
Automated Prevention of Failure in Complex and Large Systems:
Fighting Fire with Fire

Behzad Bordbar and Philip Weber

School of Computer Science, University of Birmingham, UK
{b.bordbar, p.weber}@cs.bham.ac.uk

Abstract - People, businesses and economies are increas-

ingly dependent on Cloud and internet services. At the same

time, the systems on which these services are built are be-

coming more complex and interdependent. The cost of fail-

ure is high, but systems are too complex for human detection

of problems. We review methods for online fault diagnosis,

process mining and Virtual Machine Introspection. We sug-

gest bringing these techniques together for automated iden-

tification, diagnosis and prediction of risk of failure in large

systems. We present examples from telecoms and Cloud in-

dustries in support of these ideas.

Keywords: Models, process mining, diagnosis, failure pre-

vention, complex systems

1 INTRODUCTION

The Internet and the services it supports now play a key

role in most people’s daily lives, and in the day-to-day opera-

tion of business enterprises and nations. The Oxford Internet

Surveys 2011 [1] surveyed over 2000 respondents in Britain

and reported that over 80% of employees used the internet to

obtain news and information. Usage for other purposes and

by people in other ‘life categories’ was only slightly lower.

Students were the largest consumers of media via the internet

(over 90%), closely followed by other groups.

More importantly, the survey reported increasing levels of

use of the internet for accessing critical services such as bank-

ing, grocery shopping and paying bills. Increasingly, citi-

zens accessed government services online, with only 21% of

households lacking internet access. Use of online services

was highest among the young, wealthy and well-educated.

New technologies such as Cloud and virtualisation are en-

abling the move to internet-based systems architecture. Cloud

enables computing resources to be provided on demand ac-

cording to a utility model, using many instances of commod-

ity hardware and software components shared between ser-

vices. Costs of set up and ongoing provision of new services

are thus reduced, since payment is only for the resources or

time used. Businesses need no longer invest in costly in-

frastructure [2], [3]. Virtualisation abstracts services from

the hardware, operating systems, storage and network. This

makes the resources more flexible, increasing business value

by increasing agility and resilience. Services are democra-

tised by use of open Service-oriented Architectures (SoA) and

standards such as SOAP and HTTP. The success of public

clouds has seen private versions of the same concepts imple-

mented within businesses.

However, new technologies and pace of change present new

risks from system problems, and new opportunities for nefar-

ious activities such as malware and cyber-attack. Heteroge-

neous systems (cloud and open standards) duplicated many-

fold may all be affected by the same bug, security breach or

performance problem [3]. Shared resources mean one prob-

lem may affect many services, and introduces the risk that

the activities of one business may impact those of another.

A business abstracting its infrastructure to a Cloud platform

faces new questions of availability and performance unpre-

dictability. Well documented outages to cloud services (see

for example references from [2]) have taken many hours to

resolve, each outage affecting many services.

Security can also be a concern. As far back as 2004, Byres

et al. reported a steady rise in reported incidents of industrial

problems caused by ‘cyber attacks’ [4]. They attributed this to

increased use of heterogeneous interconnected systems, and

the increasing attractiveness of targets due to the wide con-

sequences possible. These factors are multiplied in today’s

online environments. Water [4] and power transmission in-

dustries [5] are given as examples of interconnected, critical,

vulnerable industries which have been the subjects of attacks.

The security viewpoint provides extreme examples of the

seriousness of potential damage caused by problems or at-

tacks on highly interconnected systems, the difficulty of con-

taining such problems and their potential to spread beyond

the ‘cyber’ world to physical effects. Examples are the the

Stuxnet attacks on Iranian nuclear facilities (e.g. [6]), and in-

dustrial ‘cyber-crime’ using ‘botnets’ (networks of many hi-

jacked connected computers), reported to be responsible for

disruption to Estonia’s national networks in 2007, and in the

2008 Russia-Georgia war among others (also [6]).

We conclude that reliability of online services is of cru-

cial importance. Problems may affect very many people si-

multaneously, prevent access to critical services, and have the

greatest impact on the most economically and politically ac-

tive groups. Service outages thus have the potential to impact

economies, enterprises and national governments, both finan-

cially and through damaged reputations. ‘The major problem

for cloud computing is how to minimise such kinds of out-

age/failure to provide reliable services’[2]. A major challenge

is how can we deliver such crucial services reliably while re-

ducing cost?

In this paper we consider the internet- and cloud-based tech-

nologies underlying these services and describe three of the

techniques used to tackle the above challenges. First we intro-

duce model-based methods for automated detection of faults

or undesirable scenarios using automated ‘Diagnosers’ (soft-

ware modules or services) to diagnose occurrence of failure or

undesirable scenarios in real time or near real time. Model-



based techniques are powerful, but sometimes there are no

models of the system available or it is very costly or even im-

possible to produce a model of the system. For example, sys-

tems produced from merging of legacy systems are often too

complex and large to be modelled. Often there is no access to

the designers of such systems and it is costly to re-engineer

a model. However, most modern systems produce logs cap-

turing run-time information for various purposes. The sec-

ond group of techniques discussed in this paper applies Pro-

cess Mining to extend this diagnosis framework to situations

where we do not have models of the system. Finally, we ad-

dress the specific challenges of diagnosis of faults related to

occurrences of malicious behaviour in Cloud. There are simi-

larities between malicious behaviour as malware writers tend

to use components available on the web which are used in ex-

isting malware. We present a framework which uses symp-

toms caused by using such components to discover newly

emerging malware. We present examples from telecoms ser-

vices and security in the Cloud to describe the three sets of

methods.

The paper is organised as follows. In section 2 we intro-

duce terminology and concepts necessary for the remainder

of the paper, particularly to specify what are system failures

or undesirable behaviours. Section 3 describes the problem

in more detail. The core of the paper is sections 4, 5 and 6 in

which we discuss in depth our methods for diagnosis. Section

7 concludes the paper.

2 PRELIMINARIES

We describe terminology and concepts necessary to under-

standing the rest of the paper.

2.1 Service-Oriented Architectures (SoA)

A SoA is a distributed business application architecture

where heterogeneous components communicate and provide

services to each other using open standards. Examples of

open standards are WSDL [7] and XSD [8], which are used

to define the interfaces between services, and communica-

tion protocols such as SOAP and HTTP. The use of such

open standards means that the services and protocols can be

changed with minimal impact on the service. A simplified

SoA, for broadband failure resolution in a telecoms business,

is illustrated in Fig. 1 (described in full in section 4).

Most essential is the business process describing how these

services interact to complete the task such as resolving a fault.

2.2 Business Processes and Process Mining

Business processes describe activities carried out to fulfil

a business function, and the relations between them. Among

other aspects we may describe the process ‘control-flow’, i.e.

how the activities are related; interactions between people and

organisations; or business rules or constraints. In this paper

we are concerned with the control-flow. Business process are

commonly represented formally by languages such as BPEL,

BPMN and Petri nets. Figure 2 shows a BPMN model of part

of the business process for broadband fault resolution.

Figure 1: An interaction between the Customer and System

Let A be a set of business activities. A single pass through

the business process from start to end task is a case, for exam-

ple processing one order, The events of their occurrence are

recorded in an Event log E. We assume that as a minimum,

each event e is recorded with a case ID c, activity name a ∈ A
and timestamp t. An event log can then be represented by a

non-empty set of triples

E = {e : e = (c, a, t)}+, (1)

assuming that timestamps are unique. Process mining algo-

rithms [9], [10] use workflow logs to learn models of the busi-

ness processes. We discuss process mining in section 5.

Process mining algorithms often assume that events are

atomic (taking no time), are uniquely labelled (the same label

always refers to the same event and vice versa), and make no

use of additional information such as timing of events, merely

the order in which they are recorded. We assume that the un-

derlying process to be discovered is unchanging.

If the activities in our example service were encoded with

symbols a, b, . . . from some alphabetΣ then (abstracting from

detail) the ‘trace’ of one possible enactment of the process

might be recorded in the event log as a string, e.g.‘abcdef ’.

These strings are also called traces. A workflow log W is a

multiset over traces,

W = {x : x ∈ Σ+}+, (2)

e.g. W = {abcdef, abcdef, abcdeg, . . .}.

2.3 Discrete Event System

A Discrete Event System (DES) is a ‘discrete-state, event-

driven system whose state depends on the occurrence of asyn-

chronous discrete events over time’ [11]. DES uses models to

curb complexity. We can define a general model of a DES as

a tuple G = (X,Σ, δ, x0, A, L), where

• X is a set of states,

• Σ is a set of events,

• δ ⊆ X × Σ×X is a set of transitions between states,

• x0 ⊆ X is a set of initial states.

• A is an alphabet of event labels, with labelling function

L : Σ → A.



Figure 2: Customer Service BPEL, with some process struc-

tures highlighted (sequences A, F, G, XOR splits B, C, D, E).

Such a model can be realised using various modelling lan-

guages including automata, Petri nets, Workflow graphs mod-

els [12], [13] or ad hoc graphical representations. We do not

give details here.

2.3.1 Observable and Un-Observable Events

Events τ ∈ Σ are partially observable (an event is either

observable or unobservable), i.e. Σ = ΣO ∪ ΣUO where

ΣO ∩ΣUO = ∅.

Some unobservable events indicate failure, i.e.

Σf ⊆ ΣUO

We do not concern ourselves with observable failure events,

which can be handled trivially, without need for diagnosers.

There may be different types of failure, i.e. Σf is partitioned

Σf = Σf1 ∪ Σf2 , . . . ,Σfn ,

such that Σfi ∩ Σfj = ∅, 1 ≤ i < j ≤ n.

Let string σ = τ1τ2τ
′

3τ4τ5τ
′

6, . . . represent a sequence of

events generated by G. Of these events only a subset are ob-

servable, e.g. τ ′3, τ
′

6.

Definition 1 (Projection to Observable Events). We define a

mapping P to project sequences to just the events which are

observed,

P : Σ → ΣO ∪ {ǫ} such that (3)

P (α) =

{

ǫ if α /∈ Σ0, i.e. α is not observable,

α otherwise, where

ǫ is the identity of the alphabet, i.e. αǫ = ǫα = α, α ∈ ΣO.

Definition 2 (Extend P to Sequences of Events). Let

P : Σ∗ → (Σ0 ∪ {ǫ})∗, where

P (α0α1 . . . αn) = P (α0)P (α1) . . . P (αn). (4)

For example, P (τ1τ2τ
′

3τ4τ5τ
′

6) = τ ′3τ
′

6.

2.4 Cloud and Introspection of Virtual

Machines

Benefits of moving to Cloud are well publicized; adopting

could result in lower cost of IT due to the economics of scale,

reduce the up-front cost for infrastructure, decrease the time

to market by using off-the-shelf components, and boost the

‘Green’ credentials of the company [14]. However, in order

for the Cloud environment to be profitable, there is temptation

to homogenize the applications and operating systems used.

But as the Cloud becomes more homogeneous, it will pro-

vide bigger and richer targets for attackers; places where the

attacker may be confident of finding lucrative information or

where disruption will have the greatest impact. As a result,

ensuring security of the cloud is seen as a major engineering

challenge [15]. In the next two subsections we shall give a

brief description of two of the technologies used in Cloud.



Figure 3: Virtual Machine Architecture

2.5 Virtualisation

Virtualisation is ‘A framework or methodology of dividing

the resources of a computer hardware into multiple execution

environments. . .’ [15]. Virtualisation relies on Virtual Ma-

chines (VMs), software that emulates or simulates the capa-

bilities of the hardware. It is capable of running a complete

operating system along with any applications that run on top

of that OS [16]. Fig. 3 depicts a high level view of Xen [15],

which is an open source virtualisation software based on ‘par-

avirtualization’ technology. In this architecture, the Virtual

Machine Monitor (VMM) is an abstraction of the underlying

physical hardware and provides hardware access for the dif-

ferent virtual machines. Xen includes a special VM called

Domain 0 (Dom0). Only Domain 0 can access the control

interface of the VMM, through which other VMs can be cre-

ated, destroyed, and managed. This powerful VM is used to

create other Virtual Machines that can access the hardware

through secure interfaces provided by Xen. In addition it

is possible to create other virtual machines that can access

the physical resources provided by Domain 0’a s control and

management interface in Xen. Virtual Machines are heav-

ily used within the Cloud. In addition to the advantage of

running multiple operating systems simultaneously, Virtuali-

sation reduces the cost of infrastructure implementation and

the associated cost of maintenance by optimising the utilisa-

tion of resources. A user can ask for new VMs when extra

resources are required and decommission some of the VMs,

when they are no longer required. Virtualisation also makes

it possible to secure the VMs by a powerful technique, which

is commonly known as Virtual Machine Introspection.

2.6 Virtual Machine Introspection

Virtual Machine Introspection (VMI) can be defined as a

virtualisation based technique that enables one guest VM to

monitor, analyse and modify the state of another guest VM

by observing its virtual memory pages. Such introspection

can be carried out by a VMM that hosts the VM or another

VM which has been granted special privileges by the VMM.

VMI will allow product developers and researchers to move

the security related software out of a probable target host or

VM and take advantage of the host’s lack of awareness to de-

tect any malicious events or code that is being executed in

runtime. One of the early methods of introspecting a Virtual

Machine from an external VM is by Garfinkel and Rosen-

blum [14]. They used VMI to develop an Intrusion Detection

System (IDS), called Livewire, for a customized version of

VMWare Workstation for Linux. VMI techniques have also

been used in Digital Forensics [17] and [18]. Hyperspector

[19] implemented another Intrusion Detection System for dis-

tributed computer systems using VMI to isolate the IDS from

the servers that they monitor. These isolated IDSs are located

inside distinct VMs which are termed as IDS VM. There are

also commercial products built using VMI technology [20].

3 PROBLEM STATEMENT

As discussed in the introduction, we see a proliferation

of online public services provided over the internet. These

services are provided by multiple suppliers, whose informa-

tion systems interact through standards-based ‘services’ (e.g.

SOAP, HTTP). At the same time, the information systems

providing these public services are evolving towards Cloud

infrastructures comprised for example of many homogeneous

commodity servers with standardised operating systems, ap-

plications and hardware. This allows computing services to

be provided as a utility, with virtualised hardware and ap-

plications, and the consumer of services unaware of how or

where they are hosted.

At the same time, people, corporations and governments

are more dependent on these services. So the cost of service

failure is high, while at the same time risks are multiplied.

Heterogeneity of systems mean a system problem or success-

ful attack can have rapid, widespread effect, while pooled re-

sources increase the attractiveness of targets. However the

complexity and interconnectedness of systems means they are

impossible for humans to diagnose.

The problem we face is how to detect, diagnose and predict

problems in such system architectures. We discuss this under

three headings. Firstly we look at model-based online fault

diagnosis. Next we discuss using Process mining techniques

where models are not available, and finally we discuss some

results in prediction of problems in cloud-based systems.

4 MODEL-BASED DIAGNOSIS OF

FAILURE

Models representing Internet-based systems are partially

observable. The growing trends of using Service oriented

Architecture means that services are developed and their in-

terfaces are made available for the users. As a result, busi-

ness processes models are produced that capture external be-

haviour of the system by accessing the interfaces of the ser-

vices while the internal behaviour remains hidden from the



Figure 4: Diagnosis of Fault

users. As a result such models are inherently partially observ-

able. In this context, as depicted in Fig. 4, diagnoser services

(sometimes called Monitors or simply Diagnosers) are them-

selves services which receive sequences of observable events

produced by the system and identify if a failure has happened

or may have happened, in addition to the type of failure. Pro-

ducing Diagnosers deals with two challenging issues:

1. is the system Diagnosable? i.e. whether it is possible

to create a Diagnoser, and

2. creation of algorithms to construct Diagnosers from any

given model.

The theory of Diagnosability of partial observable systems

for Discrete Event Systems is well developed. Sampath et

al. [21] in their seminal paper formulate Diagnosability and

present a necessary and sufficient condition for Diagnosabil-

ity. They also provide an algorithm for creating Diagnosers

for Regular Languages. In their approach failure is modelled

as transitions. Sampath et al. [21] has been extended to larger

categories of models such as Petri nets [22]–[24] and even

temporal logic [25], among others. The following definition

from [26] extends the classic definition of diagnosability [21].

Definition 3. Consider a Petri net N with an initial marking

M0, which has no deadlock after firing of a transition which

represents failure. We say N is Diagnosable if there are no

two firing sequences s1 and s2 satisfying the following con-

ditions:

1. P (s1) = P (s2),

2. no failure transition appears in s1,

3. there exists at least one failure transition in s2

4. It is possible to make s2 arbitrarily long after the occur-

rence of a fault.

The above definition states that in a diagnosable system it

is not possible to come across any two execution sequences

with the same observable behaviour (P (s1) = P (s2)), so that

only one of them has a failure transition. The part about ‘. . .
arbitrarily long after the occurrence . . . ’ is to ensure that the

systems continues long enough after occurrence of failure and

is also present in [21]. The classic theory of Diagnosability

which was originally designed for DES has now been adopted

to develop Diagnosers for Service oriented Architectures and

Telecom services [27]–[33], [13]. In these approaches, a num-

ber of services are considered in a SoA, as depicted in Fig.

5. We assume that models of such systems exist and failure

which is going to be diagnosed is also modelled. Then, if the

system (consisting of all involved services) is Diagnosable a

new service is created and integrated in the infrastructure to

use observable events and establish occurrence and type of

Figure 5: Diagnoser in a SoA

failure. Our recent work also uses code generation techniques

to produce the Diagnosers and interfaces for integrating them

into the system automatically [30]–[32].We shall explain this

process with the help of an example [32].

Example 1. Right-First-Time failure. Consider a simplified

interaction between a customer and a number of services in

a typical Telecommunication Company for technical support

related to the Broadband connection.

As depicted in Figure 1, the customer logs1 onto the com-

pany website and enters details such as the account number.

Choosing the ‘Broadband problem’ option, he submits his

form online. Next, the company’s Check Customer Account

(CCA) service determines whether the customer account is

in a satisfactory condition in order to progress the fault re-

port. If the current status of the account is not satisfactory the

customer is advised to phone the call center and the process

ends. If the account status is satisfactory, the CCA invokes a

request to another service called General Evaluation Services

(GES). The GES examines the availability of service at the

exchange side and ensures that everything is up and running,

in which case the process moves to the next step. If GES

identifies any problem with the availability of the services at

the exchange side, the customer is informed of the status and

a separate process is invoked to deal with this problem (not

shown as part of this example). If everything is fine on the

exchange side, the Customer Services sends a request to Line

Test Service (LTS), which is an automated service to check

line status up to the customer premises. However, LTS can

also indicate problems on the exchange side which were not

detected by the GES. There are three possible outcomes: 1)

the line has no problem, move to next step, 2) the line has

some problems, advise the customer or 3) There is no prob-

lem with the line, although there is likely a problem with the

exchange. Option 3 is shown by the bold arrow in Figure 1.

If case 3 happens, a failure emerges which means that GES

should repeat its course of action violating Right-First-Time.

Finally, LTS sends a request to analyse data history in the

customer router. If it is possible to carry out analysis then get

a decision from the analysis algorithm (either all OK so the

customer has to call technical support, or the analysis finds

1We assume that the Customer can log into the company’s website, for ex-

ample supposing the customer is not happy with the speed of his Broadband

connection.



the problem and customer is advised what to do).

For the details of the method of automated production of

the Diagnoser we refer the reader to [32], where four methods

of integration of the Diagnoser are also described. We make

use of the models of the system that represent the interaction

between the involved services. Figure 2 shows the example of

the model used in BPEL. We converted this model based on

the formalism suggested by Vanhatalo et al. [34] which draws

on Petri net theory so that to apply Petri net Diagnosability

theory techniques. Without such a model and formulation of

failure, it is not possible to design Diagnosers on the basis of

this technology. In the next section, we focus on techniques

which are applicable to scenarios where models of the system

are not available.

5 MONITORING OF LARGE SYSTEMS

VIA LOGS USING PROCESS MINING

In the previous section we discussed automatically produc-

ing Diagnosers for near identifying failure in near real time.

These require a model of the system to be diagnosed. In this

section, we ask what we can do if there is no model, for in-

stance if the services are built on legacy systems or is too

complex or poorly understood to model. In this case we first

need to find a model of the system to which we can apply

Diagnosers. For this we use Process Mining.

Figure 1 showed a simplified problem resolution process

from telecoms, implemented using a SoA. In a more complex

example, this might be spread across several service providers

(business entities). Each part of the process will involve in-

formation systems, so events pertaining to the business pro-

cesses (e.g. Fig. 2) may be recorded in multiple event logs

Ei. Assuming event logs defined as in (1), the Ei can be eas-

ily merged and traces extracted into a single workflow log W .

This log contains full process traces from start to end activity,

e.g. from the customer loggin in to the website, to resolution

of the problem.

Process mining [9], [10] is the discovery and analysis of

models of business processes from workflow logs. A pro-

cess discovery algorithm Φ uses a minimal log such as W
to attempt to recover a model M of the ‘control flow’ of the

underlying process, such as that in Fig. 2, i.e.

Φ(W ) → M (5)

The recovered model M represents the ‘true’ business pro-

cess and can be compared with an ‘assumed process’M ′ (Fig.

6), used to troubleshoot differences, check adherence to busi-

ness rules, SLA and audit requirements. Mined model M can

be extended (e.g. with performance information) and used

for performance analysis and identifying bottlenecks. M may

also be used for planning, e.g. of business change, load bal-

ancing or energy efficiency by using as a basis for modifi-

cations, simulating the changed model. Models showing the

interactions between people or organisations can be used to

analyse the efficiency of work practices.

Many algorithms have been proposed for the control-flow

discovery aspect of process mining. These start from differ-

ent theoretical bases, or focus on different priorities. We refer

Figure 6: Process Mining

the interested reader to references in [9], [10], [35] for fur-

ther details of algorithms. Business processes are often char-

acterised by structuredness and concurrency: process models

are (ideally) composed of substructures such as sequences and

matching splits and joins, and activities or parts of the process

may take place in parallel.

As a simplified example of a process discovery algorithm

we outline the Alpha algorithm [36]. Consider two events a
and b from the set of activities A belonging to a process M
recorded in a workflow log W . These two events must be

related in one of four relations, defined as follows.

• a → b (a may appear immediately before b in traces in

W , never b before a), or conversely

• b → a,

• a ‖ b (sometimes a appears immediately before b,
sometimes immediately after),

• a# b (a and b are always separated by at least one other

activity).

The algorithm processes workflow log W to determine the

relation between each pair of activities (a, b) ∈ A×A. From

this set of relations compiled for each pair of activities, a Petri

net is created that satisfies all these relations. Note that this

assumes that events are always recorded correctly in W .

One key question that arises is, if a is seen before b thou-

sands of times and b before a only once, should this be in-

terpreted as a mistake in the log or a rare scenario? In gen-

eral this question can only be answered with knowledge of

the business environment or service, and different algorithms

make different assumptions.

So using a process mining algorithm such as Alpha we can

discover process models as a basis for the diagnosis tech-

niques described in the previous section. However,workflow

logs can be large, and processing them can be computation-

ally expensive (or data can be expensive or time-consuming

to collect). Can we minimise the amount of data we need to

use? How many process traces do we need to be confident

that the model we have mined is the correct one? We next

look at these questions.

5.1 Real Time Business Process Mining

(RTBPM)

In this section we outline a probabilistic framework for

considering process mining questions (for a fuller presenta-

tion see [35]). This provides a rigorous basis for answering

questions such as ‘how many traces do we need to be confi-

dent in the results of mining?’, ‘how different are two mod-



els?’, and ‘what is the probability that a detected fault is real

and not an artefact of the data?’.

We here describe using this framework to determine the

probability of identifying an undesirable scenario. Given a

workflow log W , what is the probability Pf of identifying a

failure or undesirable scenario, if we only use X% of the log?

Conversely, given a desired Pf , can we calculate X?

To answer such questions involving uncertainty, we first

need a probabilistic framework within which to consider busi-

ness processes and process mining. Whereas business pro-

cesses have traditionally been viewed as languages over ac-

tivities, with no probabilistic structure, we consider business

processes as probability distributions over strings of activities

(‘traces’). The primary task of a process discovery algorithm

is to learn these distributions.

As introduced in section 2.2 we represent activities as sym-

bols from a finite alphabet Σ, and traces as strings x ∈ Σ+.

We assume a probabilistic model for the generation of event

traces, i.e. that traces are drawn into the event log i.i.d. (in-

dependently and identically drawn). The true business pro-

cess M is modelled by a probability distribution PM over

traces, where the probability of a trace x is PM (x), such that
∑

x∈Σ+ PM (x) = 1. As before, the workflow log W is a fi-

nite multiset over Σ+, now understood to be drawn i.i.d. from

PM . The task of a process mining algorithm is to learn from

W a distribution PM ′ , to approximate PM .

We are now assuming that we have a correct process model

M of the system, e.g. previously mined from a ‘large’ log.

We want to use process mining to monitor the system for fail-

ure, so the question becomes how many traces n do we need

to use from the log W to be confident in mining M correctly?

If we answer this question, we can be confident that if we use

n traces and mine a significantly different model M ′, then the

underlying process changed and we may have a fault scenario.

Since processes are distributions over traces, we use dis-

tances between distributions, such as the Euclidean distance,

to test for significant difference between models, e.g.

d2(PM , PM ′) =

√

∑

x

(

PM (x) − PM ′(x)
)2

> ǫ, (6)

for small 0 < ǫ ≪ 1

We use the Alpha algorithm [36] as an example. First

we consider the basic substructures from which business pro-

cesses are constructed, highlighted for example in Fig. 2.

For acyclic processes, Alpha can discover sequences of ac-

tivities, exclusive (XOR) splits (to alternative sequences of

activities) and parallel (AND) splits (to parts of the process

that may execute concurrently) and the corresponding join

structures. Next we analyse the probabilistic behaviour of the

algorithm to produce formulae for the probability of success-

ful mining of these substructures, in terms of the probabilities

in the model and n, the number of traces used for mining.

These probabilities for discovery of structures can be com-

bined to give the probability of successful mining by Alpha

of the whole model M .

The discovery of structures in the model can be treated

as conditional on the discovery of ‘earlier’ structures in the

model, so if M is the example model in Fig. 2, then

Pα(M) = Pα(A)× Pα(B|A) × Pα(C|B)× . . . , (7)

where Pα(S) is the probability of Alpha correctly mining

structure S, Pα(M) the probability of mining the full model.

These probabilities are given in terms of n (the number of

traces in the workflow log used for mining) and probabilities

of substrings in the log.

To obtain the number of traces n needed to ensure that with

confidence Pc the algorithm will produce the correct model,

we invert the equation and fix a desired confidence in the min-

ing results, Pα(M) = Pc. Thus when a model is mined from

a log of n traces, if the distance between the true and mined

models d(M,M ′) > ǫ (equation 6), then with probability

Pf = Pc we have identified a fault.

The Alpha algorithm is relatively simple and makes many

assumptions, e.g. no noise in the recording of the traces,

and that the underlying process can be modelled by a re-

stricted Petri net (Structured Workflow Net). However the

same method can in principle be applied to any process min-

ing algorithm.

6 MONITORING EMERGING

MALICIOUS BEHAVIOUR

Having discussed using model-based Diagnosers to iden-

tify known faults, and process mining to learn unknown busi-

ness process models from logs, in this section we ask whether

we can diagnose a new fault which we have not seen before.

This seems impossible in general. However it is possible in

some cases to discover failure which is associated to emerg-

ing behaviour which has not seen before. In this section we

give an example of such failure detection technology. The

proposed method can be compared to the use of symptoms in

human pathology, in which study of symptoms directs physi-

cians to diagnosis of a disease or possible causes of illness.

Observing unusual symptoms, even a physician cannot iden-

tify the illness, he will be alerted to conduct further exper-

iments or to ask for expert advice. In that sense, from the

observation of unusual symptoms the possibility of illness is

discovered. In this section we argue that modern malware

is becoming component wise. We also argue that in an en-

vironment such as Cloud in which introspection is possible,

components used in malware produce symptoms. As a result,

similar to pathology, observing of the symptoms can lead to

discovery of possible malicious behaviour which can be new

malware, or malware created from components used in old

malware.

6.1 Reuse of Components and Techniques in

Modern Malware

A malware writer must overcome a large number of obsta-

cles to reach his objective. Among them, there are problems

related to how to gain entry to a machine, how to install ma-

licious code, how to evade detection, how to prevent the in-

fected machine informing the owner, how to propagate, how

to make analysis difficult, how to stop other malware writers



to gain access to an infected machine and so on. Considering

the sophisticated nature of modern defence, solving all these

problems demands huge resources. In addition, a low quality

malware might ‘give the game away’ resulting in alerting se-

curity experts of the vulnerabilities of the target system. As

a result, malware developers reuse the existing components,

algorithms and techniques to improve the quality of the code.

Some of the reuse is of legitimate components, for example

using existing encryption libraries, and some are illegal soft-

ware available online [37]. Consequently, it is common to

come across variants of the same script within various mal-

ware products [38].

6.2 Symptoms That Point to Malicious

Activities

Reusing code or techniques can leave symptoms behind.

For example, a wide range of malware disables the defences

of the system by stopping the antivirus software. Conficker

[39] for example is a well-known computer worm that targets

the Microsoft Windows operating system and forms a bot-

net. in the Conficker C, 23 processes are immediately aborted

whenever they are discovered running on the victim host, in-

cluding sysclean, tcpview, wireshark, confik and autorun. See

page 12 of [39] for a list. Absence of Antivirus software from

the Process Table of a system can be seen as a symptom that

points to the possibility of malicious behaviour. Of course,

it is possible that the Antivirus has been stopped for various

legitimate reasons. Other examples of symptoms are unusual

values for registry keys, or existence of high entropy code as-

sociated with encryption, which is essential for the malware

when communicating with the malware writer. For a list of

symptoms see [40], where we have included a list of symp-

toms which we have come across when studying well known

malware.

The key point is that appearance of the symptoms can be a

reason for further investigation. In particular, observing more

than one symptom can convince us of the greater possibility

of an undesirable behaviour. This is similar to the patient who

is suffering from a disease which has caused multiple symp-

toms. Shifting the attention to looking for the symptoms, as

opposed to looking for the malware that creates the symp-

toms, can alert us of existence of malicious behaviour.

6.3 FVMs and Monitoring of Malware While

Remaining Hidden

To cope with sophisticated defence mechanisms deployed

in modern systems, malware writers have developed tech-

niques to remain hidden. For example, a common practice

is to stop an infected system from contacting security vendors

such as antivirus providers. In some extreme cases, malware

writers can completely incapacitate the system by conduct-

ing aggressive actions such as killing the operating system

to cover their tracks [37]. However, it is very difficult to re-

main invisible to someone viewing from ‘outside’ when VMI

is used. Relying on VMI, the external viewer can observe

the changing state of a VMs memory, processes that take in-

ordinately long times to initialize, snippets of program code

Figure 7: Forensic Virtual Machine Architecture

that has been obfuscated, snippets of code containing known

crypto algorithms, or any modifications to the system code.

Fig. 7 depicts the outline of the approach suggested in this

paper. It shows a number of small independent VMs, called

Forensic Virtual Machines (FVMs), which have been given

the capability to inspect the memory pages of specific Cus-

tomer Virtual Machines. Once a symptom has been detected,

then the FVM reports its findings to other FVMs via secure

multicast. In such cases, other FVMs will be prompted to in-

spect the VM for additional symptoms. In addition, when

a symptom is discovered, this fact is reported, via Dom0,

to a Command & Control centre. The Command and Con-

trol Centre correlates this information with information from

other sources to identify an appropriate mitigation. For in-

stance, the Command & Control, through the Dom0 and hy-

pervisor, can ‘freeze’ the customer’s VM by denying it any

CPU cycles as a result to stop the malicious activity. The

memory will remain frozen until it can be forensically exam-

ined or copied for further analysis.

FVMs make use of the computational resources that could

otherwise be allotted to the customers VMs. As a result,

management of the efficient allocation of the resources to

the FVMs is crucial. In particular, creating and deploying

an FVM is computationally intensive. In addition, perma-

nent monitoring of an FVM is costly and wasteful, as the

symptoms are expected to appear sparsely. We have designed

the FVMs so that they regularly change their target Customer

VM. To achieve this, a distributed algorithm is created to al-

low the FVM to schedule moving its searching process from

one Custome’s VM to another. We refer to such algorithms as

mobility algorithms. For an example of a mobility algorithm

see [40].

6.4 Limitations

The proposed approach has a number of limitations. Firstly,

the suggested approach cannot cope with malware products

which do not make use of component or existing algorithms.

This although it seems unlikely is not impossible. Secondly,

compromising Dom0 will allow taking over the virtualisation

layer. To the best of our knowledge this has not happened yet.

Securing the virtualisation layer is the subject of extensive re-

search and technical innovations and will possibly define the

battleground between malware writers who focus on Cloud.



Thirdly, it is possible to detect if a system is running on a vir-

tualised environment. This would alert malware writers who

wish to remain undetected to stay away from Cloud and focus

on systems which are not virtualised.

7 CONCLUSION

In this paper we argue that the problem of ensuring cor-

rect functioning of modern systems is essential, due to their

ubiquity and involvement in every area of modern life. We

presented three examples of how we can approach these prob-

lems. Firstly, when we have a model of the system to be diag-

nosed, and secondly using logs to produce such a model when

one does not already exist. Finally we discussed the situation

when we are interested in emerging behaviour, such as de-

tecting new malware threats in the Cloud, from the symptoms

they present.

These examples all deal with very large and complex prob-

lems, where the size, complexity and amount of computa-

tion involved means it is not possible to manually avoid or

even detect any the failures in the above categories. There-

fore we have no no choice but to use computational resources

to deal with the problems. As a result we are ‘fighting fire

with fire’, using modern, distributed computing techniques

to deal with faults caused within modern, highly distributed

computer based systems.
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