes its

target virtual machine. For example, if an FVM is

designed to inspect the Process Tables to identify

processes that take inordinately long times to initialize, it

will move from one VM to another. In doing so, it will

inspect one virtual machine, flush its memory and start

inspecting a new virtual machine. Each FVM carries a

copy of a Distributed Algorithm which identifies its next

target machine. It is crucial to use a Distributed Algorithm

to avoid any bottlenecks.

A. Guideline for designing Mobility algorithms

 In designing Mobility algorithms, we have taken a

number of issues into consideration.

1) All VMs must be visited. It is important to avoid

leaving a VM uninspected for a long time. In addition, we

may decide to visit VMs belonging to a group of premium

customers or VMs carrying crucial duties to be visited

more often.

2) The algorithms must make sure that urgency of visiting

a VM increases when more symptoms are detected. This

would be similar to the cases that a patient is showing

multiple disease symptoms.

3) Movement of the VM must not follow a predetermined

pattern. Any predictable patterns of movement would

assist the malicious activities to be hidden.

4) Simultaneous inspection of VMs by multiple FVMs.

Having multiple FVMs increases the defences and

improves the coverage. For example, if the FVMs scan

the memory, having multiple independent FVMs will

increase the chance of detecting the malicious behaviour

in real-time.

B. A Mobility algorithm

In this section, we shall describe the Mobility algorithms

that we have developed. As described in Fig. 3, while in

Deciding state, an FVM chooses the best possible VM to

move to. Each FVM will carry a copy of the following

algorithm which is executed in Deciding state to identify

the target virtual machine.

Algorithm 1: Identifying the target VM in Deciding state

INPUT:

NEIB = // Neighbourhood of the FVM

 // Maximum number of FVM

 // list of Configurations

 // number of symptoms discovered

 // number of FVM in NEIB

 // value assigned to

 // last time visited

 // loneliness factor

 // percentage of top VMs considered

OUTPUT:

 NEIB // target VM for the next move

START

1. A:=NEIB // A is the list of potential targets

2. For v in A //discard VMs with too many FVMs

 if (numFVM(v) ≥ Max(v))Then A= A\{v}

3. If A is empty choose a random v and go to END

4. For v in A calculate the F-value as follows:

5. Create of the VMs with top percent of the

F-value.

6. return a random value from

END

The process of selection is carried out from a subset of

Virtual Machines called Neighbourhood (NEIB). In fact,

the FVM which implements this algorithm only keeps the

data related to the VMs in its own Neighbourhood. We set

an upper bound on the number of the FVMs

associated to each VM . This is to avoid allocation of all

resources to a few virtual machines and starving the

remaining VMs. It is important to prioritize inspection of

the scenarios which lead to discovery of a combination of

the symptoms that may unveil a crucial malicious

behaviour associated to high value of Configuration (see

VII.D for the definition). As a result, to each

Configuration a value is assigned.

In this algorithm, we give priority to the discovery of the

Configurations with the shortest remaining steps to be

completed. Assume that a Configuration C1 requires

inspection of symptoms s1, s2, s3 and s4. If on the VM v1

symptoms s1, s2 and s3 are discovered, while on VM v2,

only the symptom s1 is discovered. It makes sense to

complete detection of the symptom s4 on v1 as oppose to

the detection of the same symptom on v2. So moving the

FVM to v1 is better than moving to v2. As a result, the

double-array variable is included to keep

the record of the number of number of symptoms of

discovered in FVM .

We wish to avoid lonely VMs. A lonely VM is a VM that

has not been inspected for a long time by FVMs of a

given type. Such VMs can be a prime target for a

malicious behaviour. The variable is defined to adjust

the importance of loneliness, as we will explain later.

Figure 4: FVMs are swamping VM1 (RHS of picture)

Finally, allocation of the FVMs to a VM must not follow

a fully deterministic pattern. Any predictable behaviour is

easier to be exploited. The algorithm makes random

moves. The target VM is chosen from the top percent of

the VMs with top value of the function F, as we will

explain below.

The algorithm starts by assigning all elements of the

neighbourhood into a set variable A. In (2) we discard all

FVMs which have too many FVMs. This is done by

comparing the value of numFVM(v) and Max(v), where

the variable numFVM(v) keeps the current number of

FVMs in the VM v and Max(v) is the maximum

permissible number. The step (3) will never execute in a

realistic scenario as it represents surplus of the FVMs;

step (3) added to ensure the algorithm terminates in all

cases.

To find the most suitable VM in the Neighbourhood a

valuation function F is presented, in which Disc(ci ,v) is

the number of symptoms of ci which are discovered

within the virtual machine v, while size(ci) is the number

of the symptoms in ci. In effect, we are scaling the

importance of a Configuration, i.e. val(ci), with the ratio

of the symptoms which are discovered. Adding such

values gives an importance to the configurations with

higher values and in special those which we are about to

discover all their symptoms. The value CurrentTime -

lastVisited(v), which is the time since last visit by an

FVM, denotes how “lonely” the virtual machine v has

been. is a scaling factor to adjust the importance of the

loneliness factor. If this value is set to a high value, the

valuation function F will give more importance to

loneliness. Then we can assume that we have ordered all

VMs that can be inspected according to the value of F.

Then we choose a virtual machine among the VMs in the

top percent values of F(v) to create the set B. To ensure

a random selection of the destination, we randomly

choose one of the VM with high F-value.

Figure 5: Graphical representation of Swamp

C. A Simulator to study Mobility algorithm

Mobility algorithms are complex. Since the algorithm is

highly distributed ensuring stability of the system, i.e. the

FVMs of different types eventually visit all the VMs to

discover different symptoms, is highly non-trivial. It is

also important to discover guidelines for setting

parameters such as loneliness, size of the neighbourhood,

maximum number FVMs etc. In addition, it is crucial to

be aware of the effect of changes in the parameters. As a

result, to evaluate the algorithm we have developed a

simulator.

Figure 6: number of FVMs visiting VMs (1)

The simulator is written in Scala with a front end written

in JavaFX. Scala being an actor-based language has

allowed us to create the VMs and FVMs as autonomous

distributed agents. As a result, the simulator mimics the

real world. Currently, we run the simulator within a single

machine, but the system is designed so that it is possible

to distribute the simulator across multiple machines for

conducting distributed simulations. Virtual machines are

actors that contain a dictionary giving the status of

symptoms present in the VM. The status of these

symptoms is altered in real time to simulate attacks.

FVMs are also actors that mimic the real time behaviours

of the real FVMs, they move their attention according to

their in-built Mobility algorithms. To simulate the VMI,

the FVMs send messages to the VM actor asking whether

the symptom is present or not. The FVMs announce their

discoveries on to an internal bus where other FVMs, the

graphics subsystem and the command and control system

can listen. We have used the simulator to study various

algorithms and the effect of assigning different parameters

within an algorithm. The simulator is equipped with a user

interface written in JavaFX. In Figure 4 we can see that

when one symptom is discovered other FVM join the hunt

to discover if other symptoms exist. We refer to this

phenomenon as swamping. In addition to the animated

user interface, the simulator allows capturing of the data

produced in form of various graphs. For example, given a

set of parameters we can study how often FVMs of a

given type visit the VMs. Figure 5 shows the number of

FVMs in three VMs when one of the VMs (depicted by

black line and a higher graph) is attacked. The swamping

effect is clearly visible while other two VMs are also

visited.

We have also used the simulator to study the effect of

changes in the parameters. Figures 6 and 7 show the

number of FVMs present on the same VM when was set

to 0.01 and 10 respectively. In Figure 6, when under

attack, all resources are diverted to the VM which is being

attached. As a result, since more resources are allotted, it

is expected that the symptoms be discovered faster. But

this increase comes at a cost of almost complete loss of

coverage received by the other FVMs. On the other hand

if we set to a large value the FVMs tend to distribute

themselves uniformly across all the VMs. The optimum

value of will eventually be a trade-off between the

required coverage and level of protection received by

either the attacked FVM or by the whole system and it

could vary with different types of attack.

To summarize, our study of the algorithms via the

simulator resulted in identifying suitable values for the

parameters so that the mobility algorithm will tend to

distribute the FVMs uniformly across the system. The

algorithm is configurable and it could be configured to

respond rapidly to emerging threats by dispatching FVMs,

in a short time window, towards a VM behaving

suspiciously. This would lead to an early detection of a

malware/attack in a cloud. We believe that knowing the

cause accurately and detecting it at an early stage will be

the key for taking the right actions to mitigate the

potential threat to the entire cloud. It is also equally

important that the other VMs in the system are not left

lonely at any stage. We achieve this by setting the value

of to an optimum for our simulation.

Figure 7: number of FVMs visiting VMs ()

X. CONCLUSION

This paper presents a method of detecting the symptoms

of malicious behaviour in Cloud using Virtual Machine

Introspection. Samples of symptoms from real-world

high-profiles attacks are presented. The process of

inspection of a VM, which involves mapping of the

memory pages of the machine physical address of the VM

to the FVMs is described. In addition, a sample of a

Mobility algorithm, a Distributed Algorithm, which

allows collaboration of the FVMs in identifying multiple

symptoms is explained. Finally, the paper reports on the

simulator that we have developed to study the mobility

algorithms.

REFERENCES

[1] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and
Privacy: An Enterprise Perspective on Risks and Compliance: O'Reilly
Media, Inc. , 2009.

[2] J. Franklin, V. Paxson, A. Perrig, and S. Savage, "An inquiry into
the nature and causes of the wealth of internet miscreants," presented at
the Proceedings of the 14th ACM conference on Computer and
communications security, Alexandria, Virginia, USA, 2007.

[3] J. Radianti, "Eliciting Information on the Vulnerability Black
Market from Interviews," in Emerging Security Information Systems
and Technologies (SECURWARE), pp. 154-159, 2010.

[4] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou, "Studying
malicious websites and the underground economy on the Chinese web,"
presented at the on the Chinese web. Workshop on the Economics of
Information Security (WEIS), 2007.

[5] J. Baltazar. (2009). The Real Face of KOOBFACE: The Largest
Web 2.0 Botnet Explained. Technical report from Trend Micro.

[6] P. Szor, The Art of Computer Virus Research and Defense:
Symantec Press, 2005.

[7] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang, "Mimimorphism: a
new approach to binary code obfuscation," presented at the 17th ACM
conference on Computer and communications security, 2010.

[8] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M.
Debbabi, and L. Wang, "On the analysis of the Zeus botnet crimeware
toolkit," in Privacy Security and Trust (PST), 2010 Eighth Annual
International Conference on, 2010, pp. 31-38.

[9] D. E. Williams and J. R. Garcia, Virtualization with Xen: including
XenEnterprise, XenServer, and XenExpress Syngress, 2007.

[10] T. Garfinkel and M. Rosenblum, "A Virtual Machine Introspection
Based Architecture for Intrusion Detection," presented at the In Proc.
Network and Distributed Systems Security Symposium},, 2003.

[11] P. Porras, H. Saidi, and V. Yegneswaran, "Conifcker C Analysis,"
2009.

[12] N. Falliere, L. O. Murchu, and E. Chien, "W32.Stuxnet Dossier,
Version 1.4 (February 2011)," 2011.

[13] K. Nance, M. Bishop, and B. Hay, "Investigating the Implications
of Virtual Machine Introspection for Digital Forensics," presented at the
International Conference on Availability, Reliability and Security
(ARES 09), 2009.

[14] R. P. Goldberg, "Survey of Virtual Machine Research June 1974,"
IEEE Computer Magazine, pp. 34-45, 1974.

[15] B. Dolan-Gabitt, B. D. Payne, and W. Lee, "Leveraging Forensic
Tools for Virtual Machine Introspection. Technical Report. Georgia
Institute of Technology, GT-CS-11-05
(www.bryanpayne.org/research/papers/GT-CS-11-05.pdf)," 2011.

[16] M. Hind and J. Vitek, "Hyperspector: Virtual Distributed
Monitoring Environments for Secure Intrusion Detection," presented at
the First ACM/USENIX International Conference on Virtual Execution
Environments (VEE '05), 2005.

[17] Hypertection. Hypervisor-Based Antivirus. Hypertection Team.
Web. www.hypertection.com [accessed 13 Sept. 2011].

[18] Y. Sheng, Z. Shijie, L. Leyuan, Y. Rui, and L. Jiaqing, "Malware
variants identification based on byte frequency," in Networks Security
Wireless Communications and Trusted Computing (NSWCTC), 2010
Second International Conference on, 2010, pp. 32-35.

[19] A. Shamir and N. V. Someren, "Playing Hide and Seek With
Stored Keys," presented at the Third International Conference on
Financial Cryptography, 1999.

http://www.bryanpayne.org/research/papers/GT-CS-11-05.pdf),
http://www.hypertection.com/

