
An Architectural Framework for Enforcing Energy
Management Policies in Cloud

Marwah M. Alansari
School of Computer Science

University of Birmingham
Birmingham,UK

Email: mma809@cs.bham.ac.uk

Behzad Bordbar
School of Computer Science

University of Birmingham
Birmingham, UK

Email: B.Bordbar@cs.bham.ac.uk

Abstract—Management of energy consumption in Cloud has
recently received considerable attention. Most existing research
focuses on designing algorithms for dynamically managing the
running of virtual machines in Cloud, such as placement and
migration algorithms. Despite the use such on-line algorithms
being essential, another equally important dimension that is
related to High-level policies and guidelines that are set by Cloud
Mangers or Administrators for management energy consumption.
Such policies often stem from business, legal and financial
requirements. Currently, most implementations of High-level
policies such as Management Energy Consumption Policies are
done manually via the use of low-level programming languages
and APIs for accessing Cloud interfaces. Since High-level policies
can change frequently, the manual implementation for such
policies increases the cost and the time of the development and
maintainability. Thus, there is a clear need for a methodical
way of executing High-level policies automatically in Cloud. In
this paper, we propose a generic architectural framework for
enforcing High-level policies particularly Management Energy
Consumption Policy in Cloud via using a Business Rule Engine.
The generic architecture is implemented to execute Energy
Management Business Rules to fire management actions in Open-
Nebula cloud environment.

Keywords—High-level Policies; Business Rule Engine, Business
Rule, Generic Architecture ; Management Energy Consumption;
Cloud Platform; Cloud Management System

I. INTRODUCTION

Management of energy consumption in Cloud has recently
received considerable attention [1] [2] [3] [4]. Belgzanov and
Buyya [1] presents a method using fixed and dynamic thresh-
olds to deal with efficient consolidation of virtual machines.
Li et. al [2] present multi-objective algorithms research on
development of the algorithms and techniques for placement
and rearrangement of virtual machines in order to reduce en-
ergy consumption [5] [6] [7]. Borgetto et.al apply a rule-based
approach for reconfiguring and migrating virtual machines
between physical hosts [8]. Most existing research focuses
on the algorithms and dynamic management techniques for
dealing with the infrastructure that is running the Cloud data
centres.

Another equally important dimension regarding the man-
agement of the energy in Cloud relates to High-level policies
and guidelines that are set by Cloud Mangers or Administra-
tors. Such policies often stem from business, legal and financial
requirements. An example of High-level policies is Energy
Consumption Management Policy for the migration of virtual

machines amongst physical hosts in the Cloud-platform [8].
Another example is migrating services between countries to
benefit from the cheap energy at off-peak time. These policies
are set by non-technical experts. There is a gap between Low-
level techniques used at data-centres for the management of
energy consumption and High-level policies that are set by
managers. Indeed, the High-level policies should be converted
and implemented via Low-level techniques, which can be
executed in Cloud.

Currently, business managers decide on the policies, which
they then communicate with the IT teams who implement
them. This manual process increases the cost and causes delay,
especially when such policy changes are frequent. This paper
will present a generic architectural framework for enhancing
the Cloud manager so that such High-level policies can be
enforced automatically. To do so, we make use of a Business
Rule Systems [9] which executes the policies through interac-
tion with the Cloud manager. The suggested approach has been
implemented with the help of Drools Business Rule Engine,
which is integrated into the Cloud management system running
OpenNebula.

The structure of the paper is as follows: Section II consists
of the preliminaries which are related to Cloud management
system , a description about Business Rules and an overview
of energy consumption strategies in Cloud. In Section III, we
present the running example that we used throughout the paper.
We explained the study problem in Section IV. In Section V,
we present our proposed solution and more details relating
to the solution. Furthermore, we integrate our architectural
framework using Drools and OpenNebula in Section VI. In
addition, we outline a sample of expressing policies as rules
that would run via the generic architecture in Section VII.
Finally, we discuss related work in Section VIII.

II. PRELIMINARIES

A. Cloud Management Systems and OpenNebula

Cloud data centres naturally tend to deliver a vast amount
of services to a large number of users. Thus, manual man-
agement for such an environment is difficult. There are a
number of Cloud management systems such as Eucalyptus
[10], OpenNebula [11] [12], and oVirt [13]. OpenNubula is
a centralised management system which is used to deliver
three common Cloud IaaS deployment models. Those models
are; Private, Public and Hybrid Cloud. OpenNbeula supports



Fig. 1. The Deployment Architecture of OpenNebula Cloud Management
System

the management of the heterogeneous cloud environment by
offering several drivers. Those drivers can be connected to
three different hypervisors which are; Xen [14], KVM [15],
and Vmware [16].

Fig.1 represents the system architecture of a small cloud
that uses OpenNebula. OpenNebula consists of a global man-
ager component, which is called ONED Management Daemon;
this is deployed on the Front-End node. ONED Daemon
controls a set of worker physical nodes, which are known
as Cluster Nodes. Each Cluster Nodes runs a hypervisor
that deploys virtual machines images. The communication
drivers in the ONED Daemon implements a Secure Shell(SSH)
network protocol for securing the data transmission amongst
Cluster Nodes. In addition, ONED Daemon uses image repos-
itory to make the virtual machine images accessible when
being used with any suitable technology such as [11] [12].
The management is done by generating all interactions and
actions to all of the virtualised environments in both in-house
Cluster Nodes, and external Public Cloud Images. Examples
of interaction actions are; placement of a new virtual machine
or, migrating or stopping the execution of virtual machines.
The architecture of OpenNubula can scaled by organising the
deployment architecture into a hierarchical structure [12].

B. Rule-Based System and Business Rule Engine

Ian Graham defines a business rule as ”a compact, atomic,
well-formed, declarative statement about an aspect of a busi-
ness that can be expressed in terms that can be directly related
to the business and its collaborators, using simple unambigu-
ous language” [17]. There are different types of business rules,
which are; Assertion, Action, Procedure, and Constraints rules.
Assertions rule have the form of X is Something [17]. For
Example, Energy Consumption for Host1 is 500 Watts per
hour. While Action rule has the pattern of: If X happens then
do action Y [17]. An example that demonstrates an Action
rule is if the Cloud Physical Host is idle and the time is
night then Switch-Off Cloud Host. Procedure rules are forms
of rules that provide instructions or plans to do something
[17]. For instance, Monitoring Energy Consumption in the
Cloud Cluster, then getting the Cloud Cluster Information,
then sending a request to the sensor to communicate with the
Cloud Manger, then updating the Energy Consumption Data.
The final type of business rule is a Constraint rule, which
consists of some comparative statements [17]. An example that
can represent a constraint rule is When Energy Consumption
in the Cloud Cluster is high and Lower-loaded machines are

Fig. 2. The Architecture of OO-RETE Engine in Drools

above 50%, then Migrate the Virtual Machines and Switch-Off
the Lower-loaded hosts.

The Business Rules Management System (BRM) is a
system that simplifies the development and maintenance of
business policy. BRM stores various business policies as a
set of sub-rules in a repository. BRM can allow policy to be
formed in chain-able collections of rules and provides a higher
level of graphical language to express the execution of rules
as processes such as using BPMN [18]. Therefore, policies
implemented using BRM can be developed and expressed
in simplified form via using declarative language such as
Drools Declarative Language. Furthermore, BPM can execute
developed policies using Business Rule Engine such as Drools
[17] [18].

Drools is an implementation used with the enhanced ver-
sion of RETE-Algorithm for supporting Object Oriented Pat-
tern [18]. RETE-Algorithm was introduced by Charles Forgy;
it is one of the efficient implementation rules inference engines.
The Algorithm represents rules as an acyclic graph to form a
RETE-network and provides a pattern matching process [19]
[20].

Fig.2 illustrates the implementation architecture of RETE-
Algorithm, which is used in Drools. Drools Rule Engine
requires the inclusion of two main inputs, which are; Rule
Base and Working Memory. Rule Base is a long-term memory
in which rules are stored such as Drools Rule File. Working
Memory is a type of short-term memory which, contains Facts
that need to be evaluated by the inference engine. Facts are
object models or the instances that contain attributes that
illustrate a domain data for an application. Agenda is the
place where a rule that has become an active is stored for
later in order to fire satisfied rules. The agenda uses resolving
conflicting methodology for ordering the execution of active
rules [19] [18].

C. Strategies for Management Energy in Cloud Platform

The introduction of Virtualisation technologies has con-
tributed to energy saving in the Cloud environment. Virtuali-
sation allows the running of multiple instances on a single host,
which can increase the physical host resource utilisation level.
As result of virtualisation, the number of running physical
hosts in data centres can be reduced which may lead to energy
being saved [5]. Therefore, Resource Consumption has become
a measuring metric, which can be used as constraints for
lunching Energy Management Policies [5].

To the best of our knowledge, there are two common
tech-niques for saving energy at the management level in a
virtualised environment: Dynamic Switch ON/OFF [5] [6] and



Dynamic Vertical Scaling [7]. Dynamic ON/OFF is applied
with the objective of reducing the number of running hosts
in virtualised environment. Applying the Dynamic ON/OFF
method process requires the use of a virtual machines mi-
gration operation [6] which is a process of transferring vir-
tualised services from one host to another. The migration
process can be done either off-line (suspend/resume) or on-line
(live-migration). The former method terminates the running
virtual machine and then moves the virtual machine to the
intended destination, after that, the virtual machine execution is
resumed. In On-line migration, virtual machines are transferred
to the destination without stopping the execution [5] [6] [8].

There are various implementations for Dynamics Switch
ON/OFF approach. One of the implementations is suggested
in [1] [8]. The suggestion includes defining fixed or dynamic
thresholds for host resources, which can be used as a mea-
surement of host consumption level such as CPU thresholds.
The thresholds approach can be combined with various local
search algorithms [2] [3] [21] [8] to find proper destinations
for migration services and switch-OFF any hosts that are
receiving lower workloads. One of the disadvantages of using
the Dynamic ON/OFF approach is the continuous demand for
services migration which, can affect the overall performance
of the Cloud platform [5]. As a result, the process of imple-
mentation energy consumption policies, through modifying the
underlining system, is both costly and time consuming.

The Dynamic Vertical Scaling mechanism is another
method that can be considered as an energy management strat-
egy [7]. Dynamic Vertical Scaling is referred to as Dynamic
CPU Voltage Scaling in [7]. Vertical Scaling can be referred
to as the method that can automatically change the virtual
resources requirements for all running virtual machines, based
on changing the resource demand of the virtual machine. For
example, let us say that the maximum requirement for running
a virtual machine X on host Y is to use 2 vCPU and 1GB
vMemory during peak time. On the other hand, the minimum
requirement is to use 1VCPU during off-peak time.

The implementation of the Dynamic Vertical Scaling ap-
proach does not require the use of a migration process [5]
[8]. There is a need to define some thresholds for resource
consumption levels, which can be considered as triggers for
applying the strategy. In addition, there is also a requirement
to define the duration time for using the minimum requirement.
In [8], the approach is implemented by using a rule-based
approach which, uses a rule scheme for reconfiguration. The
scheme uses the current resources usage as well as predicted
resources usage values as constraints which gives rise to the
need to set configurations of the virtual machines to use
another policy mode. The Dynamic Vertical Scaling method
also can introduce some performance overheads due to the lack
of using a mechanism to control the execution of the strategy
[5]. Thus, Dynamic Vertical Scaling is similar to the Dynamic
ON/OFF; it needs to be managed properly.

III. A RUNNING EXAMPLE

In this section, we shall outline the running example that
is used throughout the paper in order to help to explain our
approach.

A. Description of The Example

Company X uses a Cloud platform management system
for controlling IaaS Cloud environment. Company X wants
to implement a High-level Management Energy Consumption
Policy (MECP) which uses both Management Energy strate-
gies mentioned in Section II for controlling energy for running
virtual machines images as well as physical hosts during
oper-ating time. The deployment architecture of the Cloud
platform of Company X is a typical Cloud-based architecture
that consists of a master node, a number of physical hosts as
well as virtual machines images (See Section II).

Assumptions: we defined a number of assumptions for
simplifying the implementation MECP related to Company
X. Firstly, we assume that the measurement of resource con-
sumption metric for each physical host and running virtual
machines will be based on both the average percentage of
CPU usage and Memory usage. Secondly, Company X’s Cloud
platform environment uses the same virtualisation software.
The objective is to reduce the complexity of virtual machines
migration operation and to avoid software incompatibility
is-sues. Therefore, Company X has a homogenous Cloud
platform. The final assumption is that there are no rules to
restrict the migration operation of virtual machines. This is to
simplify our explanation and does not affect the generality of
our method.

B. The Measurement Metrics and Thresholds Defined For The
Example

There is a collection of measurement metrics that are
used as constraints for MECP policies. We assume that the
defined metrics represent an extension of fixed utilisation
thresholds proposed in [1]. Since the Cloud platform is divided
into clusters, MECP policies are applied to each cluster in
Cloud platform. We assume that Company X has a number of
monitors for collecting and measuring defined metrics which
are related to MECP at a specific time. Therefore, the main
measurement metrics are specified in as the following way:

1) Resource Consumption is the value of the CPU-
usage and Memory-usage for a single host in the
Cloud cluster.

2) Cluster Resource Consumption is the total value of
host resource consumption for all physical hosts in
the Cloud cluster.

3) Cloud Cluster Energy Consumption is the total
Power Consumption [7] of all physical hosts in a
single cloud cluster.

Each one of those metrics is specified with thresholds that
indicate when the defined metrics are considered is at High,
Normal or Low level.

C. A Sample of Management Energy Consumption Policy

MECP, which Company X wants to implement, consists of
a number of scenarios, events and constraints. There are some
rules that can be executed during off-peak time to apply both
Dynamic ON/OFF and Vertical Scaling which, are mentioned
in Section II. We explain the implementation of MECP within
a single cloud platform cluster for simplicity. Similarly, the



policy can be applied to all clusters in the Cloud platform. We
explained the policy in steps written in plain English.

MECP is a management policy that is divided into two
sets of rules, which are Monitoring Rules and Management
Rules. Monitoring Rules should run at a short fixed period of
time µ to collect data from the Cloud Cluster. On the other
hand, Management Rules should be executed based on the type
of data that have been collected. The following is a sample
of Monitoring and Management Rules that MECP might be
included which are executed during Off-peak time.

1) Monitoring Rule 1: When the time is off-peak and
an Cloud Cluster is receiving an average workloads
of less than 50 %, then Monitor Average Cluster
Energy Consumption, Number of Over-loaded Hosts,
Number of Under-loaded Hosts, Number of Normal-
loaded Hosts, Average Resource Consumption hap-
pens every 20 second for an hour and also Report
every 10 minutes.

2) Monitoring Rule 2: When the time is off-peak and
the Cloud Cluster is receiving an average workloads
of more than or equal 50%, then Monitor Number of
Over-loaded Hosts, Number of Under-loaded Hosts,
Number of Normal-loaded Hosts, Average Resource
Consumption happens every 10 Seconds for an half-
hour and also Report every 15 minutes.

3) Management Rule 1: When the Cluster Energy
Consumption value is less than 1000 wph and Lower-
loaded Hosts are more than 50%, then Migrate Virtual
Machines to Normal-loaded Hosts and Switch-off
Lower-loaded that do not run any Virtual Machines.

4) Management Rule 2: When the Cluster Energy
Consumption value is less than 1000 wph and Over-
loaded machines are more than or equal to 50% and
Normal-loaded machines are between 30% and 40%,
then Migrate if possible Small-size Virtual Machines
to Over-loaded Hosts and Large-size Virtual Ma-
chines to Normal-loaded machines. Then,if possible
Switch-off Lower-loaded virtual machines.

5) Management Rule 3: When the Cluster Energy
Consumption value is between 1000 and 2000wprh
and the Normal-loaded Hosts are more than or equal
to 50% and the Lower-loaded hosts between are 10%
and 20%, Migrate all virtual machine running on
Lower-loaded hosts to Normal-loaded hosts. Then,
Switch-off Lower-Loaded hosts.

6) Management Rule 4: When the Energy Consump-
tion is between 1000 and 2000wph and Over-loaded
machines are more than 50% and Lower-loaded are
less than10%. Then, Change resource configurations
for all normalsized virtual machines in Over-loaded
hosts to use basic-configuration.

IV. DESCRIPTION OF THE PROBLEM

High-level policies or guidelines such as management and
monitoring policies represented in Section III, are defined
by Cloud managers or non-technical users. Such policies are
expressed according to a defined set of business or financial
requirements. High-level policies can change regularly. This
case implies that any High-level policy can be modified or
extended. The continuous changing in policies is based on the

Fig. 3. The Gap Between High-level Polices and Their Execution

nature of the technical environment and changes in regulation
and business requirements that High-level policies might be
applied to.

In Fig.3, it shows that, Cloud Mangers or Administrators
specify a number of High-level policies during the design time.
Those policies are written as a set of rules specified in natural
language form. An example of such policies is MECP, which
are shown as Rules 1-6. As presented in Fig.3, any High-level
policies must be converted and implemented so that they can
be executed in Cloud.

One possible solution is to do the conversion to be done
manually by implementing policies using Low-level program-
ming methods. The development team uses the High-level pol-
icy description and Low-level provided APIs that are dealing
with the Cloud environment. Then, they implement the policy
via designing a system that behaves in the following cycle
Monitoring- Decision Making-Acting [8] processes. For ex-
ample, the specified Management Rules and Monitoring Rules
can be implemented using Object-Oriented Strategy Pattern
[22] in which each rule can be encoded as a strategy. Then,
a controller software component can be used for selecting
a specified strategy and its execution time according to the
description defined in High-level policy. The controller can
interact with a number of software components for monitoring
and providing actions.

Yet, the Cloud environment nature is dynamic and might
include different types of events that require the High-level
policy to be extended to form a new set of rules. An example
is that MECP might be modified to include a new set of
rules to control the behaviour of the Cloud Cluster during the
deployment a new virtual machines in Cloud. Therefore, if the
management system is designed using low-level programming
methods or patterns, the software development and maintain-
ability time and cost may increase. As a result, employing a
Cloud system with a method that can automatically execute
High-level policies in a less complex manner, is essential.

We found that there is a gap between the High-level
policies specification and the conversion of such policies to
be implemented in the Cloud environment. The appearance of
this situation is as consequence of the following issues:

1) There is a no a generic architectural framework
for executing High-level policies such as MECP in
Cloud.

2) The lack of defining a methodology for specifying
how to use lower-level provided APIs such as mon-
itoring APIs and Actions APIs for executing High-
level policies.



3) The absence of having a declarative language where
High-level policies can be written in order to reduce
the development and modification process of such
policies.

V. THE GENERIC ARCHITECTURAL
FRAMEWORK FOR ENFORCING HIGH-LEVEL

POLICIES

The previously mentioned problem can be addressed by
creating a generic architectural framework that is based on
using Business Rules Engine as an Expert System [23] for
executing management policy. The Business Rule Engine is
integrated to work with the Cloud Manager. The communi-
cation between Business Rule Engine and Cloud Manger is
done by two different components, which are; Sensor and
Actuator. The Sensor is directly interlinked with Cloud APIs
that are responsible for requesting measurement metrics that
can be used for applying management policy. One the other
hand, the Actuator uses the management actions APIs that
directly launch the required actions, which are received from
the Business Rule Engine. The functionality of the Business
Rule Engine is as a Decision making Component that executes
management policy such as MECP in Section III. The run-
time execution behaviour for the Business Rule Engine will
be presented in Section IV.

Fig.4 illustrates the generic architecture framework for
executing management policy automatically. From Fig.4, the
architecture consists of the following components: Business
Rule Engine, Sensor, Actuator, and Decision Making or Sup-
portive Component, which can be an optional component.
The Cloud Manager directly interacts with the Sensor and the
Actuator for either requesting measurement data or invoking
one or more management action(s). The interaction is done
by the Cloud Manger; it uses the provided remote APIs.
Business Rule Engine executes Monitoring Rule1 to request
Sensor to report every 10 minutes about the averages of Cluster
Energy Consumption, Overloaded, Normal-loaded and Under-
loaded hosts from the Cloud Manager. The final component
can be considered as an optional component, which is used
during the execution of Management Rules. The objective
is to enhance the Business Rule Engine with a supportive
component that can be used to support the Business Rule
Engine with computation for setting values or performing
local-search for a suitable solution. For example, producing
migration schema for allocating migrated virtual machines to
available hosts.

A. The Run-time Execution States for Monitoring and Man-
agement Policies

A number of run-time behavioural states are needed in
order to define how the Business Rule Engine can interact
with the Cloud Manger and how it can execute both Mon-
itoring Rules as well as Management Rules. The states can
specify when Monitoring Rules are launched to execute the
Sensor Component and also when Management Rules, such as
MECP, are executing Actuator. The states are Request-Update-
Execute-Invoke see (Fig.5). According to a defined time period
for executing Monitoring Rules, the execution process of the
Business Rule Engine starts when events are received that
specify the time and overall request from the Business Rule

Fig. 4. The Generic Architectural Framework For Executing High-level
Policies

Engine. During the Request state, the Business Rule Engine
starts a stateful session that inserts received events such as
time and overall requests, as facts into the Working Memory.
Then, the Business Rule Engine uses predefined Monitoring
Rules to determine which rules are satisfied. Let us say that the
current time is off-peak time and the Cloud Cluster is receiving
less than 1000 requests per second. Therefore, Monitoring
Rule1 will be executed which ends up sending Monitoring
action, Reporting action and the duration for Monitoring to
the Sensor. The Sensor uses the received information and
starts the data collection process. According to Execution
Monitoring Rule1, the data that is required are Cluster Energy
Consumption, Normal-loaded, Over-loaded and Lower-loaded
Hosts and Average of Resource Consumption at each host
in the Cloud Cluster. At the end of the Monitoring Cycle,
the Sensor reports the collected values to the Business Rule
Engine. After retrieving the required data, the Business Rule
Engine state changes to Update state. At the Update state, a
new stateful session is started with the process of inserting the
retrieved data as facts in the Business Rule Engine When the
updated process is finished, the state is changed to Execution
state.

At the Execution state, the predefined Management Rules
such as Management Rules (see Section III) will be executed.
Therefore, the rule engine uses inserted data as constraints

Fig. 5. The Run-time Execution States for Business Rule Engine



in order to define which set of Management Rules are sat-
isfied. For instance, if the average value of Cluster Energy
Consumption is < 1000 and the number of Lower-loaded
Hosts are > 50% then Management Rule1 will be executed.
Then, the Business Rule Engine invokes the Actuator with two
actions, which are; Migration Virtual Machines and Switching-
off actions. The Business Rule Engine state is transferred to
Invocation state.

During the Invocation state, a sequential execution for each
specified action starts which involves interaction with both
Actuator and Supportive components that implement some
required computation. During this state, the Cloud Manger
remotely receive management actions that request migration
virtual machines to other hosts and Switching-off Lower-
loaded hosts.

VI. THE GENERIC ARCHITECTURAL
FRAMEWORK IMPLEMENTATION

For implementing the proposed framework, we used Open-
Nebula management system and integrated the Business Rule
engine to interact with the ONED demon remotely. The
integration is done based on the interaction with Open-nebula
RPC interfaces. The Rule Engine is implemented using Drools
Business Rule Engine. Drools is chosen for the following
purposes: simplicity for representing the domain knowledge
using JAVA classes. Rules such as Monitoring Rules can
be written in the form of Business Rules (see Section II).
In addition, Drools can support order execution of rules via
grouping rules as rule-group flow. the Sensor is implemented
as a software component that periodically uses Open-Nebula
monitoring APIs for collecting data required by Monitoring
Rules such as; the hosts’ resources consumption and virtual
machines consumptions. The Sensor uses an XML parser to
parse retrieved data from the RPC message and sends data
in XML-formate to the Business Rule Engine. On the other
hand, the Actuator is implemented as a software component
that deals with management actions APIs, which are triggered
when management messages are launched from the Business
Rule Engine. The Actuator also uses parser to parse the
management messages received from the Business Rule engine
and encapsulates the messages as RPC format. Optionally, the
Drools Planner is used for the implementation of an additional
optional Decision Making component in order to produce a
migration schema using Simulating Annealing search-based
algorithm.

VII. THE GENERAL RULES EXPRESSION SUITED
THE PROPOSED ARCHITECTURE

The proposed architectural framework in section VI re-
quires rules to be written in a certain structure. Since the frame-
work uses Monitoring and Management rules, we conclude
that the expression of Monitoring Rules is similar to Business
Actions Rules (See Section II) whereas the representation
of Management Rules is as same as Constraints Business
Rules(See Section II). We are going to present a general
expression for writing Business Monitoring Rules as well as
Business Management Rules as UML-activity diagrams for
clarifying the structure of Rules and for easily mapping High-
level specified Rules to Declarative Rule Language, such as
Drools Language.

Fig. 6. UML-Activity Diagram and Drools Language For The Structure of
Monitoring Rule1

A. The General Expression of Monitoring Rules

Monitoring Rule is a type of Business Action Rule.
The typical structure of Business Action Rule is as Event-
Condition-Action rule [17]. Thus, the rule structure should
include definitions for event messages, which will be inserted
as a fact in the Business Rule Engine. Events facts are used
in rule condition statements; they state which metrics that
are required for monitoring. For example, an Off-time peak
message and a load message can be considered as events in
Monitoring Rule. We refer to events as Monitoring Events.

Fig.6 shows a UML-activity diagram followed by Rule
Language for expressing a Monitoring Rule. We demonstrate
Monitoring Rule1 mentioned in Section III as an example. The
diagram starts with a representation for Monitoring Events,
which are an Off-time peak message and a load message. A
branch which maps a rule condition statement to check the time
and loads values. The assertive arrow leads to the rule action
part which contains an invocation message to tell which state
what to monitor, how long monitoring will last and when to
report the values to the Business Rule Engine.

B. The General Expression of Management Rules

Management Rule is a kind of Constraints Business Rule,
which its structure is Constraints Condition-Consequence [17].
Management Rule condition statement uses the reported moni-
tored data, which are denoted as Required Data, and constrains
values. An example of the Required Data are Cluster En-
ergy Consumption, loads and Resources Consumption values.
Depicted in Fig.7 is a UML-activity diagram and Drools
Language Representation for Management Rule1. The rule
starts by us-ing the Required Data, which are; Cluster Energy
Consumption measured in Watts and the percentage of lower-
loaded hosts in the Cloud Cluster. The assertive arrow leads
the rule consequence part, which consists of two sequential
invocation Management Actions, which are; Migration VM



Fig. 7. UML-Activity Diagram and Drools Language For The Structure of
Management Rule1

and Switching-off Lower-loaded hosts. These messages are
sent to the Actuator (see Fig.7).

VIII. RELATED WORK

Rules can be described in a simplified manner by using
modelling languages to describe Business Rules combined
with a well-defined transformation methodology. There are
a number of modelling languages for describing Business
Rules. Some of these languages are Semantics of Business
Vocabulary and Business Rules (SBVR) [24], Simple Rule
Mark-up Language (SRML) [25], UML-based Rule Modelling
Language (URML) [26], and Business Process Modelling
Notation (BPMN) [24].

SBVR is a language that attempts to provide a definition of
a standardised rule modelling vocabulary [24]. SBVR presents
a vocabulary that is intended to become a standard upon
which many grammars can be based for specifying rules.
SRML is also a descriptive language which can represent rule
models but with limited vocabulary [25]. On the other hand,
URML [26] [27] is a graphical representation for Rules, which
supports modelling domain vocabularies (i.e., ontologies) and
rules types derivation. In URML, rules are represented as
Circles with identifiers, a Condition arrow and a conditioned
model element. One beneficial of URML is that rules can be
translated to an Event-Condition-Action rule structure [26]. In
[9], there is an attempt to use BPMN, which is a graphical
modelling proposed by OMG [24]. BPMN is as a collection
of graphical representation that can be used to describe a
business process. BPMN is used in [9] to provide a high-level
graphical description for simple rules pattern. The objective is
to simplify the expression of business rules used in business
application. The transformation of graphical representation for
rules in BPMN is accomplished by generating a methodology
for mapping to Drools Rule Language [9].

All the presented languages can be used to provide a
High-level description for the Business Rules that we used

in the generic architecture. Therefore, we are going to study
the possibility of using SBVR and BPMN for modelling
the Monitoring and Management Rules and to provide a
methodology for transforming the rules to Rule Declarative
Language. The objective is to provide a method for simplifying
rules expression by non-expert users.

There are various architectures that have been proposed
that based on rules for controlling actions in Cloud. In [28],
an architecture for reconfigurable cloud-applications during
run-time in the cloud is presented. The architecture is based
on customised rule engine which enables the execution of
a set of rules to govern the application behaviour. Appli-
cation providers can update application behavioural policies
during run time, such as adapting new load conditions. The
OVF description domain model language for virtualisation,
which is composed of vocabulary description for VirtualMa-
chine, HardwareComponent, Service, VirtualDataCenter, etc,
has been used for representing domain knowledge that is
to be used by the engine. Furthermore, Semantic Web Rule
Language(SWRL)is used to enable an easy definition of High-
level policies for defining application behaviour on top of the
static. It is argued that the performance of the architecture
performance is based on the performance of the rule engine
[28]. The architecture does not provide a description of the
types of policy or how rules can be expressed in the policy. The
usage of OVF- domain description language can increase the
probability of policies among various cloud based-application.
This architecture is different from the architecture presented
in the paper since the generic architecture uses Business Rule
Engine that controls the monitoring side and the management
side. In addition, we provide a classification for rules that
High-level policy might include.

Another approach, which has some similarities to our
approach but is concerned with low-level implementations, is
presented in [8]. The rules are used either for reconfiguring
virtual machines resources or for migrating virtual machines
to another host. The adaptation is based on the use of config-
uration rules scheme that acts based on comparing resources
utilization level and with predicted thresholds values. In the
approach, there is also suggestion to use algorithms such as
First-fit, RoundRobin and Monto-Carlo for reallocating mi-
grated virtual machines [8]. The similarity with our approach is
found in the use of rule-based approach for reconfiguring and
migration. However, our approach is concerned with executing
High-level policies defined by the Cloud Managers, which can
be written in plain English. Therefore, we used the Business
Rule System and presented an architecture for integrating this
engine with Cloud Management system. The objective is to
investigate how High-level policy, such as Management Energy
Consumption policy can be written as Business Rules and be
executed in the Cloud.

In [29] the Business Broker service-oriented architectural
approach, which is based on web services technologies, is for
deployment of various rule engines. The approach provides
a service layer interface for accessing and executing business
rules from various knowledge bases. Furthermore, the Business
Rule Brokering Layer allows heterogeneous rules engines to be
encapsulated and be used. Various rule engines can be plugged
via using the adapter pattern [30]. The rule-based knowledge
is Web services which can be accessed remotely [29]. Using



Business Brokering architecture can increase scalability for the
proposed generic architecture. Therefore, there is feasibility for
extending the generic architecture framework to be organised
in multi-level hierarchical layers.

IX. CONCLUSION

We proposed an architectural framework to enforce High-
level policies in Cloud. The architecture is based on using
Business Rule Engine to control the execution of High-level
policies, such are Management Energy Consumption Policy,
a Sensor for dealing with monitoring APIs, an Actuator for
lunching Management Actions APIs and a Supportive Com-
ponent to add extra computation or more decision making
features. For simplifying the expression of High-level policy
and implementing it in the generic architecture, we divided
High-level Policy into two sets of rules; Monitoring and Man-
agement Rules. We correlate the expression for both groups as
Business Rules in which their structures are demonstrated in
UML-activity diagrams. The architecture is implemented using
Drools Business Rule Engine integrated with OpneNebula
cloud management system.

REFERENCES

[1] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,”
in Proceedings of the 8th International Workshop on Middleware for
Grids, Clouds and e-Science. ACM, 2010.

[2] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “Enacloud:
An energy-saving application live placement approach for cloud
computing environments,” in IEEE International Conference on
Cloud Computing. Ieee, 2009, pp. 17–24. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284078

[3] J. Xu and J. a. B. Fortes, “Multi-objective virtual machine
placement in virtualized data center environments,” in
IEEE/ACM Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber, Physical and
Social Computing. Ieee, 2010, pp. 179–188. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5724828

[4] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online self-
reconfiguration with performance guarantee for energy-efficient large-
scale cloud computing data centers,” in IEEE International Conference
on Services Computing. Ieee, 2010, pp. 514–521. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557272

[5] K. Ye, D. Huang, X. Jiang, H. Chen, and S. Wu, “Virtual machine
based energy-efficient data center architecture for cloud computing:
A performance perspective,” in IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical
and Social Computing. Ieee, 2010, pp. 171–178.

[6] L. Lefèvre and A.-C. Orgerie, “Designing and evaluating
an energy efficient cloud,” The Journal of Supercomputing,
vol. 51, no. 3, pp. 352–373, 2010. [Online]. Available:
http://www.springerlink.com/index/10.1007/s11227-010-0414-2

[7] X. Fan, W.-d. Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” in ACM International Symposium on
Computer Architecture. San Diego: ACM Press, 2007.

[8] D. Borgetto, M. Maurer, G. Da-Costa, J.-M. Pierson, and I. Brandic,
“Energy-efficient and sla-aware management of iaas clouds,” in
Proceedings of the 3rd International Conference on Future Energy
Systems: Where Energy, Computing and Communication Meet, ser.
e-Energy ’12. New York, NY, USA: ACM, 2012, pp. 25:1–25:10.
[Online]. Available: http://doi.acm.org/10.1145/2208828.2208853

[9] D. Di Bona, G. Lo Re, G. Aiello, A. Tamburo, and M. Alessi,
“A Methodology for Graphical Modeling of Business Rules,”
2011 UKSim 5th European Symposium on Computer Modeling
and Simulation, pp. 102–106, Nov. 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6131196

[10] EucalyptusCommunity, “Eucalyptus cloud platform,” 2012. [Online].
Available: http://www.eucalyptus.com

[11] OpenNebulaCommunity, “Opennebula: The open source
toolkit for cloud computing,” 2012. [Online]. Available:
http://www.opennebula.org

[12] G. Toraldo, OpenNebula 3 Cloud Computing. Birmingham B3: PACKT
Publishing, 2012.

[13] ovirtCommunity, “ovirt,” 2012. [Online]. Available: http://ovirt.org
[14] XenCommunity, “Xen,” 2012. [Online]. Available: http://www.xen.org
[15] KVMCommunity, “Kvm,” 2012. [Online]. Available: http://www.linux-

kvm.org
[16] VMWareCommunity, “Vmware,” 2012. [Online]. Available:

http://www.vmware.com
[17] I. Graham, Business Rules Management and Service Oriented

Architecture: A Pattern Language. Wiley, 2007. [Online]. Available:
http://books.google.co.uk/books?id= InzFf5XpeQC

[18] JBossCommunity, “Drools tools reference guide,” pp. 1–24, 2011.
[Online]. Available: http://www.jboss.org/drools/documentation

[19] C. L. Forgy, “Rete : A fast algorithm for the many patternimany object
pattern match problem,” Artificial Intelligence, vol. 19, pp. 17–37, 1982.

[20] D. Sottara, P. Mello, and M. Proctor, “A configurable rete-oo engine
for reasoning with different types of imperfect information,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 11,
pp. 1535–1548, Nov. 2010.

[21] C. Hyser, B. Mckee, R. Gardner, and B. J. Watson,
“Autonomic virtual machine placement in the data center,”
HP Laboratories, Tech. Rep., 2008. [Online]. Available:
http://www.hpl.hp.com/techreports/2007/HPL-2007-189.html

[22] E. Freeman, E. Robson, B. Bates, and K. Sierra, Head First Design
Patterns, ser. Head First Series. O’Reilly Media, Incorporated, 2004.
[Online]. Available: http://books.google.co.uk/books?id=LjJcCnNf92kC

[23] J. Durkin, Expert systems: design and development. Macmillan,
1994. [Online]. Available: http://books.google.co.uk/books?id=9-
BQAAAAMAAJ

[24] O. OMG, “Semantics of business vocabulary and busi-
ness rules specification sbvbr,” 2008. [Online]. Available:
http://www.omg.org/spec/SBVR/1.0/PDF/

[25] H. Boley and S. Tabet, “Simple rule markup language srml,” 2012.
[Online]. Available: http://ruleml.org/

[26] REWERSE, “Uml-based rule modeling language,” 2012. [Online].
Available: http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML

[27] S. Lukichev, A. Giurca, G. Wagner, D. Gasevic, and M. Ribaric, “Using
uml-based rules for web services modeling,” in Data Engineering
Workshop, 2007 IEEE 23rd International Conference on, april 2007,
pp. 290 –297.

[28] L. M. Vaquero, D. Morán, F. Galán, and J. M. Alcaraz-Calero,
“Towards runtime reconfiguration of application control policies
in the cloud,” Journal of Network and Systems Management,
vol. 20, no. 4, pp. 489–512, Aug. 2012. [Online]. Available:
http://www.springerlink.com/index/10.1007/s10922-012-9251-3

[29] F. Rosenberg and S. Dustdar, “Design and implementation
of a service-oriented business rules broker,” in Seventh
IEEE International Conference on E-Commerce Technology
Workshops. Ieee, 2005, pp. 55–63. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1521010

[30] T. J. Shalloway, Alan, Design Patterns: Elements of Reusable
Object-Oriented Software with Applying Uml and Patterns:An
Introduction to Object-Oriented Analysis and Design and the
Unified Process. Addison Wesley, 2003. [Online]. Available:
http://books.google.co.uk/books?id= XDFAAAACAAJ


