
 File Management in a Mobile DHT-based P2P Environment

Khalid Ashraf1, Rachid Anane2 and Behzad Bordbar1

1School of Computer Science, University of Birmingham
{k.ashraf, b.brodbar}@cs.bham.ac.uk

2Faculty of Engineering and Computing, Coventry University
r.anane@coventry.ac.uk

ABSTRACT
The emergence of mobile P2P systems is largely due to the
evolution of mobile devices into powerful information
processing units. The relatively structured context that
results from the mapping of mobile patterns of behaviour
onto P2P models is however constrained by the
vulnerabilities of P2P networks and the inherent limitations
of mobile devices. Whilst the implementation of P2P
models gives rise to security and reliability issues, the
deployment of mobile devices is subject to efficiency
constraints. This paper presents the development and
deployment of a mobile P2P system based on distributed
hash tables (DHT). The secure, reliable and efficient
dispersal of files is taken as an application. Reliability was
addressed by providing two methods for file dispersal:
replication and erasure coding. Security constraints were
catered for by incorporating an authentication mechanism
and three encryption schemes. Lightweight versions of
various algorithms were selected in order to attend to
efficiency requirements.

Keywords: Peer-to-Peer systems, file dispersal,
replication, erasure coding, security, reliability, efficiency.

1. Introduction
The evolution of mobile devices into powerful information
units has been marked by the emergence of patterns of
behaviour that display many of the characteristics of peer-
to-peer (P2P) modes of interaction. The flexibility of these
devices is due largely to their size, their wireless
connections and hence their mobility. Battery power,
however, can be an inhibiting factor that determines the
range of viable computational and communication activities
that can be supported [1].

Mobility constraints imply that system design should seek
to optimise the use of techniques and resources that can
prolong battery life. Computationally intensive operations
such as key generation in asymmetric encryption may pose
a heavy burden on mobile devices. Moreover, the
availability of heterogeneous mobile systems and their
limited resources may require the adoption of lightweight

and adaptive schemes and hence may favour platform-
independent schemes.

Within this context the P2P model is seen as ideal for
providing order and structure on mobile interactions and for
exploiting the potential of mobile devices. A more
disciplined approach to information management is
complemented by the flexibility of a personal device. The
affinity between mobility and P2P modes of interaction is
further reinforced by the dynamic and heterogeneous
domains they support. There are however legitimate
concerns over reliability and security in P2P systems. These
issues tend to be exacerbated in a mobile context.

Amongst the key factors that are driving the research in P2P
systems, distributed file management has provided the
rationale for a variety of applications. This particular aspect
of file management displays a natural affinity with the
distributed nature of P2P systems. Many of the schemes
which were implemented for wired and fixed networks are
gradually being migrated to mobile systems.

This work is aimed at deploying a file dispersal service in a
mobile P2P environment. The contribution of this paper is
two-fold. Firstly, it identifies the main characteristics of
P2P systems and mobile devices and proposes an
architecture that achieves synergy between them. Secondly,
it presents file dispersal as an application in a mobile P2P
network where issues of reliability, security and efficiency
are addressed.

The remainder of the paper is structured as follows. Section
2 defines the research context. Section 3 identifies system
requirements and gives an outline of the mobile P2P system
architecture. Section 4 presents some experimental results.
Section 5 offers some comparative evaluation and pointers
for further work, and Section 6 concludes the paper.

2. Research context
The scope of this research is defined by two main issues.
Firstly, the identification and potential integration of the
salient features of mobile devices and P2P systems and,
secondly, the investigation of the main modes of deploying
a scheme for file dispersal in a distributed environment.
This also subsumes secure communication.

2.1 Mobile Systems
Despite their storage and computational limitations mobile
devices have been the subject of intense research in
distributed systems. The scope of application domains
where their versatility is considered an asset ranges from
P2P systems [2] to Cloud computing [3]. Most of the
research efforts have been guided by an overriding concern
over power management and the need to satisfy other
requirements, including Quality of Service (QoS). In some
research programmes this was translated into the selection
of efficient methods and techniques. This approach has the
advantage of promoting energy awareness and encouraging
the selection of lightweight algorithms.

2.2 P2P Systems
In contrast to client-server models where connectivity
between clients and servers may be intermittent, the
symmetric role that nodes play in P2P systems necessitates
their continuous operation and availability. In addition, the
heterogeneity of P2P systems and the absence of a
centralised authority give rise to information management
as well as security and reliability concerns [4, 5].

The architecture of P2P systems may conform to two
models: unstructured and structured. In unstructured
systems such as Gnutella, peers establish random
connections, and lookup requests are explicitly forwarded
by intermediate peers until the search is exhausted. In
structured P2P systems, nodes are organised into a network
overlay. These systems are often implemented by a
Distributed Hash Table (DHT) algorithm, as in Chord [6],
Pastry [7] and Kademlia [8]. Consistent hashing is used in
DHTs to partition a key space among a set of peers. Files
are identified by a combination of the hash value of their
name and the hash value of their content. A node is
assigned a hash value as node ID and is responsible for the
management of a range of key values through a routing
table. DHT-based systems are scalable, robust and the DHT
routing protocol guarantees the convergence of the search
in an efficient manner. Their capacity for self-organisation
enhances their resilience.

The secure transmission of data can be achieved by
symmetric or asymmetric encryption schemes. Although
symmetric schemes tend to be faster and less
computationally demanding than asymmetric schemes, they
have to explicitly address the issue of key distribution. A
hybrid solution which combines symmetric and asymmetric
encryption, can offer an acceptable compromise by
allowing the exchange of symmetric session keys using
asymmetric algorithms.

2.3 File dispersal
One area where the convergence of mobile devices and P2P
systems can be beneficial is in the use of distributed mobile
storage for files. File dispersal for example can be used to

conceal files that hold unstructured data and where search is
infrequent. Confidential information such as memos and
reports fall under this category. This type of file
management demands an acceptable level of reliability and
is closely associated with data redundancy.

 Two main forms of replication have been identified:
monolithic and fragmented. In the monolithic method the
entire file is replicated into a number of copies and
dispatched to collaborative nodes for storage. Subsequent
retrieval of a replica of the file requires access to only one
node. With fragmentation a file is split into a number of
fragments, which are distributed randomly to different
nodes. The original file can only be reconstructed by
retrieving all the fragments of the file. Different levels of
replication can be set by replicating and distributing
multiple copies of files or fragments. Although replication
schemes can be easily implemented, the potential
vulnerability of peers may require a high level of
replication.

Erasure coding is another form of data redundancy [9, 10].
Erasure coding is implemented by an information dispersal
algorithm (IDA), where the initial s fragments of a file are
encoded into s+r fragments and subsequently dispersed
over the network. Since only a subset s of the fragments is
needed to reconstruct the original file, erasure coding has
been considered as more resilient to node failure and has
been implemented in many systems.

3. Design and architecture
The enhancement of P2P modes of interaction with
mobility may give rise to conflicting requirements implied
by two overriding concerns: the intrinsic volatility and
vulnerability of P2P networks, and the inherent limitations
of mobile devices. These concerns are addressed by
ensuring the security and reliability of storage and
interactions, and by implementing efficient solutions. Core
requirements for the design and implementation of the
system are further augmented by provisions for flexibility
and configurability. These were translated into two main
design decisions:

1. The adoption of hybrid network where mobile devices
are supported by a base station to ensure resilience and
persistence. The bootstrap process is supported by the
fixed base station.

2. The implementation of a DHT-based P2P network.
DHT schemes support the mapping of fragments to
nodes and the quick convergence in the search for
fragments and peers. Structured overlays impose a
structure on the topology of the network and on the
assignment of data to nodes. These constraints are
designed to improve the performance of data discovery
and retrieval [11]. The main function of the system is
to store and retrieve well-identified blocks of data. As

the discovery process is essentially one of retrieval a
structured overlay is more suitable for the application.

3.1 Architectural components
The system was designed as a layered architecture with file
dispersal at the highest level, supported by the DHT Chord
network; with communication forming the lowest layer. The
different components of the system are presented in Figure
1 and detailed below.

Graphical User Interface (GUI)

GUI allows direct interaction between user and system. It
has been designed within the constraints of screen area of
mobile devices. Various interfaces were developed to
provide status information and support for configuration.

Controller

The Controller is the main module that acts as a mediator
between GUI and the system logic and data persistence. It
integrates the different components of the system and
performs the main tasks, from DHT instance creation and
management of application level settings to file dispersal
management.

File Dispersal

The file dispersal process can be realised either through
replication or erasure coding. The file dispersal process
involves a number of common steps:

1. File selection
2. File compression
3. File fragmentation
4. Fragment encoding (for erasure coding only)
5. Fragment encryption
6. Fragment distribution and
7. Metadata encryption and secure storage
The fragmentation procedure generates a random fragment
size within the limits set by the user. Every fragment is
given an order number and its data saved in memory. Each
fragment is encrypted by randomly applying one of several

available symmetric encryption algorithms; the symmetric
key is generated from the username and the password of the
current user. DHT keys are generated by the application of
the SHA-1 function to each fragment so as to identify the
peer to which it will be dispatched and where it will be
stored. The dispersal process is configurable and the user is
able to select the type of file dispersal, replication or
erasure coding, and also specify the level of replication.
Different levels can be set for replication:

1. No replication (1 Key generated; original file only)
2. Low Replication (2 Keys; 2 copies of the file)
3. Medium Replication (3 Keys; 3 copies)
4. High Replication (4 keys; 4 copies)

P2P management

The Chord overlay network was selected for the DHT
implementation thanks to its simplicity and scalability. It
has the ability to guarantee efficient convergence in search
queries, which is O(logN) where N is the number of nodes
in the network. Its relative efficiency is also a valuable
attribute in a mobile context. In a Chord network peers
form a ring topology and every peer has a predecessor and a
successor. The network can have a maximum of 2m peers
where m is the key size in bits; the peers are arranged in a
circle with addresses from 0 to 2 m -1. Every peer contains
a routing table, the finger table, which has links to other
peers in the network and whose size is equal to at most m.
A modified version of the SHA-1 function was used for the
generation of the keys. The key length was reduced to 64
bits and base 10 used to facilitate the efficient computation
of the distance metric for the topology.

Chord lacks some important features such as the dynamic
building of the routing table, a facility that has implications
for communication overheads and resilience against DOS
attacks. This is an intrinsic feature of Kademlia, which has
been incorporated into this implementation of Chord.
Instead of allocating all of the 2m slots to the finger table at
the outset, the slots are built dynamically in the form of a
linked list when new peers are encountered (Figure 2).
Entries to the Chord finger table are made on the basis of

Figure 1. Architectural components

Figure 2. Finger table

seniority. This tends to increase the number of known valid
nodes in the network and fosters a more stable network.
The system relies on a pinging mechanism to identify live
peers and keep the routing information up to date. Peers
may not respond due to intermittent Internet connection,
crash or battery failure. This feature is also useful in
detecting duplications and thus reducing processing and
storage overheads. The system is designed to enable mobile
devices to communicate over the Internet, with TCP as the
Transport level protocol. The ubiquity of TCP facilitates
the integration of heterogeneous components.

Security

Different aspects of security are provided: authentication,
secure communication, and the encryption of the data and
metadata. A session-based mechanism forms the basis of
the authentication process. It is enhanced by the automatic
generation of public/private key pairs and by the
registration of the public key with the server.

Data protection is assured by the provision of light versions
of six symmetric algorithms so that they can work
efficiently on a mobile platform. They include DES,
DESEde (Triple DES), IDEA (International Data
Encryption Algorithm), Twofish, Rijndael (also called
AES) and its light version AESlight. By default, AES is
used for symmetric encryption and RSA for asymmetric
encryption. An additional guard involves ensuring the
integrity of the data through MD5 message digests. A
critical component of the security apparatus is the secure
storage of metadata and its access. Two main data stores in
J2ME are allocated exclusively to each user based on the
keys of the nodes, which in turn depends on the unique
name of the users. Moreover, three encryption versions of
the system were developed: symmetric, asymmetric and
hybrid.

3.2 System behaviour
The P2P system was designed and implemented as a DHT-
based Chord overlay network. In Figure 3 a snapshot of a
mobile network is presented after a few peers have

successfully joined it. The system includes a bootstrap
server and a database server with mobile nodes as peers.
When a peer joins the network for the first time the
application settings are loaded. Once a peer bootstraps itself
with the server, it registers its public key. If a peer needs to
communicate with another peer, it requests the public key
of the other peer from the server. Only authenticated peers
can gain access to public keys. The public key of the other
peer is cached in the routing table and remains valid as long
as the other peer is alive or the session is active. The key is
also used to insert the node in the network so that the Chord
network is built gradually.

In the bootstrap process the server checks with the database
server for the existence of the peer. If the peer is already
registered the server creates a session for the peer and
returns a session ID. The session ID is used for verification
and for any communication with other peers in the network.
Once the authentication is complete, the peer makes a
request to the server for a bootstrapping node in the
network. The server returns the address of a randomly
selected node, which is then contacted by the initiating peer
and presented with its public key and a session ID. For the
peers that have joined the network the communication
between them takes place without the intervention of the
bootstrap server. All subsequent communication is also
recorded in the routing tables. Messages between peers are
encrypted and transmitted with a message digest.

3.3 Implementation
In the development of the system, preference was given to
open source software and compatibility with mobile
environments. The system was implemented in Java which
has a robust set of well-defined APIs specifically designed
for mobile devices; it offers good support for emulators in
Java ME. Although J2ME is suitable for mobile devices it
lacks some of the functionality of the standard J2SE. A
number of modules had to be ported from J2SE software.

As the first point of contact for new peers with the network,
the bootstrap service was designed to be responsive and
flexible. It was implemented as a Web service and hosted
on GlassFish. The Bouncy Castle Crypto API formed the
basis for the security features of the system [12]. This API
is also J2ME compatible and provides a rich set of
cryptographic functions. File compression was realized with
jazzlib [13], a light-weight Java API. It was converted and
adapted into a J2ME light version.

The erasure coding function is based on the Java version
written for the JigDFS distributed file system [14]. It is an
implementation of the Cauchy Reed Solomon information
dispersal algorithm, which was also converted into a J2ME
version. The system was deployed on the mobile
environment provided by the Sun Java Wireless toolkit
2.5.2 for CLDC. It offers extensive support for mobile
emulators and for the creation of a realistic environment.

Figure 3. Network architecture

4. Experimental Results
A number of experiments were conducted in order to gain
an insight into the efficiency and reliability of the system.

4.1 Efficiency
As encryption is a computationally intensive process,
comparing the performances of the three different versions
would demonstrate the efficiencies of the system and its use
within a realistic context. The performance of the different
versions of the system was measured in terms of the time
taken from the initiation of the dispersal process up to its
completion. The experiment was run with two peers for
each version of the system.

In the graph in Figure 4 the significant difference between
the performance of the symmetric and the asymmetric
versions is evident, whilst the performance of the hybrid
system falls between the two schemes. The key generation
for the symmetric version is efficient on the mobile
platform while in the asymmetric implementation it is
relatively slow. As the hybrid system requires the
generation of a key pair it takes a similar length of time as
the asymmetric scheme. The fragmentation process in the
hybrid system appears to be less efficient than in the
asymmetric version; this difference in efficiency is due to
the application of compression. Compression has the
advantage of reducing the time taken for the fragmentation,
the dispersal and the download. For the most important

functions, such as bootstrapping, dispersal and download,
the graph also indicates that the asymmetric version is
inefficient.

These results show that a symmetric encryption
implementation outperforms the other schemes and suggest
that a pure asymmetric encryption scheme is not suitable for
such a system. As the exchange of symmetric keys may be
a source of vulnerability and can be awkward to perform
the hybrid scheme appears therefore as a suitable
compromise in such an environment. It combines the
advantages of the other two systems, without their
drawbacks. An improvement of the throughput of the
system may be achieved by an optimisation of the file
dispersal functions.

4.2 Replication and erasure coding
It has been established that erasure coding is more robust
than pure replication [9]. The comparison between erasure
coding and replication, in Figure 6, is concerned with the
resource utilization in both implementations. In the
proposed system Medium Replication is the equivalent of
erasure coding. It generates three copies for each fragment;
the number of encoded fragments created in erasure coding
is also three times the original number of fragments. A file
of 14846 bytes was compressed to 7630 bytes of binary
data and then subjected to the IDA. Figure 5 lists the
criteria over which the two methods were evaluated. As the
erasure coding algorithm adds redundant information, the
method consumes more space than the simple replication
technique. Replication on the other hand generates fewer
keys in total, involves less iteration over encryption, and is
much more efficient than erasure coding. Overall, erasure
coding used 7.8% more space, while its run-time was also
at least five times higher than the simple replication.
Erasure coding generates higher communication overheads.

4.3 Resilience
A higher level of replication can enhance the robustness of
the system: the probability that all the fragments of a file
can be recovered is very high, even when some of the peers
are down or offline. An experiment was performed with
five peers in order to evaluate the effectiveness of

Attributes Replication Erasure

Original Fragment Count 10 9

Total Fragment Count 30 27

Average Fragment Size 763 914

Total Space Used 22890 24678

Keys per Fragment 3 1

Total Keys Generated 10 27

Fragments per Iteration 3 1

Total Iterations 10 27

Time taken
(milliseconds)

200 1236

Figure 5. Erasure coding and replication

Figure 4. Functional performance

replication. To ensure consistency one specific peer was
responsible for dispersing and downloading the file
throughout the experiment

A file of size 14846 bytes was used with the default
fragmentation settings. In Figure 6 the table displays the
experimental results for the same file with different
replication levels and for a varying number of offline peers.
Peer selection was random so as to simulate the non-
deterministic behaviour of the network peers. A ‘recovered’
entry in the table indicates that the file was successfully
reconstructed while a ‘failed’ denotes that the file was not
fully recovered. The table indicates that the highest number
of file retrievals occurred when the highest replication level
was set. The file was successfully downloaded even when
all the peers were offline. This is due to the fact that there
were only four other peers with the owner; for erasure
coding there were enough replicated fragments that resided
on the store of the owner. With no replication, even when
one single peer was offline, the file could not be recovered
in full. The peer, which was offline, was holding some of
the fragments that were needed by the owner to rebuild the
entire file. This experiment confirms that with a threshold
of three, erasure coding is always successful in
reconstructing the original file. The results underline the
adequacy of replication in stable and reliable environments,
and the advantage of erasure coding in unstable
environments.

5. Discussion
The rationale for this research stems from the convergence
of three types of constraint. Firstly, at the heart of the P2P
perspective lie pointers for security and reliability.
Secondly, a potentially unstable and unreliable environment
requires flexibility and configuration in system deployment
and thirdly, from a mobile perspective, an energy-aware
design calls for efficient and appropriate solutions.

5.1 Security
Security procedures were woven into the fabric of the
system from the outset. Security was catered for along two
main threads: ensuring authentication and securing data
while it resides on nodes and during its transfer.

Authentication

A session-based authentication scheme was deployed in
order to provide a safe environment. Although this scheme
could be subjected to attacks such as session hijacking [15],
the impact of malicious attacks is mitigated by hybrid
encryption and fragmentation. A hybrid approach to
authentication enhances the role of the bootstrap server by
augmenting its functionality with centralised certification.
The choice of session-based authentication and hybrid
encryption is an example of the compromises made between
security and efficiency.

Data security

The issue of data security is partially addressed by the
nature of the application itself and by the restriction that
access to files is only-read; the update problem does not
arise. Confidentiality is maintained since the dispersed
fragments are compressed and encrypted. In some schemes
fragmentation by itself is considered an effective means of
securing data [16]. Confidentiality is also assured by the
encryption of the metadata.

5.2 Reliability
The reliability of the system is the outcome of the reliability
of the different levels of the architecture: at the application
level, DHT level and P2P network level. This is discharged
at the application level by the provision of two modes of
file dispersal, and at the P2P level by a combination of
authentication and encryption. The reliability of the system
is enhanced by the inherent features of erasure coding and
its suitability for unstable environments. It is also reinforced
by the levels of replication afforded by the replication
scheme.

Overlay Network architecture

The benefits that stem from the overlay network are due to
the following features:

1. Decoupling of information from location,
2. Resilience of the system to high churn rate through

Chord’s capacity for self-management,
3. Reduction of DOS attacks through enhancement with

Kademlia’s routing tables, and
4. Handling of the heterogeneity of nodes through widely

deployed and supported system software.
The provision of a bootstrap server enhances reliability and
supports persistence. Its role can be expanded to include
additional functions such as brokering and load balancing.

Flexibility

Flexibility and configuration represent another facet of the
system. They help deal with the openness of P2P systems,
their dynamic and ad hoc nature. The user is able to set
various parameters and to select the appropriate method for
performing file dispersal to suit environmental conditions.
The flexibility of the system is also improved by the

 Erasure
coding

High
replication

Medium
replication

Low
replication

0 offline recovered recovered recovered recovered

1 offline recovered recovered recovered failed

2 offline recovered recovered recovered failed

3 offline recovered recovered failed failed

4 offline recovered failed failed failed

Figure 6. System resilience

portability that follows the choice of J2ME as a platform
for implementation. This covers ease of redeployment and
resilience in heterogeneous environments.

5.3 Efficiency awareness
Effective power management in mobile devices is evidently
critical to their viability. Gurun et al [17] considered energy
consumption in a P2P structured system, and the main
conclusions of their investigation are that the application
layer management can help save energy, and that
lightweight protocols can improve performance and
reliability. The relevance of their approach at this level was
confirmed by a study of file sharing by Nurminem et al
[18]. In addition, one performance investigation on the
deployment of DHT-based mobile P2P systems [19]
indicates that one of the main sources of energy
consumption is due to the processing of incoming
messages.

The development of the proposed system is in line with the
first conclusions. Core design decisions were aimed at
minimising storage usage, computational load and therefore
communication load on individual nodes. Relevant
techniques include file compression, file fragmentation and
flexible fragment size. A significant reduction in the size of
the files and computational and storage costs was achieved
by applying compression algorithms. For the
implementation of SHA-1 and for the encryption
algorithms, light versions such as AESlight were introduced
in order to facilitate topology computations and improve
efficiency. Furthermore, three different schemes were
implemented with different efficiency levels; session
management falls within efficiency considerations.

The experiments conducted on the emulator provide a
sound basis for a comparative evaluation. These results are
however relative and are recorded in a small simulated
environment. The porting of the system and its deployment
to a real and wider mobile environment is likely to have an
adverse effect on memory capacity and on the overall
performance [20]. It is also worth noting that in a highly
mobile context the TCP protocol may not be suitable.

5.4 Related work
Attempts at deploying P2P systems over mobile
environments have been marked by the introduction of
various schemes. In Kato et al [21] a hybrid architecture is
proposed which integrates mobile devices into a P2P
system through the use of proxy nodes. The work is
marked by the implementation of appropriate protocols.
The development of Proem [22] was motivated by the need
to create an environment which facilitates application
development. JXTA is a framework which has
successfully integrated mobile devices and P2P systems
[23]. In contrast with earlier work where the focus was on
protocol optimization, Wu [24] proposes a layered

architecture for secure and trusted transactions in a mobile
environment. The work proposed in this paper relates to
the deployment of higher level protocols and applications.

File dispersal has been implemented in a number of
systems. The Farsite system [25] is an example where
reliability and high availability are addressed by replicating
an entire encrypted file on different nodes. This method is
easy to implement but the availability of the entire file on
each node makes it vulnerable to malicious attacks.
Furthermore, the transmission of multiple files can consume
a lot of bandwidth. Among the systems that implement an
information dispersal algorithm Cleversafe [16] relies on
the size of the fragment as a security barrier and does not
encrypt any data. The emphasis is on data reliability
through mere replication. A more focused approach to data
reliability and distribution is adopted in OceanStore [26]
where fault-tolerance is ensured by erasure coding. In
JigDFS [14] in the implementation of erasure coding, the
process is further refined by the recursive encryption of the
file fragments. IgorFS [27] is a distributed file system based
on a Chord-like network. It is similar to the fragmented
replication but the key generation involves a higher level of
iteration on the hashing and encryption functions.

With few exceptions, most of these systems ensure fault
tolerance through an IDA. They were developed however
for fixed and wired systems only. In contrast, the proposed
system is a P2P system for a mobile context. In addition to
the provision of two modes of file dispersal, the system is
also supported by a DHT-based overlay network.

5.5 Further work
The reliability of the system depends on the security
procedures of the system only, and assumes the existence of
trusted peers. This system is vulnerable to malicious peers
and to denial of service (DOS). This situation can be
remedied by the enhancement of the authentication process
by a certificate-based scheme, and by incorporating a trust
and reputation layer [5]. This additional layer can improve
the quality of file dispersal and retrieval. The resulting
system may be however very complex and incur prohibitive
storage and communication overheads.
Although a trust layer can improve the reliability of the
transactions it does not address the issue of the high churn
rate that occurs in P2P systems. A defective node can
destabilise the network and incur considerable overheads.
The viability of the file dispersal application is dependent
on a relatively stable environment. In the current
implementation the metadata is stored on the node that
initiated the dispersal and the system relies on J2ME
libraries for encryption and confidentiality. A higher level
of security can be achieved by dispersing the metadata
itself. This would be particularly relevant to erasure coding
because of its fault-tolerance. Further work should also aim
at optimising some of the functional components of the

system. Another important issue for consideration involves
the porting of the system to a real and larger mobile P2P
system and an evaluation of its behaviour. A more
fundamental matter concerns the constraints that DHTs
might impose on the viability of the distributed application.
The tight coupling between IP address and node identifier
may be an obstacle to the movement of mobile devices
across multiple administrative domains; a device may be
assigned different IP addresses. Some form of residual
dependency and forwarding may have to be considered.

6. Conclusion
This paper has presented a secure, reliable and efficient
system for file dispersal on a mobile DHT-based P2P
network. Various methods, technologies and lightweight
algorithms were integrated in the design and the
implementation in order to accommodate the characteristics
of the mobile systems and P2P networks. The system
manages to reconcile various requirements and to strike a
balance between reliability and security without sacrificing
efficiency. The availability of a number of encryption
schemes and of two modes of file dispersal is a key factor
in the flexibility and configurability of the system. It
enhances its resilience and its suitability to different
environments.

7. References
[1] Walkerdine J. and Lock S.; Towards Secure Mobile P2P

Systems, Second Int. Conf. on Internet and Web Applications
and Services (ICIW '07), 2007.

[2] Qureshi B., Min G., and Kouvatsos D.D. M-Trust: A Trust
Management Scheme for Mobile P2P Networks. The
IEEE/IFIP 8th Int. Conf. on Embedded and Ubiquitous
Computing (EUC 2010), 2010, pp476-483.

[3] Klein A., Mannweiler C.,Schneider J. and Schotten D.
Access Schemes for Mobile Cloud Computing. The 11th Int.
Conf. on Mobile Data Management, 2010, pp387-392.

[4] Wang Y. and Vassileva J., Trust and Reputation in Peer-to-
Peer Networks, The 3rd IEEE Int. Conf. on Peer-to-Peer
Computing, Sweden, 2003, pp150-157.

[5] Anane R., Marrocco S. and Bordbar B. Trusted P2P Group
Interaction. The 2nd Int. Conf. on Computer Science and its
Applications (CSA 2009), IEEE Publication, Korea,
December 2009, pp1-8.

[6] Stoica I., Morris R., Karger D., Kaashoek M.F. and
Balakrishnan H., “Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications”, MIT Laboratory for
Computer Science, SIGCOMM’01, August 2001, San Diego,
California, USA. http://pdos.lcs.mit.edu/chord/

[7] Rowstron A. and Druschel P. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer
systems, The 18th IFIP/ACM Int. Conf. on Distributed
Systems Platforms (Middleware 2001). Germany, November
2001.

[8] XLattice, Kademlia: A Design Specification,
http://xlattice.sourceforge.net/components/protocol/kademlia
/specs.html.

[9] Weatherspoon H., Kubiatowicz J., Erasure Coding Vs.
Replication: A Quantitative Comparison, 1st Int. Workshop
on Peer-to-Peer Systems, March 2002. p.328-338

[10] Rodrigues R. and Liskov B. High Availability in DHTs:
Erasure Coding vs. Replication, 4th Int. Workshop Peer-to-
Peer Systems (IPTPS 2005), New York, February 2005,
pp226-239.

[11] Castro M., Costa M. and Rowstron A. Performance and
Dependability of structured peer-to-peer overlays, Int. Conf.
on Dependable Systems and Networks (DSN-2004),
Florence, Italy, June 2004

[12] Bouncy Castle Crypto APIs, The Legion of the Bouncy
Castle, http://www.bouncycastle.org/

[13] A pure java implementation of the java.util.zip library,
http://jazzlib.sourceforge.net/.

[14] Bian J. and Seker R., “JigDFS: A Secure Distributed File
System”, IEEE Symp. on Computational Intelligence in
Cyber Security CICS '09. USA, March 2009, pp76-82.

[15]] Xiaobo L., Sikdar, B. A mechanism for detecting session
hijacks in wireless networks., IEEE Transactions on Wireless
Communications, Volume: 9, Issue: 4, 2010, pp1380 – 1389

[16] Advancing dispersed storage. http://www.cleversafe.org/.
[17] Gurun S., Nagpurkar P. and Zhao B. Energy Consumption

and Conservation in Mobile Peer-to-Peer Systems,
Proceedings of International Workshop on Decentralized
Resource Sharing in Mobile Computing and Networking
(ACM Mobishare), USA, 2006, pp18-23

[18] Nurminen J. K and Nöyränen J., "Energy-Consumption in
Mobile Peer-to-Peer - Quantitative Results from File
Sharing", 5th IEEE Consumer Communications &
Networking Conf. (CCNC), USA, January 2008, pp730-733.

[19] Kelényi I and Nurminen J.K: Energy Aspects of Peer
Cooperation . 43th IEEE Int. Conf. on Communications
(ICC 2008), Beijing, 2008.

[20] Wang, A.I., Bjornsgard, T. and Saxlund, K. Peer2Me - rapid
application framework for mobile peer-to-peer applications,
Int. Symp. on Collaborative Technologies and Systems, 2007
(CTS 2007), USA, 2007 , pp379-388.

[21] Kato T., Ishikawa N., Sumino H., Hjelm J., Yu H. and
Murakami S., A platform and Applications for Mobile Peer-
to-Peer Communications, 5th IEEE Consumer
Communications and Networking Conf. (CCNC 2008),
January 2008, pp1176-1180

[22] Kortuem G., Schneider J., Preuitt D., Thompson T.G.C,
Fickas S. and Segall Z. When Peer-to-Peer comes Face-to-
Face: Collaborative Peer-to-Peer Computing in Mobile Ad
hoc Networks, First Int. Conf. on Peer-to-Peer Computing
(P2P'01), 2001.

[23] Maibaum N. and Mundt T., JXTA: A Technology
Facilitating Mobile Peer-To-Peer Networks, IEEE Mobility
and Wireless Access Workshop (MOBIWAC 2002), pp7-13

[24] Wu X., Trusted Architecture for Mobile P2P Systems, 6th
Int. Conf. on Wireless Communications Networking and
Mobile Computing (WiCOM 2010), China, Sep 2010, pp1-4.

[25] Farsite. http://research.microsoft.com/en-us/projects/farsite/
[26] The OceanStore Project. http://oceanstore.cs.berkeley.edu/
[27] Amann B., Elser B., Houri Y. and Fuhrmann. IgorFs: A

Distributed P2P File System. 2008 Eighth Int. Conf. on P2P
Computing, Germany, 2008, pp77-78

