
A Principled Approach to Mining From Noisy Logs

Using Heuristics Miner

Philip Weber, Behzad Bordbar and Peter Tin̂o

School of Computer Science, University of Birmingham, UK

Email: {p.weber,b.bordbar,p.tino}@cs.bham.ac.uk

Abstract—Noise is a challenge for process mining algorithms,
but there is no standard definition of noise nor accepted way to
quantify it. This means it is not possible to mine with confidence
from event logs which may not record the underlying process
correctly. We discuss one way of thinking about noise in process
mining. We consider mining from a ‘noisy log’ as learning a
probability distribution over traces, representing the true process,
from a log which is a sample from multiple distributions:
the ‘true’ process model and one or more ‘noise’ models. We
apply this using a probabilistic analysis of the Heuristics Miner
algorithm, and demonstrate on a simple example. We show that
for a given model it is possible to predict how much data is
needed to mine the underlying model without the noise, and
identify differences in the the robustness of Heuristics Miner to
different types of noise.

I. INTRODUCTION

Process mining is the learning of models of business pro-

cesses, from event logs produced by the information systems

used by the business. Process mining can be broadly split into

three main areas [1]. We are concerned in this paper with

process discovery, producing models to show the activities

which take place and the relations between them.

We use as a running example the artificial process illustrated

in figure 1. This is a simplified process for ordering a product

from a supplier. When an order is received, stock is checked,

and either the item picked from the warehouse, or the order

rejected. Despatch and billing take place in parallel, then after

checking payment, a receipt is issued or the payment chased

before the order is closed. Abstracting from detail, the ‘trace’

of a single enactment of the process may be encoded as a string

iabdefgo. This process can be considered as a probability

distribution over such strings.

One key challenge in process mining (C6 in the Process

Mining Manifesto [2]) is mining from noisy logs. In machine

learning, noise generally refers to data errors such as signal

error, variations in measurements, or random errors in data

labels for classification. This would relate in process mining

to problems in the recording of event logs. However, in process

mining the term ‘noise’ tends to be used to refer to infrequent

behaviour [1]. In either case we face the same problem. We

wish to use some of the evidence in the event log to build our

process model, while ignoring other evidence, and to end up

with a model of ‘reasonable complexity’.

To the best of our knowledge there is no standard or rigorous

method for defining noise in the process mining context nor

the effect which it has on the learning behaviour of algorithms.

Fig. 1. Simplified Business Process for fulfilling an Order, highlighting
Process Structures and types of Splits and Joins).

Without such a foundation, it is not possible to compare

and predict the behaviour of algorithms in noisy situations.

Practically, we cannot describe ‘how much’ noise a particular

algorithm can handle, nor how much data we should use

to mine the true underlying model but exclude noise. These

are important questions, since errors such as disk failure,

software bugs or erroneous use of systems can lead to errors

in logs. Process mining is also often used in complex business

environments such as healthcare (e.g. [3]), where to produce

manageable process models of the core process behaviour, it

may be desirable to leave out infrequent process paths.

In this paper we describe for the first time one formal

model of noise in process mining. We present a summary of

a probabilistic analysis of the Heuristics Miner algorithm [4],

which is designed to handle noise. We apply this analysis to

the running example (figure 1) and simple artificial models

of noise affecting it. We conclude that using our model of

noise and this type of probabilistic analysis, conclusions can

be drawn about how much noise of different types a process

mining algorithm can handle. We also show that Heuristics

Miner is better able to deal with some types of noise than

with others, and that for known models, we can use these

methods to predict the number of traces needed to safely mine

the underlying model without being affected by the noise.

II. PROBABILISTIC VIEW OF PROCESS MINING

To investigate a formal model of noise and its effect on

learning process models, we outline a probabilistic view of

process discovery, described in full in [5]. We view the control-

flow aspect of business processes as distributions over strings

of symbols which represent process traces. Activities are

represented by symbols {a, b, . . .} from a finite alphabet Σ,

traces as strings x ∈ Σ+. A business process M is modelled

by a probability distribution PM over traces. The probability

of trace x is PM(x), such that
∑

x∈Σ+ PM(x) = 1. An event

log (workflow log) W is a finite multiset over Σ+, drawn i.i.d.

from PM. The basic task of a process discovery algorithm

is to learn from W a distribution PM′ , to approximate PM

(which may be unknown). We consider here only acyclic

process models (no repeating activities), and place restrictions

on processes equivalent to those used elsewhere, e.g. [6]: a

process has a single start activity i and end activity o; the

events of activities’ occurrence are atomic (take no time)

and are recorded in W as they occur. We assume that the

underlying process is unchanging while W is recorded.

We can represent these distributions using probabilistic

automata (PDFA). Figure 2 represents the same process as

figure 1, with the addition of transition probabilities. For

example, the probability that after seeing ia in a trace, the

next activity is c, is 0.1, and the probability of trace iaco is

1.0× 1.0× 0.1× 1.0 = 0.1. Automata are not convenient as a

visual representation of more complex processes, since every

state is explicitly represented, but are useful for us to illustrate

the distributions represented by the underlying processes.

We write πab,M for the probability under PM of ab oc-

curring in a trace, and π→a for the probability of ‘reaching’

a in the model. As we deal only with acyclic models, ab

can only occur in any trace a maximum of once. We denote

by |ab| the number of times string ab occurs in the log.

We will describe various process structures: a → b refers

to the arc representing causal dependency between a and b;

a → (b1 ‖ b2 . . .) a split from activity a to parallel paths

starting with b1, b2 . . .; and a → (b1 # b2 . . .) a split from

activity a to alternative paths starting with b1, b2

πn(E) is the probability of event E in an event log of n

traces, e.g. πn(|ab| = x). PHM,n(S) is the probability of

Heuristics Miner mining process structure S correctly from

a log of n traces. DMab represents the Heuristic Miner

Dependency Measure (DM) between a and b.

III. A MODEL OF NOISE IN PROCESS MINING

Noise is defined in [1], [2] as ‘outliers’ or exceptional

events, i.e. parts of the process which occur infrequently. It

is assumed that the mined model should not include such be-

haviour, which would cause a visually cluttered or ‘spaghetti’

model, in which the main process behaviour is not clear. This

differs from the standard machine learning view in which

noise refers to erroneous data which occurs according to some

model of noise. In the context of process discovery we would

understand this as incorrect logging of events or their order.

The reasoning behind the current process mining view is that

since an algorithm cannot distinguish incorrect logging from

exceptional events, true noise (data errors) should be cleaned

from the log using expert input, prior to process mining, so

that the mining algorithm can assume that the log reflects what

really happened.

Similarly, Fahland et al. [7] consider that a log may be

partitioned into three sets of traces, (i) those supported by an

external model, (ii) those not supported because the model is

incorrect, and (iii) those not supported because they represent

Fig. 2. Probabilistic Automaton (PDFA) equivalent of Figure 1. This is
model M, representing Distribution PM.

Fig. 3. Simple Noise Model O1, in which Activities a and c are swapped.

‘noise’. An expert, or prior knowledge, is required to identify

this partitioning and remove the noisy traces. The cleaned log

is then used to ‘repair’ a pre-existing model.

The Heuristics Miner literature [4], [8] takes a more stan-

dard view of noise, although it does not consider a model of

noise generation. Noise is described as external influences on

the event log which cause five types of errors: deletion of the

head, tail or part of the body of a trace, removal of one event,

or interchange of events in a trace.

We describe a more formal view of noise in process mining,

which covers both logging errors and infrequent behaviour.

We consider traces in event log W to be drawn from two

underlying probability distributions. Let PM be a distribution

over traces representing the true business process (‘ground

truth’), and PO a distribution over all possible ‘noise’ traces.

Event log W is then a sample from a mixture distribution PW

which is a combination of PM and PO. Any trace t ∈ W is

drawn with some fixed probability 0 < κ ≪ 1 from PO (a

‘noisy’ trace), otherwise from PM (a ‘true’ trace):

PW(t) = (1− κ)PM(t) + κPO(t). (1)

We would like our process mining algorithm to output a model

that supports PM, rather than any convolution of PM and PO .

To illustrate, consider two ways in which noise might affect

the running example. Firstly, the process may be followed

incorrectly, for example activities executed or recorded out of

prescribed order. If an order is rejected before stock is checked,

trace icao will be recorded. This is represented by automaton

O1 (figure 3). Secondly, systems failures might cause incorrect

recording of traces. For example, a low risk of disk failure

during any activity gives a noise model supporting traces such

as iao, iabo, iabdo etc., illustrated by model O2, figure 4.

We have described just one possible view of noise, but

having such a formal model allows investigation of a process

mining algorithm to answer questions about how much and

what types of noise the algorithm is robust to, and how noise

in the log affects confidence in mining a correct process model.

We next outline the main points of a probabilistic analysis of

Heuristics Miner [4] (as implemented in ProM 5.2 [9]), which

allows these questions to be answered for this algorithm. Due

to space limitations we only give a summary here. A more

complete analysis will be published elsewhere.

Fig. 4. Simple Noise Model O2 allowing any Activity to be followed by o.

IV. OVERVIEW OF THE HEURISTICS MINER ALGORITHM

The Heuristics Miner [4] (HM) is designed for mining from

noisy logs. It uses frequencies of pairs of activities in the log to

determine causal relations, splits and joins. It mines a ‘Causal

Matrix’ (CM), visually represented (in ProM) as a ‘Heuristic

Net’, a directed graph in which nodes represent activities

and arcs represent causal dependencies. Splits and joins are

separately annotated as representing exclusive choice (XOR)

between subsequent activities, or to parallel paths (AND).

The model is constructed in three steps. First, a Dependency

Matrix M is created. The elements of M are the values of

the Dependency Measure (DM) (equation 2) between pairs of

activities. Next, M is used to construct a Dependency Graph

to describe the causal structure of the process. Finally, the

types of splits and joins are determined as parallel (AND) or

exclusive (XOR). (Here we ignore further steps to identify

cycles and ‘long-distance’ relationships between activities).

HM uses threshold parameters, which with the DM give

some control over the detail to include in the model. In

this way noisy logs are handled by controlling the size and

complexity of the mined model. The ‘Use All-Activities-

Connected Heuristic’ (UH) ensures the graph is connected:

each activity other than the start and end activities has at least

one successor and one predecessor. Creation of additional arcs

is controlled by three parameters, Positive Observations (PO),

Dependency Threshold (DT) and Relative-to-Best (RTB). To

create an additional arc a → b, substring ab must be seen

in the log at least PO times, DMab must be larger than DT,

and DMab must be within RTB of the DMs of the relations

to existing successors of a or predecessors of b.

We next describe these steps for an underlying process PM.

We assume the UH parameter is set to true.

A. Create Dependency Matrix

Let T be the set of activities recorded in W and produce a

|T | × |T | Dependency Matrix M . Each element of M is the

Dependency Measure (DM) between two activities, e.g.

DMab =
|ab| − |ba|

|ab|+ |ba|+ 1
. (2)

B. Create Dependency Graph

A node is created for each activity t ∈ T . A single start

node is assumed: the activity for which none of the column

entries in M are positive. In the same way, the single end

node is the activity for which none of the row entries are

positive. The graph is connected by identifying a successor and

a predecessor activity for each remaining node. The successor

for activity a is the activity corresponding to the largest DM

in the row for a, and the predecessor for a is the activity

corresponding to the largest DM in the column for a.

Additional arcs are created using the parameter settings. An

arc a → b is created if

1) DMab > DT ,

2) |ab| > PO, and

3) |DMab −DMax | < RTB or |DMab −DMyb | < RTB,

where DMax is the next largest Dependency Measure in the

row for a (successors of a), DMyb the next largest in the

column for b (predecessors of b).

C. Types of Splits and Joins

The main requirement for correct mining is for the depen-

dency measures to be ordered correctly, to create the correct

causal links in the Dependency Graph. An ‘AND metric’ is

involved in deciding if splits and joins are AND or XOR, but

we do not consider this as it does not affect the types of noise

which we consider. We first consider Heuristics Miner mining

from a noise-free log.

Consider an event log W of n traces, and DMia between

two activities i and a which can only occur in one order,

i.e. πia ∈ [0, 1], πai = 0. DMia is a discrete random variable

which tends to 1 as n increases. Now consider activities a and

b which may occur in either order (interpreted as occurring in

parallel). Without loss of generality let 0 < πab < πba < 1.

Then the expected value of DMba from this log converges to

some value d ∈ [0, 1]. For such DMia,DMba, since the log

is randomly generated according to the underlying model, for

low n DMia may be either less than or greater than DMba.

However as n increases, we expect DMia to ‘overtake’ DMba,

i.e. there will always be some number of traces n′ ∈ [0,∞)
above which EW [DMia] > EW [DMba].

We need to know probabilities such as πn(DMia > DMba),
Let A = DMia, B = DMba be random variables following

unknown distributions with density functions gA, gB, CDF

GA, GB and joint density gAB(A,B). Then

πn(A > B) =

∫ A=+∞

A=−∞

∫ B=A

B=−∞

gAB(A,B)dAdB. (3)

Since business processes tend to be structured, it is not

necessary for DMs to be correctly ordered across the whole

matrix. In the next section we consider process structures

(sequences of activities, XOR or AND splits and joins), and

the correct ordering of the DMs involved in these structures.

V. PROBABILISTIC ANALYSIS OF HEURISTICS MINER

To determine probabilities of one Dependency Measure

(DM) exceeding another, we need to understand the probability

distribution that the DM (2) follows. Since we assume no

cycles, any activity pair ab occurs zero or one times in any

trace, so the number of times ab occurs in event log W of n

traces, is described by a Binomial distribution with probability

parameter πab. The DM therefore follows a distribution which

is the ratio of two ‘Binomial-like’ distributions, which are

discrete and in general multi-modal and difficult to handle

analytically. If we assume that the distributions can be ap-

proximated by Gaussians, then the theory in [10] can be used

to derive formulae which approximate the DM density and

cumulative distribution. The formulae are still difficult to work

with analytically, especially since DMs cannot be assumed to

be independent of each other, but numerical approximations

can be used to obtain the probabilities of interest.

Business processes tend to be well structured [11]. We

relate such structures to our probabilistic framework in [5].

In the next subsections we outline methods for obtaining the

probability of Heuristics Miner correctly mining basic acyclic

process structures from noise-free logs (κ = 0).

A. Sequences

If activities a and b form a sequence in the model then if a

occurs, it is always immediately followed by b. In the simplest

case that no other activity x can occur in parallel with a or b,

neither ax nor xb is possible in the log. So if least one trace

in the log contains ab, DMab will be the only positive DM in

the row for a and the column for b in the Dependency Matrix.

No traces will include ba. The UH parameter will ensure arc

a → b is created, regardless of the the other parameters. The

probability of discovery of a sequence is thus the complement

of the probability that every trace in W will not contain ab,

πHM,n(a → b) = 1− (1− πab)
n. (4)

B. XOR Splits and Joins

An m-way XOR split occurs where there is a choice

between m mutually exclusive paths through the model after

activity a, each path starting with an activity t1, . . . , tm.

Similarly to discovery of a sequence, at least one trace in

the log must contain ab1, ab2. and so on. With the same

restrictions we may assume all πbia = 0 and none of the

activities bi will occur together in a trace, so all πbibj = 0.

Each bi can only have a as a predecessor, and thus the PO,

RTB and DT parameters are again not involved. Therefore

PHM,n

(

a → (b1 # . . . # bm)
)

=

= 1−
∑

1≤i≤m

(1− πabi)
n +

∑

1≤i<j≤m

(1− πabi − πabj)
n −

. . .+ (−1)m
(

1−
∑

1≤i≤m

πabi

)n
. (5)

Equation (5) uses the ‘inclusion-exclusion’ principle for cal-

culating the probability of a union of overlapping events. We

assume successful mining of the split, reduce by the sum of the

probabilities of the events that any activity pair abi is missing

from the log. This double counts the probability of the events

that any pair of pairs, e.g. both abi and abj , is missing. The

third term adds this probability back in, and so on.

XOR joins are treated in the same way.

C. 2-Way Parallel Splits (‘AND2’)

A two way parallel split occurs where two paths through the

model proceed in parallel, following activity i. Let one path

start with activity a, the other with b. The simplest case is

where no other parts of the model occur in parallel, i.e. πia +
πib = π→i, and the parallel paths contain no other activities

after a and b. Then note that πab = πia, πba = πib. There is

only one free probability parameter; knowing πia, we know the

other probabilities. Knowing either DMia or DMba also fully

determines the other, and always DMba = −DMab. Without

loss of generality we assume πib > πia, so we expect DMab to

be negative and we consider only the requirements to ensure

that with high probability DMia > DMba.

To mine the parallel split correctly, we require

1) DMia > DMba, otherwise b will be chosen instead of i

as the predecessor of a and we have a sequence.

2) Either DMia > DMba +RTB, |ba| < PO or DMba <

DT . This ensures the conditions in subsection IV-B are

not met and the extra arc b → a will not be retained.

3) |ia| > PO and |ib| > PO, else split will be XOR.

To calculate the probability of ‘achieving’ the first require-

ment, we need to integrate the joint distribution (3). Since

|ia| and |ba| are fully correlated, the joint distribution of

DMia,DMba for a given number of traces n lies on a line,

a curve as shown in figure 5. Thus we can marginalise one

of the DM variables without loss of information, effectively

projecting the joint distribution onto either axis.

Let DMia,n = DMba,n be the dependency measures calcu-

lated for some n, defined in terms of unknown p = πia for

which the expected values of the DMs are equal, then

EM[DMia,n] = EM[DMba,n] ⇒
np

np+ 1
=

nπ→i − 2np

nπ→i + 1
,

for which there will be only one valid solution for p. Hence

we obtain the value DMia,n = DMba,n, from this p. Since we

are interested in the part of the distribution for which DMia >

DMba, we integrate the PDF for DMia for DMia > DMia,n:

πn(DMia > DMba) =

∫ DMia=∞

DMia=DMia,n

g(DMia)dDMia . (6)

where g(DMia) is the density function (PDF) of DMia.

To ensure the b → a arc is not retained (conditions in

subsection IV-B), πn(DMia > DMba +RTB) is calculated

by the same method, πn(DMba < DT) by integrating a

single DM distribution, and πn(|ba| < PO) from the Binomial

distribution |ba| ∼ Bin(πib, n).

Finally, to correctly mine the 2-way AND split, both |ia|
and |ib| must exceed PO. Here we must take account of

other parts of the model: a trace may contain ia, ib, or

neither, so |ia|, |ib| are drawn from a Multinomial distribution

with three outcomes with probabilities πia, πib, 1− π→i. The

cumulative Multinomial distribution can be used to calculate

the probability of ia and ib occurring more than PO times.

Combining the previous requirements, the probability of

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

DM
ia

D
M

b
a

AND3 Samples

AND2 Distribution
DM

ia
= DM

ba

DM
ia

= DM
ba

± 0.05

Fig. 5. Example of the Joint Distribution of DMia,DMba in Three-Way
Parallel split (‘AND3’). The equivalent ‘AND2’ Distribution is also shown.

mining the split correctly is given by

PHM,n

(

i → (a ‖ b)
)

= πn(DMie > DMfe)

× πn

(

|fe| < PO∨DMfe < DT

∨ (|DMie −DMfe | < RTB
)

× πn

(

|ia| > PO ∧ |ib| > PO
)

, (7)

where e, f ∈ {a, b}, e 6= f such that EM[DMef] > 0.

D. 3-Way Parallel Splits (‘AND3’)

For a 3-way parallel split from i to paths beginning

with a, b or c, there are 6 possible sequences of activities,

iabc, iacb, ibac, . . ., and therefore 3 pairs of Dependency Mea-

sure requirements, e.g. DMia > DMba or DMib > DMab,

etc. One of the pair is ‘given’ because either DMab or DMba

will be negative, and the same for the other pairs. For the

requirement DMia > DMba, the two DMs are no longer

fully correlated but the correlation can be shown to still be

negative. Figure 5 shows an example of the joint distribution.

Effectively DMba varies, for given DMia, around the ‘AND2’

line described in the previous section. We can use the same

method as a reasonable approximation to πn(DMia > DMba).

E. Other Structures

Splits to more than three paths, complex splits and joins,

other parts of the model which can occur in parallel, and

parallel paths containing more than one activity, can be treated

with extensions of these methods. Space does not permit

discussion here. Instead, in the next section we investigate

the effect of noise on the structures already discussed.

VI. EFFECT OF NOISE

Recall that we consider the event log W as a sample

from a mixture distribution. Each trace is drawn either (with

probability κ) from PO , a distribution over traces, representing

a noise model, or (probability 1−κ) from the true model PM.

We define the set of traces allowed by the true process model

by TM, and ‘unexpected’ (noise) traces by TO. These sets are

disjoint because by definition any trace supported by the true

model is not noise, and any noise trace is not supported by

the true model. The set of traces in the log, TW , is a subset

of the union of TM and TO since the log is only a sample,

and may include not all the traces supported by the models,

Since HM deals with pairs of activities, we also define

three sets of pairs of activities, the possible pairs which may

occur in traces from these sets. BM contains all pairs of

activities which have non-zero probability under PM, i.e.

BM = {ab|πab,M > 0}. Likewise BO and BW . Again, BW

is a subset of BM∪BO but activity pairs may be in both BM

and BO since the same pairs of activities may exist in traces

from both the true and the noise models. The probability of

an activity pair in the event log W , is the weighted sum of its

probability in the true and noise models,

πab,W = (1 − κ)πab,M + κπab,O. (8)

A model mined from event log W is at risk of two types

of problem, described in the next subsections.

A. Extra XOR Splits and Joins

Recall that each trace begins with the same activity i, and

ends with the same activity o. Then any ‘noise’ trace from TO

will partially match at least one true trace from TM. For any

‘noise’ trace, the first part (prefix, at least i) will match the

prefix of a true trace up to some activity a after which they

diverge. Likewise, the suffix will match the suffix of a true

trace, from some common activity b to the end of the traces.

Therefore we have the risk that HM will create an extra

XOR split a → (a′ # a′′) at the divergence point, or an extra

XOR join (b′ # b′′) → b at the convergence point. Activities

a′, a′′ are the activities following a in the traces from TM and

TO respectively. Similarly b′ and b′′ are the activities preceding

b. There may be multiple such splits and joins introduced by

a trace which matches in multiple places.

Consider the risk of creating an unwanted XOR split. Let

the true process model M contain a sequence i → a → a′,

and the noise model introduces a pair aa′′ ∈ BO. A new

arc aa′′ will be created in the model mined from W if the

requirements in subsection IV-B are met, i.e.

|aa′′| > PO ∧ DMaa′′ > DT

∧
(

|DMaa′′ −DMaa′ | < RTB

∨ |DMaa′′ −DMea′′ | < RTB
)

, (9)

where e is an existing predecessor activity of a′′. Therefore we

can use at most n′ traces for mining such that the probability

of each one of these events is below some small 0 < ǫ ≪
1 representing an acceptable risk of the mined model being

disrupted by noise.

Compare this with mining from noise-free logs, where we

need at least n traces for confidence 1−ǫ in mining the correct

model. This suggests that for mining from noisy logs, there

will be a range of traces within which mining will succeed.

B. Introduction of parallelism

If the pairs of activities BO supported by the noise model

include a pair (e.g. ba) that is the reverse of a pair (ab)

from BM, then HM may conclude these are in parallel. If

PM contains sequence i → a → b, then if in PO the

reverse substring has non-zero probability, it also has non-zero

probability in the event log. It is now possible to meet some

of the requirements for mining a parallel split i → (a ‖ b).
There are three ways in which this can happen,

1) arc i → b created because DMib > DMab,

2) arc i → b created because PO and DT requirements are

met for ib, and DMib is within RTB of ab, or

3) arc i → b created because PO and DT requirements are

met for ib, and DMib is within RTB of ia.

For safe mining all of these probabilities must be low.

C. Effect of noise on true probabilities

Since the event log W is a sample from a mixture of PM

and PO , noise may reduce the probabilities of seeing pairs

of activities in the log, i.e. for all pairs of activities in BW ,

πab,W ≤ πab,M. This is because some of the traces in TO

may not include some pairs of activities in BM, reducing the

probability of including them in W . Since these probabilities

affect the probabilities of correct mining of structures, with

noise it is likely that more traces will be needed for correct

mining of process structures and thus of the full model.

VII. EXPERIMENTAL EVALUATION

We used the methods described above to predict the number

of traces needed for correct mining of the running example:

PHM,n(M) = PHM,n(A)× PHM,n(B|A)

× PHM,n(C|B)× PHM,n(D|C)× . . .

where PHM,n(B|A) is the probability of correct mining of

structure B given that we have successfully mined A1. The

first row of table I shows the predicted numbers of traces

needed for mining from noise-free logs, for various values of

the HM parameters. The only parameter that has any effect

with this model is PO, indicating that seeing enough traces

to decide the split is parallel, not XOR, is the determining

requirement.

We next applied the methods from the previous section to

predict the effect on the running example of the two noise

models outlined in section III. Noise model O1 (figure 3)

allows activities a and c to be swapped, introducing the single

risk that a ‖ c would be mined instead of a → c. The second

model, O2, allows for traces being truncated after any activity,

with each ‘noisy’ trace having equal probability. New activity

pairs BO = {io, ao, bo, do, eo, fo} are introduced, risking new

arcs i → o, a → o, etc., in the mined process model.

1In summary, we use the local substring probabilities in structure B rather
than the global probabilities, and only consider traces that include B [5].

noise defaults RTB : 0.01 0.1 PO : 5 1 DT : 0.5 0.95

0 84 84 84 49 45 84 84

0.01 85 85 85 49 45 85 85

0.05 89 90 90 52 47 90 90

0.1 94 95 95 55 50 95 95

0.5 171 171 171 100 95 171 171

0.01 84 84 84 52 52 84 84

0.05 81 81 81 48 48 81 81

0.1 78 78 78 45 44 78 78

0.5 59 59 59 59 59 59 59

TABLE I
PREDICTED NUMBERS OF TRACES NEEDED FOR CORRECT MINING WITH

VARYING AMOUNTS OF NOISE FROM O1 (TOP) OR O2 (BOTTOM).

We calculated the effect of various levels of noise by varying

κ in the mixture model (1). The top half of table I shows the

effect of κ on the number of traces to with high probability

successfully mine the correct model from an event log W
sampled from a mixture of PM and PO1

. Success means

mining a model which supports the traces in TM but not those

in TO1
. Again, only varying the PO parameter has any effect

on the number of traces since having enough traces in the

log to be confident of meeting the PO requirement for HM to

decide the split is AND, rather than XOR, is the determining

factor. The other parameters have no effect here since they

affect when the d → e arc will be removed, but the split

will still be XOR. Increasing noise increases the traces needed

because the probability of the true traces is reduced, making

PO traces harder to achieve.

Repeating for model O2 (lower half of table I) we find

counter-intuitively that increasing noise reduces the number

of traces needed, until large amounts of noise are introduced.

This is because traces from O2 include the pair be, required

for the AND split, with higher probability than in traces from

PM. The noise traces increase πbe,W , increasing the likelihood

of correct mining of the AND split. Eventually the number of

traces reduces to the point where different structures are the

limiting factor.

Table II shows predictions for the numbers of traces at

which the different types of noise will with probability greater

than 0.05 affect the mined model, i.e. above which mining be-

comes ‘unsafe’. The top half of the table shows the predictions

for the parallel structure a ‖ c from O1. As we would expect,

increasing noise reduces the safe number of traces for this risk.

For the lowest noise, this happens when DMic increases to

within RTB of DMac, which causes arc i → c to be created,

as PO and DT are also achieved. This risk can thus be reduced

by decreasing RTB or increasing DT. With more noise, the

limiting factor is DMic > DMac, which is not affected by

varying parameters.

Similarly, the lower half of table II shows the maximum

numbers of traces safe to use for mining from event logs

sampled from a mixture of PM and PO2
. Since there are

six possible noise structures, and mining of any one of them

represents a failure of mining, we recorded the minimum

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log (Number of Traces)

J
S

D

k = 0.002

k = 0.003

k = 0.004

k = 0.005

k = 0.010

Fig. 6. Probability of Approximately Correct Model, mining from Logs
from M mixed with O1, for Various Amounts of Noise (κ), HM Default
Parameters (PO = 10,RTB = 0.05,DT = 0.9).

number of traces at which the probability of any one noise

structure exceeded 0.05. For this model, the limiting factor is

mining arcs from d, e or f to o, since these occur in more

noise traces. For low noise, this is limited by the probability

of DMfo being within RTB of DMco, and the risk can be

reduced by reducing RTB. For more noise, |fo| > PO is the

limiting factor, so reducing PO reduces the risk. When this is

done, DMeo > DT becomes the limit and DT can be used to

control the risk of noise discovery. DT is effective in all cases.

We verified these predictions experimentally To simulate

workflow logs from M affected by noise from O1, either

M or O1 was chosen randomly according to the value of

κ, then randomly walked to generate a single trace. This was

repeated to generate sets of 10 logs in the MXML format,

of various sizes from 10 to 6000 traces. A large ‘ground

truth’ log of 10000 traces was also simulated from M. The

Heuristics Miner implementation and conversion plugins in

ProM 5.2 [9] were used to mine process models from these

logs and convert them to Petri nets. These Petri nets were con-

verted to probabilistic automata by labelling their reachability

graphs with maximum likelihood probability estimates derived

from frequencies of activity pairs in the ‘ground truth’ log.

A symmetrised Kullback-Leibler divergence (JSD distance)

was calculated between the distributions represented by the

ground truth and mined models, using methods from [12]. The

distance was averaged for the 10 models mined from each log

size and used to determine convergence to the true process.

Figure 6 shows the average distance between the ground

truth and mined model, mining with from logs generated from

the ground truth mixed with noise model O1, for various

values of κ. The JSD distance is plotted against number of

traces (log scale). For these experiments, we used the default

HM parameters, DT = 0.9,RTB = 0.05,PO = 10. The

results confirm the concept of a range of traces within which

noise defaults RTB : 0.01 PO : 1 DT : 0.95

0.001 6676 18308 6676 13058

0.002 2714 4158 2620 5025

0.003 1559 1559 1559 1559

0.004 554 554 554 554

0.005 444 444 444 444

0.01 5622 36700 5622 5878

0.05 889 6372 889 1178

0.1 246 2466 237 590

0.3 84 84 80 199

0.5 51 75 49 121

TABLE II
PREDICTED NUMBERS OF TRACES FOR INCLUSION IN THE MINED

MODEL OF NOISE FROM O1 (TOP) OR O2 (BOTTOM).

with high probability a correct model will be mined. The

points of convergence to and divergence from correct mining

are approximately in line with predictions.

VIII. DISCUSSION AND RELATED WORK

The results show Heuristics Miner to be quite robust to the

type of noise that risks additional XOR splits and joins, but

less so to noise introducing parallelism. This is a general result,

since the former can be controlled using the HM parameters,

at the risk of omitting true low-probability arcs, but the latter

will always affect the model once the ‘noisy’ Dependency

Measure grows bigger than the true one. This is not affected

by the parameter settings, unless the UH parameter is unset.

Our model of noise is general. We used only a single noise

distribution, but the event log could contain traces from a mix-

ture of multiple models. Noisy traces could come for example

from models representing systems failure, process problems

such as omission of audit checks, or rare scenarios of no

interest. The effect on mining would be the same; noisy traces

modifying the probabilities of activity pairs, and introducing

new pairs, changing the probability of correct mining, and

risking noisy structures affecting the mined model.

While we looked at one specific version of one algorithm,

and only at discovery of process control-flow, the probabilistic

interpretation of process mining is also general. Any process

mining activity that uses an event log is learning from a

random sample from underlying aspects of the true process,

whether sequences of atomic activities, activity duration, or

other data associated with processes or events. Only proba-

bilistic statements can therefore be made about the correctness

of results. Any mining algorithm can also be analysed proba-

bilistically, in terms of how it uses the data in the log and the

rules it applies to construct a process model.

Intuitively we might expect that with noisy data, using

more data would give us a better model. For example, if

estimating a measurement subject to some error, averaging

repeat measurements will give a more accurate result. Process

mining literature talks about the completeness of logs affecting

the ability of algorithms to mine, e.g. whether every possible

trace or pair of activities is in the log [1], [2]. However we have

shown here that in the presence of noise, using more data is not

sufficient to ensure correct mining. The process mining task

is more complex than estimating a measurement, as are the

algorithms involved. Completeness itself is a problem when

the data is noisy. Instead we need to understand the affect of

noise on the probabilities, and thus the likely composition of

the log, and the behaviour of the mining algorithm.

Practically, while the Heuristics Miner parameters can be

tuned interactively to control the visual complexity of a mined

model, without an understanding of the model to be mined and

the noise that may affect it, we can not be confident in the

mining accuracy. In addition, there are complex interactions

between the parameters, and without an understanding of how

they interact with the particular model and the probabilities

in it, the parameters cannot be objectively set. Depending on

which requirement for mining a structure is hardest to achieve,

tuning of different parameters may be most effective.

Our method provides one way of determining effective

parameter settings. This question has previously been investi-

gated for Heuristics Miner++ [13]. A method is presented in

[15] to efficiently search the parameter space by factorising

it to reduce the size of the search problem. This has the ad-

vantage of being applicable to any process, perhaps unknown,

but even when factorised the search space may be large. The

objective quality of the best model found is unknown since it is

only compared with the log and with other possible models;

no assessment is made of the probability of its correctness.

Our method assumes a known model but makes probabilistic

guarantees on the accuracy of the mined model. However, it

requires significant initial analysis, although it should be pos-

sible to automate this. It also assumes structured processes and

would need modification to deal with unstructured processes.

We plan to apply our analysis to other algorithms to

understand better what factors affect different algorithms’

behaviours in various situations. Elsewhere [5] we presented

a detailed analysis of the Alpha algorithm [6], but Alpha

cannot handle noise. It would be more interesting to apply our

analysis to algorithms such as, Heuristics Miner++ [13] which

extends Heuristics Miner to allow for activities with duration;

the Flexible Heuristics Miner (FHM) [8] which enhances HM

to improve mining of cyclic processes and describe splits and

joins more flexibly; and Fuzzy Miner [14] which uses multiple

notions of significance and correlation to mine complex and

noisy logs. The complexity of the mined model is controlled

using thresholds to remove or aggregate nodes and edges.

A limitation of our method is that the process of analysing

an algorithm is difficult and needs to be applied from scratch to

each algorithm. Our analysis of Heuristics Miner showed that

a relatively simple algorithm can mask complex probabilistic

behaviour. Analysis of more complex algorithms may be

impractical. Future work should instead identify more general

approaches to understand the behaviour of particular types of

algorithms, and to use key characteristics of a process model

to predict the amount of data needed for mining.

While it is useful to understand how much data is needed

for known models, much process mining takes place from

logs where the underlying model is not known. We plan

within our framework to develop methods for understanding

the probability of correctness of a mined model in such a

situation.

IX. CONCLUSIONS

We considered for the first time a formal model of noise in

process mining. Using a probabilistic understanding of process

mining, and analysis of the Heuristics Miner algorithm, we

demonstrated a method to determine the appropriate number

of traces to use for mining a correct model, without mining

the noise. This is of practical benefit, providing a method to

be confident in mining a correct process model, showing that

Heuristics Miner is more robust to certain types of noise, and

providing insight into how to set the algorithm’s parameters.

The full probabilistic analysis will be published elsewhere.

ACKNOWLEDGMENT

Philip Weber is supported by a Doctoral Training Grant

funded by EPSRC and the School of Computer Science,

University of Birmingham.

REFERENCES

[1] W. M. P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[2] W. M. P. van der Aalst, et al. Process Mining Manifesto. In F. Daniel,
K. Barkaoui, and S. Dustdar (eds.), BPM Workshops (1), LNBIP vol.
99, pp. 169–194. Springer, 2011.

[3] R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. van der Aalst, and
P. J. M. Bakker. Application of Process Mining in Healthcare — a Case
Study in a Dutch Hospital. In A. Fred, J. Filipe, and H. Gamboa, (eds.),
BIOSTEC 2008, vol. CCIS 25, pp. 425–438, 2008.

[4] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. Alves de
Medeiros. Process Mining with the HeuristicsMiner Algorithm. BETA

Working Paper Series 166, pages 1–34, 2006.
[5] P. Weber, B. Bordbar, and P. Tiňo. A Framework for the Analysis of

Process Mining Algorithms. IEEE Trans. Syst. Man Cybern. A, Syst.

Humans (USA), PP(99):1 –15, 2012. accepted,
[6] W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow Mining:

Discovering Process Models from Event Logs. IEEE Trans. Knowl.

Data Eng., 16(9):1128–1142, 2004.
[7] D. Fahland and W. M. P. van der Aalst. Repairing Process Models to

Reflect Reality. In A. P. Barros, A. Gal, and E. Kindler, (eds.), BPM,
LNCS vol. 7481, pp. 229–245. Springer, 2012.

[8] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible Heuristics Miner
(FHM). In CIDM, pp. 310–317. IEEE, 2011.

[9] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M.
Weijters, and W. M. P. van der Aalst. The ProM Framework: A New
Era in Process Mining Tool Support. In G. Ciardo and P. Darondeau,
(eds.), ICATPN, LNCS vol. 3536, pp. 444–454. Springer, 2005.

[10] G. Marsaglia. Ratios of Normal Variables. Journal of Statistical

Software, 16(4):1–10, May 2006.
[11] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and

A. P. Barros. Workflow Patterns. Distributed and Parallel Databases,
14(1):5–51, 2003.

[12] C. Cortes, M. Mohri, A. Rastogi, and M. D. Riley. Efficient Computation
of the Relative Entropy of Probabilistic Automata. In J. R. Correa, A.
Hevia, and M. A. Kiwi, (eds.), LATIN, LNCS vol. 3887, pp. 323–336.
Springer, 2006.

[13] A. Burattin and A. Sperduti. Heuristics Miner for Time Intervals. In
Proceedings of ESANN 2010, Bruges, Belgium, 2010.

[14] C. W. Günther and W. M. P. van der Aalst. Fuzzy Mining - Adaptive
Process Simplification based on Multi-Perspective Metrics. In G.
Alonso, P. Dadam, and M. Rosemann, (eds.), BPM, LNCS vol. 4714,
pp. 328–343. Springer, 2007.

[15] A. Burattin and A. Sperduti. Automatic Determination of Parameters’
Values for Heuristics Miner++. In IEEE Congress on Evolutionary
Computation, pp. 1–8. IEEE, 2010.

