
OCL Usability: A Major Challenge in Adopting UML

Imran Sarwar Bajwa
Dept. of Computer Science & IT
Islamia University of Bahawalpur

63100, Pakistan
+92 (0)62 925 5466

imran.sarwar@iub.edu.pk

Behzad Bordbar
School of Computer Science

University of Birmingham
B15 2TT, UK

 +44 (0)121 414 3487

b.bordbar@cs.bham.ac.uk

Mark Lee
School of Computer Science

University of Birmingham
B15 2TT, UK

 +44 (0)121 414 4765

m.g.lee@cs.bham.ac.uk

ABSTRACT

In this paper, we present a novel approach to address the OCL

usability problem by automatically producing OCL from English

text. The main aspects of OCL usability problem are attributed as

hard syntax of language, ambiguous nature of OCL expressions,

and difficult interpretation of large OCL expressions. Our

contribution is a novel approach that aims to present a method

involving using Natural Language expressions and Model

Transformation technology to improve OCL usability. The aim of

the method is to produce a framework so that the user of UML

tools can write constraints and pre/post conditions in English and

the framework converts such English expressions to the equivalent

OCL statements. The proposed approach is implemented in a

software tool NL2OCLviaSBVR that generates OCL constraints

from English text via SBVR. Our tool allows software modelers

and developers to generate well-formed OCL expressions that

results in valid and precise models. An empirical evaluation of the

OCL constraints reveals that our natural language based approach

to generate OCL constraints significantly outperforms the most

closely related technique in terms of effort and effectiveness.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features – abstract data types, polymorphism, control structures.

General Terms

Theory, Design, Experimentation, Languages, Verification

Keywords

OCL, Constraints, Natural Language Processing

1. INTRODUCTION
The Unified Modeling Language (UML) [1] is now widely

considered as a de facto standard family of languages for

specifying, modelling, constructing and documenting object-

oriented software and systems. Popularity of UML is often

attributed to its semi-formal nature. It is argued that UML is not

formal enough to demand deep knowledge of formal methods that

inhibits practically minded software engineers from using it. As a

result, usability is seen as a major feature of the UML. However,

Object Constraint Language (OCL) [2], which is one of the

languages in UML, is a clear exception to this argument. OCL

plays a key role in UML modelling for expressing essential

constraints to make UML models well-defined. But it is also a

common knowledge that OCL is the least adopted amongst all

languages in UML [4].

We have identified three major factors contributing to usability

problems in OCL. The primary factor is the hard syntax of OCL

[3]. Wahler [4] addressed this problem by introducing a template

based language. His approach, which is implemented to be used

with IBM Rational, allows the user to pick a template, from a wide

range of OCL template, assign the parameters and use them. This

would greatly help the user; however the key challenge is to learn

which template to pick. Second aspect of OCL’s usability problem

is the ambiguous nature of OCL constraint as several equivalent

implementations for a constraint are possible in OCL [5, 21].

Cabot proposed an approach for automatic disambiguation of the

constraints by means of providing a default interpretation for each

kind of ambiguous expression. But a designer has to be aware of

all the possible states while writing an OCL constraint to avoid the

identified ambiguities. Third aspect of OCL’s usability problem is

understandability of overly complex OCL expressions commonly

used in large software models [6]. The refactoring techniques are

used to improve the understandability of OCL specifications but

the employment of refactoring technique can be an overhead in the

process of software modelling.

To contribute to OCL’s usability a tool has to be able to deal with

English. In practice, an English expression of a constraint is

manually mapped to an OCL constraint on a given UML model.

We have identified a set of tasks that are involved in typical

English to OCL mapping. Firstly, since OCL is side-effect free [2],

the English statement must be about the system, i.e. the terms and

vocabulary used must be already existence in the model. Secondly,

English language is inherently ambiguous. It is important to start

from a correct understanding of the meaning of the expression.

Thirdly, we believe that if the English sentence is clear and well-

understood, the creation of OCL can be automated. On the basis of

the above three points, this paper presents a framework for

automated creation of OCL statements from the English language

expressions.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Our approach allows the user to write various constraints and

pre/post conditions on a UML model in English. First input the

English is mapped with input UML model. Then the English

constraints are automatically transformed to the equivalent OCL

expressions via SBVR [7] (Semantic Business Vocabulary and

Rules). SBVR is an OMG’s recent standard that and we have used

SBVR to overcome the inherent ambiguity of English language.

SBVR not only provides English a semantically formal

representation but also closed to OCL syntax as both languages are

based on formal logic. To create an OCL expression, the SBVR

rules are transformed to OCL using MDA model transformations.

As a proof of concept, the proposed approach is implemented as an

Eclipse plugin called NL2OCLviaSBVR. The NL2OCLviaSBVR

automatically transforms English to OCL via SBVR. The

automated transformation not only hides the complexity involved

in the manual production of OCL constraints from English

language but also results in producing OCL constraints in a

seamless and non-intrusive manner.

The rest of the paper is structured as follows: section 2 describes

the NL-based software tool NL2OCLviaSBVR; section 3 discuses

a case study; section 4 presents evaluation followed by the related

work section. The paper ends with a conclusion section.

2. THE NL TO OCL TOOL
The NL2OCLviaSBVR is a modular NL-based software tool that

generates OCL constraints with respect to a target UML model. It

takes two inputs: a single English statement and a UML model. To

process the input English text first it is linguistically analyzed. In

linguistic analysis of the English text, the English text is Parts-Of-

Speech (POS) tagged. Then a rule-based parser is used to further

process the POS tagged information to extract basic SBVR

elements e.g. noun concept, fact type, etc. Here, the SBVR

vocabulary is mapped to a SBVR rule. Finally, to generate an OCL

expression, the SBVR vocabulary is mapped to OCL syntax using

the model transformation approach. The working of these steps has

been stated in detail in the following section:

2.1 The Input Documents
NL2OCLviaSBVR takes two input documents: an English text

document and a UML model document. The English text is taken

as a plain text file containing only English constraint. Current

version of the NL2OCLviaSBVR handles only one English

constraint at a time. The given English text should be

grammatically correct. UML model is taken as XMI 1.0 format.

We used Enterprise Architect to create a UML model and export it

in XMI 1.0 format.

2.2 NL to SBVR Transformation
The core of NL2OCLviaSBVR is a NLP module that consists of a

number of processing units organized in a pipelined architecture.

This NLP module is highly robust and is able to process complex

English statements. The NLP system is used to lexically and

syntactically process the English text and then perform semantic

analysis to identify basic SBVR elements. The core system

processes a text into three main processing stages:

2.2.1 Preprocessing
In the preprocessing phase, the input text containing the natural

language specification of an OCL constraint for a UML class

model is preprocessed for deep processing. Major steps involved in

preprocessing phase are splitting the sentences, tokenization, and

lemmatization. The preprocessing sub-phases are discussed below:

Sentence Splitting: In first step, the input English text is read

and broken into sentences. During sentence splitting, the margins

of a sentence are identified and each sentence is separately stored.

Sentence splitting is performed using the Stanford parser.

Tokenization: After sentence splitting, each sentence is

processed to identify tokens. Again Stanford parser is employed

for efficient tokenization. An example is shown in Figure 1:

English: A customer can place one order.

Tokens: [A] [customer] [can] [place] [one [order] [.]

Figure 1. Tokenized text using Stanford Parser

Lemmatization: Here, the morphological analysis of words is

performed to remove the inflectional endings and to return the base

or dictionary form of a word, which is known as the lemma. We

identify lemma (base form) in the POS tagged tokens by removing

various suffixes attached to the nouns and verbs.

2.2.2 Syntactic Analysis
The output of a typical syntax analysis phase is a tree diagram or

other textual representation. Our syntactic analyzer parses the

preprocessed text by POS-tagging information and defining the

syntactic units also called chunks. In syntax analysis phase, four

steps are performed as following:

Parts-of-Speech (POS) Tagging: In this step, parts of

speech are identified for each token in the input text. In POS

tagging, each token is classified to its respective parts-of-speech

category by assigning a specific tag to teach token such as NN,

VB, RB, MD, DT, etc. The Stanford POS tagger version 3.0.3 has

been used to identify 44 various parts of speech. An example of a

POS tagged sentence is shown in Figure 2:

English: A customer can place one order.

Tokens: [A/DT] [customer/NN] [can/MD] [place/VB]

[one/CD [order/NN] [./.]

Figure 2. Parts-of-Speech tagged text

Generating Syntax Tree: We have used Stanford Parser to

generate parse tree. The Stanford parser is a lexically driven

probabilistic parser based on Probabilistic Context-Free Grammars

(PCFG).

English: A customer can place one order.

Tokens: (ROOT

 (S

 (NP (DT A) (NN customer))

 (VP (MD can)

 (VP (VB place)

 (NP (CD one) (NN order))))

 (. .)))

Figure 3. Parse Representation

2.2.3 Semantic Analysis
A typical semantic analysis yields in a logical form of a sentence.

Logical form is used to capture semantic meaning and depict this

meaning independent of a particular context. The goal of semantic

analysis is to understand the exact meanings of the input text and

identify that relationship in various chunks.

Shallow Semantic Parsing: In shallow semantic parsing, the

semantic or thematic roles are typically assigned to easy syntactic

structure in a NL sentence. This process is also called Semantic

Role Labeling (SRL). Semantic labeling on a substring (semantic

predicate or a semantic argument) in a constraint (NL sentence) ‘S’

can be applied. Every substring ‘s’ can be represented by a set of

words indices as following:

S ⊆ {1, 2, 3, …., n}

Formally, the process of semantic role labeling is mapping from a

set of substrings from c to the label set ‘L’. Where L is a set of all

argument semantic labels,

L = {a1, a2, a3,…., m}

The semantic roles can act as an intermediate representation in NL

to SBVR translation. In the context of the targeted representation

(SBVR rule representation), we have incorporated the following

semantic roles. These semantic roles are typically used in semantic

role labeling.

a. Object Type → Common nouns

b. Individual Concept → Proper nouns

c. Verb Concepts → Main Verb

d. Characteristics → Generative Phrases

A sequence of steps was performed for labeling semantic roles to

respective semantic predicates. Following are the three main steps

involved in the phase of semantic role labeling:

Extracting Semantic Predicates: In this phase, we extract the

possible semantic predicates. This module relies mainly on the

external resources, thus the elements in target UML Class

models (class names, attributes, methods) are likely to be

semantic predicates. The chunks not matching the elements of

target UML Class model are not semantic predicates or semantic

arguments. For extracting semantic predicates we check if the

verb is a simple verb, a phrasal verb or a verbal collocation and

locate the verb in (see Figure 4).

English: A customer can place one order.

Figure 4. Identifying Verb concepts (Predicate)

In English sentences, verb concepts are typically represented in

combination of auxiliary verb and main verb (possibly following

participle). However sometimes, there are only auxiliary verbs

and no main verbs.

English: A customer can place one order.

Figure 5. Identifying semantic arguments

Extracting Semantic Arguments: In English sentences, object

type can be represented with pre-modifiers such as articles

(determiners) and with post-modifiers: prepositional phrases,

relative (finite and non-finite) clauses, and adjective phrases.

Semantic Interpretation: In lexical semantics, the frame is

also considered a useful tool in text semantics and the semantics of

grammar. The interpreter of a text invokes a frame when assigning

an interpretation to a piece of text by placing its contents in a

pattern known independently of the text. A text evokes a frame

when a linguistic form or pattern is conventionally associated with

that particular frame. Figure 7 shows an example of the semantic

interpretation we have used in the presented approach for NL to

OCL transformation.

English: A customer can place one order.

Logical: (place

 (object_type = (the ~ (customer ? x))

 (object_type = (the ~ (order ? y)))

Figure 6. Semantic roles assigned to input English sentence.

The output of the NLP module is an xml file that contains the

parsed English text with all the extracted information.

Deep Semantic Parsing: In natural languages, quantifications

are typically expressed with noun phrases (NPs). However, in

First-Order Logic (FOL), the variables are quantified at the start of

the logical expressions. Generally, the natural language quantifiers

are much more vague and varied. This vagueness makes translation

of NL to FOL complex. However, we have set of heuristic rules to

identify the quantifications:

i. Universal Quantification (∀X): The universal quantification is

mapped to Universal Quantification in SBVR. The NL

quantification structures ‘each’, ‘all’, and ‘every’ are mapped to

universal quantificational structures. Similarly, the determiners

‘a’ and ‘an’ used with the subject part of the sentence are treated

as universal quantification (see Figure 7).

ii. Existential Quantification (∃X): The existential

quantification is mapped to Existential Quantification in SBVR.

The keywords like many, little, bit, a bit, few, a few, several, lot,

many, much, more, some, etc. are mapped to existential

quantification.

ii. Uniqueness Quantification (∃=1X): The uniqueness

quantification is mapped to Exactly-One Quantification in

SBVR. The determiners ‘a’ and ‘an’ used with object part of the

sentence are treated as uniqueness quantification.

iii. Solution Quantification (§X): The solution quantification is

mapped to Exactly-n Quantification in SBVR. If the keywords

like more than or greater than are used with n then solution

quantifier is mapped to At-most Quantification (see Figure 7).

Here, if the terms “less than” or “smaller than” are used with n

then solution quantifier is mapped to At-least Quantification.

English: A customer can place one order.

Figure 7. Identifying quantifications

The SBVR produces a SBVR rule in the form of text string that is

further formatted using the SBVR notation i.e. Structured English

Verb Concept (Predicate)

Object type Object type
Universal Quantification At least n Quantification

described in the section 2.3.4. The output SBVR module is saved

and exported in two separate files: an xml file contains the SBVR

vocabulary and respective details; a text file contains the formatted

SBVR rule.

2.3 The SBVR to OCL Transformation
The OCL module maps a SBVR rule to an OCL expression by

using model transformation that incorporates the mapping rules

between SBVR and OCL metamodels. SBVR to OCL mapping

rules typically define the conversion of element(s) of the SBVR

metamodel to equivalent element(s) of the OCL metamodel. In

OCL module, SiTra [17] library is used to implement model

transformation. OCL module uses the output of the SBVR module

i.e. the SBVR vocabulary to generate an OCL expression. A set of

mapping rules were defined to map the SBVR vocabulary to

different type of OCL expressions e.g. invariant, precondition and

post condition. OCL queries have not been supported by the

current version of the NL2OCLviaSBVR. A brief description of

the mapping rules is provided in the following section:

2.3.1 OCL Package and Context
For any type of OCL expression, two elements are basic

requirements: package and context. The UML package is mapped

to the OCL package. While, the context of an OCL expression

defines the scope of the given invariant or pre/post condition. To

specify the context of an OCL invariant, the major actor in the

SBVR rule is extracted to specify the context. To specify the

context of an OCL pre/post condition, the action performed by the

actor in a SBVR rule is considered as the context.

2.3.2 Mapping OCL Constraints
Transformation rules for mapping of UML-SBVR specification to

OCL constraints are defined in this section. There are two basic

types of an OCL constraints; invariant of a class, and pre/post

condition of an operation. Constraint on a class is a restriction or

limitation on a particular attribute, operation or association of that

class with any other class in a model [18].

2.3.3 Mapping OCL Invariants
The OCL invariant specifies a condition on a class’s attribute or

association. Typically, an invariant is a predicate that should be

TRUE in all possible worlds in UML class model’s domain. The

OCL context is specified in the invariants by using self keyword in

place of the local variables.

2.3.4 Mapping OCL Pre/Post Conditions
Similar to the OCL invariant, the OCL preconditions and the OCL

postcondition are used specify conditions on operations of a class.

Typically, a precondition is a predicate that should be TRUE

before an operation starts its execution, while a postcondition is a

predicate that should be TRUE after an operation completes its

execution [16].

2.3.5 Mapping OCL Expressions
The OCL expressions express basic operations that can be

performed on available attributes of a class. An OCL expression in

the OCL invariant can be used to represent arithmetic, and logical

operations. OCL arithmetic expressions are based on arithmetic

operators e.g. ‘+’, ‘–’, ‘/’, etc., while, logical expressions use

relational operators e.g. ‘<’, ‘>’, ‘=’, ‘<>’, etc. and logical

operators e.g. ‘AND’, ‘implies’, etc.

2.3.6 Mapping OCL Operations
The OCL collections represent a set of attributes of a class. A

number of operations can be performed on the OCL collections

e.g. sum, size, forAll(), count, isEmpty, etc.

All the defined transformation rules were implemented in a java

based library SiTra (Simple Transformation). The output of the

OCL module is a complete OCL expression. The output OCL is

saved and exported in a separate text file.

3. A CASE STUDY
Here a case study is discussed from the domain of UML modeling.

The case study was originally presented by Alanna Zito in her MSc

thesis [25] with Juergen Dingel to create an encoding of

PackageMerge constraints in Alloy. We want to formalize

PackageMerge constraints in OCL using our tool

NL2OCLviaSBVR. The problem statement of the case study is

based on the constraints of package merge rules given in clause

7.3.40 in UML 2.3's Superstructure specification document. The

problem statement is based on constraints and transformations for

association rules that are as below [8]:

1. The rules only apply to binary associations.

2. The receiving association end must be a composite if

the matching merged association end is a composite.

3. The receiving association end must be owned by the

association if the matching merged association end is

owned by the association.

The transformations defined for association rules are [8]:

1. A merge of matching associations is accomplished by

merging the Association classifiers and merging their

corresponding owned end properties according to the

rules for properties and association ends.

2. For matching association ends: if neither association

end is navigable, then the resulting association end is

also not navigable. In all other cases, the resulting

association end is navigable.

Section 4 presents the results produced by the NL2OCLviaSBVR.

3.1 Implementation Details
The problem statement of the used case study was processed by

using our tool NL2OCLviaSBVR. Following are the results of one

precondition and postcondition defined in the problem statement.

For package merge preconditions (i.e. package merge constraints

for the association rules) and the postconditions (i.e. package

merge transformations for the association rules), the screen shots

of output windows for SBVR rules and OCL constraints have been

shown in Figure 8, 9, 10, and 11:

Figure 8. English to SBVR mapping of the costraints of

association rules

Figure 9. SBVR to OCL mapping of the costraints of

association rules

Figure 10. English to SBVR mapping of the transforamtions of

association rules

Figure 11. SBVR to OCL mapping of the transformations of

association rules

The above shown screenshots are from our tool NL2OCLviaSBVR

that gets a UML Model and English representation of a package

merge constraint or transformation.

4. EVALUATION
To test the accuracy of the OCL constraints generated by the

designed system two classes were defined: preconditions and post-

conditions. The package merge English constraints and

transformation were classified into three classes with respect to

complexity levels of input i.e. simple, compound and complex.

 To test tools accuracy 10 examples of each complexity-level were

used. Constraint types for each 10 examples were generated. Each

generated OCL constraint from each category was type-checked.

For type checking OCLarity tool was used that is an OCL type

checking tool. For the sake of type checking in OCLarity, the used

class model and the generated OCL constraint were given as input.

A matrix of results of generated diagrams is shown below.

Table 1: Evaluatin results

Complexity level/

Constraint Type
Precondition

Post

condition
Total

Simple 91.5% 89.3% 91.63%

Complex 90.2% 87.8% 89.73%

Compound 84.7% 79.8% 83.7%

Average accuracy: 88.33%

A matrix representing OCL constraints accuracy test (%) for pre

and post conditions is constructed. Overall accuracy for all types of

OCL constraints is determined by adding total accuracy of all

categories and calculating its average that is 88.33%.

4.1 Usability Survey
A small survey was conducted to measure the effectiveness of the

presented approach. For the survey three groups were defined:

Novel : A user who is quite new to OCL

Medium : A user who knows basics of OCL

Expert : A user who is expert of OCL

Each group consists of 10 users. A set of inputs such as English

specification of OCL constraints were provided to all the users.

First all the users were asked to solve the input manually and then

they were asked to generate the OCL constraints by using our tool

NL2OCLviaSBVR. Once all the users finished their work they

were given a questionnaire to fill. In the questionnaire, questions

were asked regarding various aspects: simple to use, time-saving,

correctness, etc. Each user was asked to give 1 to 10 score for each

category.

Table 2. Usability Survey Results

User
Easy to Use Time-Saving Correctness

Manual By Tool Manual By Tool Manual By Tool

Novel 30% 90% 25% 85% 15% 65%

Medium 55% 85% 40% 80% 50% 70%

Expert 70% 85% 60% 70% 80% 80%

Average 51.66% 86.66% 41.66% 78.33% 48.33 71.66%

The average values calculated for different parameters are clearly

showing that the used approach was clearly making an impact.

Though the accuracy of the tool is a bit concern but we can

overcome this in future work by improving the implementation.

5. CONCLUSION & FUTURE WORK
This research paper presents a framework for dynamic generation

of the OCL constraints from the NL specification provided by the

user. Here, the user is supposed to write simple and grammatically

correct English. The designed system can find out the noun

concepts, individual concepts, verbs and adjectives from the NL

text and generate a structural or behavioral rule according to the

nature of the input text. This extracted information is further

incorporated to constitute a complete SBVR rule. The SBVR rules

are finally translated to OCL expressions. SBVR to OCL

translation involves the extraction of OCL syntax related

information i.e. OCL context, OCL invariant, OCL collection,

OCL types, etc. and then the extracted information is composed to

generate a complete OCL constraint, or pre/post-condition.

As this paper aims to address a major challenge related to usability

of OCL, we have presented a method of applying model

transformations to create OCL statement from Natural Language

expressions. The presented transformation makes use of SBVR as

an intermediate step to highlight the syntactic elements of natural

languages and make NL controlled and domain Specific. The use

of automated model transformations ensures seamless creation of

OCL statements and deemed to be non-intrusive. As a next step,

we are hoping to investigate usability aspects of the tool directly

via empirical methods involving teams of developers.

6. REFERENCES
[1] OMG. 2007. Unified Modeling Language (UML), OMG

Standard, v. 2.3.

[2] OMG. 2006. Object Constraint Language (OCL), OMG

Standard, v. 2.0.

[3] Gogolla M., et al. 2007. USE: A UML-Based Specification

Environment for Validating UML and OCL. Science of

Computer Programming, vol. 69 pp. 27-34

[4] Wahler M. 2008. Patterns to Develop Consistent Design

Constraints, PhD Thesis, ETH Zurich, Switzerland.

[5] Cabot, J. 2006. Ambiguity issues in OCL postconditions. In:

Proc. OCL for (Meta-) Models in Multiple Application

Domain - MODELS'06, Technical Report.

[6] Correa A., Werner C., Barros M. 2007. An Empirical Study

of the Impact of OCL Smells and Refactorings on the

Understandability of OCL Specifications, MODELS’07,

LNCS 4735. pp 76-90

[7] OMG. 2008. Semantics of Business vocabulary and Rules

(SBVR), OMG Standard, v. 1.0.

[8] OMG, 2007. UML Superstructure specification document,

OMG Standard, v. 2.3.

[9] Warmer Jos, Kleppe A. 2003. The Object Constraint

Language – Getting Your Models Ready for MDA. Second

Edition, Addison Wesley

[10] Engels G., Heckel R., K¨uster J. 2001. Rule-Based

Specification of Behavioral Consistency Based on the UML

Meta-model, LNCS Vol. 2185, pages 272-287

[11] Whittle J., Jayaraman P., et al. 2009. MATA: A Unified

Approach for Composing UML Aspect Models on Graph

Transformation: Springer LNCS Vol. 5560, p. 191-237

[12] Linehan M.: Ontologies and rules in Business Models. 2008.

11th IEEE EDOC Conference Workshop, pp. 149-156,

[13] Linehan M. 2008. SBVR Use Cases. Int. Symposium on Rule

Representation, Interchange and Reasoning on the web,

RuleML, LNCS Vol.5321 pp. 182-196

[14] Raj A., Prabharkar T., Hendryx S. 2008. Transformation of

SBVR Business Design to UML Models. In ACM Conference

on India software engineering, pp.29-38

[15] Cabot J., Teniente E. 2007. Transformation Techniques for

OCL constraints, J. of Science of Computer Programming,

68(03) Oct 2007, p.152-168

[16] Cabot J., et al. 2009. UML/OCL to SBVR Specification: A

challenging Transformation, Journal of Information systems

[17] Akehurst, D.H., Boardbar, B., Evans, M., Howells, W.G.J.,

McDonald-Maier, K.D. 2006. SiTra: Simple Transformations

in Java , ACM/IEEE 9TH International Conference on Model

Driven Engineering Languages and Systems,LNCS, Vol.

4199, pages 351-364

[18] Raquel R., Cabot j. 2008. Paraphrasing OCL Expressions

with SBVR, 13th International Conference on Natural

Language and Information Systems: Applications of NL to IS,

pp.311-316

[19] Burke D., Kristofer J. 2005. Translating Formal Software

Specifications to Natural Language. Springer LNCS, Vol.

3492, pp. 51-66

[20] Bajwa, I. S., Choudhary M.A. 2006. A Rule Based Paradigm

for Speech Language Context Understanding. International

Journal of Donghua University (English Edition). 23, 06

(June 2006), 39-42.

[21] Kristofer J. 2004. Disambiguation Implicit Constructions in

OCL. In Conference on OCL and Model Driven Engineering,

Oct 12, 2004, Lisbon, Portugal, pp. 30-44

[22] Scott W. Ambler. 2004. Object Primer: Agile Model-Driven

Development with UML 2.0. Cambridge University Press, 3rd

Edition, 2004.

[23] Demuth B, Wilke C. 2009. Model and Object Verification by

Using Dresden OCL. In R.G. Workshop on Innovation

Information Technologies: Theory and Practice, pp. 81-89

[24] IBM OCL Parser, Sep 2009 http://www-01.ibm.com/

software/awdtools/library/standards/ocl-download.htm

[25] Jürgen D., Zinovy D., Alanna Z. 2008. Understanding and

improving UML package merge. SoSyM, 7(4):443-467

[26] Ilieva M., Olga O. 2005. Automatic Transition of Natural

Language Software requirements Specification into Formal

Presentation. Springer LNCS Vol. 3513, pp.392--397 (2005)

[27] Oliveira A., Seco N., Gomes P. 2004. A CBR Approach to

Text to Class Diagram Translation, In TCBR Workshop at the

8th European Conference on Case-Based Reasoning.

[28] Bajwa I., Samad A., Mumtaz S. 2009. Object Oriented

Software modeling Using NLP based Knowledge Extraction,

European Journal of Scientific Research, 35(01), p.22-33

[29] Kovacs L., Kovasznai G., Kusper G. 2008. Metamodels in

Generation of UML Using NLI-Based Dialogue. In 5th

International Symposium on ASCII, pp. 29-33

[30] Bryant B., et al. 2008. From Natural Language Requirements

to Executable Models of Software Components. In Workshop

on S. E. for Embedded Systems pp.51

http://www.cs.bham.ac.uk/~bxb/Papres/SiTra06.pdf
http://www.cs.bham.ac.uk/~bxb/Papres/SiTra06.pdf
http://researchr.org/alias/j%C3%BCrgen-dingel
http://researchr.org/alias/zinovy-diskin
http://researchr.org/alias/alanna-zito
http://researchr.org/journal/sosym/home

