
On Diagnosis of Violations of Constraints in Petri Net Models of
Discrete Event Systems

Behzad Bordbar, Ahmed Al-Ajeli and Mohammed Alodib

Abstract— Failure detection in partially observable model-
based Discrete Event Systems requires modelling failures as
unobservable events within the system. Representing failures
as events is not always realistic. For example, some classes
of failure are in form of violations of constraints such as
Service Level Agreement (SLA) and Quality of Service (QoS).
These forms of failures do not represent events by themselves.
They have to be modelled as additional events. Modifying
the plant model is not always acceptable. Firstly, this may
make the models large, causing extra computational complexity.
Secondly, adding extra transitions is not always acceptable from
engineers’ perspective, because these constraints may change
over the time leading to alternations of models every time
these constraints are changed. To address this issue, this paper
presents a new definition of diagnosability which extends the
existing definition. In the new definition, a formalism has been
introduced which captures failures as logical constraints instead
of events. We show that starting from a Petri net, if the failure
is expressed in Yen’s logic, we can create a new Petri net with
additional transitions, including transitions modelling failure,
such that detection of violation of the constraint in the first
Petri net is converted to diagnosis of failure in the second.

I. INTRODUCTION

Automata and Petri nets are two common modeling lan-

guages used in model-based diagnosis of failure in Discrete

Event Systems (DESs) [1]–[5]. A common practice is to

represent failures as a part of the plant’s model. For example,

in Automata and Petri nets models of the plants, we create

unobservable transitions for representing failure. However,

this style of the modelling of failure is not always realistic.

Sometimes failure is created as a result of violation of

Service Level Agreement (SLA) or Quality of Service (QoS).

For example, consider the so-called Right-First Time (RFT)

failure [6] which is of interest to telecommunication services.

Right-First Time (RFT) failure occurs when a process fails

to complete a task First-Time and it is forced to repeat a part

of the task again. This happens when one or more tasks are

repeated, indicating incorrect execution of the task in the first

place. Such occurrences of failure may result in violations of

Service Level Agreement (SLA), causing financial penalties

or customer dissatisfaction.

If the failure is expressed as a constraint, there is no

event in the system that represents failure. One can argue

that if a failure is caused by a violation of a constraint,

This work was supported by School of Computer Science, University of
Birmingham, Birmingham B15 2TT, United Kingdom.

Behzad Bordbar and Ahmed Al-Ajeli are with school of Computer
Science, University of Birmingham, United Kingdom {B.Bordbar,
A.K.O.Al-Ajeli}@cs.bham.ac.uk

Mohammed Alodib is with Qassim University, Buraidah 51411, Qassim,
Saudi Arabia alodib@qu.edu.sa

we can always modify the model of the plant to include

extra transitions (or/and states) to model the occurrences of

the failure. This would require alterations of the models,

which in our experience, is not always acceptable by the

engineers. Since the SLA and QoS requirements change over

time, if violations of such constraints are modelled by adding

transitions, the model of the plant must change whenever

such constraints are modified. In addition, in some cases,

adding extra events or transitions may result in cumbersome

models. To model RFT failure, potentially duplicates of many

transitions must be created to mark undesirable repetition of

the multiple events. This can result in a serious distortion of

an originally elegant design, resulting in a large and complex

model.

To address this issue, we shall extend the existing diagnos-

ability theory by presenting a new formalism in which fail-

ures are not captured as events. Motivated by the use of SLA

and QoS, we shall model failure as Yen’s logic statement

that represents violation of the constraints. Our contributions

consist of introducing a new definition of diagnosability

in which a failure is modelled as logical constraints. We

show that this new definition is an extension of the existing

definition [1], [3] of diagnosability. In this work, we prove

that the question of diagnosability and designing diagnosers

to detect a violation of such constraints in Petri nets can be

converted to the same question for the existing definitions.

Namely, for a Petri net N and a constraint c which, if

satisfied, a failure f has happened, we can create another

Petri net N ′ with an extra transition modelling f , such that

detecting the failure in this Petri net implies the violation of

the constraint has occurred in N . We show that if we can

produce a diagnoser for detecting failure f in N ′, then that

diagnoser can be used to detect a violation of c in N .

This paper is organized as follows. Section II presents a

short review of the Petri nets’ theory. Diagnosability theory

and Yen’s logic are discussed in III and IV respectively. In

Section V we shall describe our running example. Following

that we shall formulate a definition of diagnosability which

extends the existing definitions. In Section VI we shall

present our method of diagnosis of violation of constraints.

An example of applying this method for diagnosis of viola-

tion of constraints is presented in section VII. Related work

will be the subject of section VIII

II. BACKGROUND ON PETRI NETS

A Petri net is a four tuple N = (P,T, pre, post), P
is a finite set of places, T is a finite set of transitions,

pre : P× T → N and post : P× T → N [7]. In this paper

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.106

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.106

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.106

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.106

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.106

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.106

674

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.106

673

N = {0,1,2, . . .} is the set of non-negative integers and Z

is the set of all integers. For a given transition t, an input
(output) place of t is a place p such that pre(p, t) (post(p, t))
is positive, respectively. We write •t (t•) for the set of all

input (output) places of a transition t, respectively.

A state of a Petri nets, known as a marking, is represented

as M : P→N capturing the number of tokens in each place.

We sometimes represent a marking as an 1×n matrix of non-

negative integers, assuming that the set of places are ordered

to correspond the coordinates of the matrix. A transition t
is enabled at a marking M if for each M ≥ pre(., t), where

pre(., t) is an 1×n matrix with coordinates pre(p, t) for p ∈
P. An enabled transition can fire resulting in a new marking

M, denoted by M t→M′, where M′=M+ post(., t)− pre(., t).
A sequence of transitions s = t1 . . . tk of T is called enabled
at a marking M, if there are marking M1, . . . ,Mk so that M

t1→
M1

t2→M2 · · · tk→Mk. In this case, we write M s→Mk and refer

to Mk as a state Reachable from M. We write R(N , M) for

the set of all reachable states from M. The initial state of the

system is represented by an initial marking M0. We will write

(N , M0) for a Petri net with its initial marking. Suppose

that N = (P,T, pre, post) and N ′ = (P′,T ′, pre′, post ′) are

two Petri nets with initial marking M0 and M′
0, respectively.

We say (N ′, M′
0) is an extension of (N , M0) and write

(N , M0) � (N ′, M′
0) iff P ⊂ P′, T ⊂ T ′, pre′ |P×T= pre,

post ′ |P×T= post, and M′
0 |P=M0. In other words, (N ′, M′

0)
extends (N , M0) by (possibly) adding extra places to P,
extra transitions to T. In addition, all arcs connecting places

and transitions in N and the marking of the places in M0

are present in N ′.
The set of all finite-length strings of the transitions in T

is denoted by T ∗ and is called the Kleene-closure of T. As

a result, members of T ∗ are created from concatenation of

finite number of elements of T. In particular, T ∗ contains the

empty string ε, so that tε = εt = t for all t ∈ T. Every subset

of T ∗ is called a language on the alphabet T . Suppose that

μ1 and μ2 are two mappings from T to Z, we write μ1	μ2

for the inner product of the two mapping, i.e. μ1 	 μ2 =

∑t∈T μ1(t)μ2(t). The Parikh image # : T ∗ → N
T is a map

which assigns to every word s a map #(s) that produces

the number of the occurrences of each event in s. In other

words, for #(s) : T →N, #(s)(t) is the number of occurrences

of t ∈ T within the word s. Sometimes we write #(t,s) to

represent the number of the occurrences of t in s. Suppose

that z ∈ Z
T . For each s ∈ T ∗, z	#(s) = #(s)	z is the same

as ∑t∈T z(t)×#(t,s).
The set of sequence of transitions resulting in a reachable

marking is called the Language of the Petri net and is denoted

by L(N , M0) i.e. L(N , M0) = {s∈ T ∗ | ∃M M0
s→M}. We

will use s,s0,s1, . . . for representing sequences of transitions.

A Petri net (N , M0) is called bounded if there is an upper

bound on the number of tokens that can arrive in each place,

i.e. ∃k∀M ∈ R(N , M0)∀p ∈ P, M(p)≤ k.

III. DIAGNOSABILITY IN PETRI NETS

As we are presenting an extension to the theory of diagnos-

ability, we will be introducing concepts with the same name

as the one used in the existing theory of diagnosability in

Discrete Event Systems. When there is a chance of ambiguity
we shall use the phrase classic to clarify.

Consider a Petri net (N , M0) with a set of transitions

T. Suppose that T is partitioned into two sets: observable

transitions To and unobservable transitions Tu. We further

assume that faults are unobservable transitions, i.e. Tf ⊂ Tu,
in which Tf is the set of transitions which are modelling

occurrences of failure. In this paper, we extend classic

theory of diagnosability to the case where Tf can be empty.

Consider the projection function π : T → To∪{ε} that maps

unobservable transitions to the empty string ε, i.e. π(t) = ε
for t ∈ Tu while, π(t) = t for t ∈ To. The projection function

π can be extended to the Kleene-closure of T by π : T ∗ →
(To∪{ε})∗ where for each sequence of transitions s and each

transition t, π(st) = π(s)π(t). We assume π(ε) = ε and that

tε = εt = ε for each t ∈ Tu.
A system may have more than one type of failure. So

Tf is partitioned to T 1
f , . . . ,T

r
f representing different types of

failure. To represents all the events that are observable in the

systems, such as events which can be recognised via a sensor.

Hence, in every execution of events, a sequence of events

from To can be observed. A diagnoser (as explained later in

this section) uses such information to identify if a fault has

happened or may have happened. The following definition

from [3] extends the classic definition of diagnosability of

[1].

Definition 1: Consider a Petri net (N , M0), which has no

deadlock after firing of a transition t f ∈ T i
f where i = 1, . . . ,r.

We say N is diagnosable with respect to fault class T i
f if

there are no two firing sequences s1 and s2 ∈ T ∗ satisfying

the following conditions:

1) π(s1) = π(s2),
2) no failure transition appears in s1, i.e. ∀ t f ∈ T i

f , s1 ∈
(T \T i

f)
∗,

3) there exists at least one failure transition of T i
f in s2,

4) it is possible to make s2 arbitrary long after the

occurrence of a fault t f ∈ T i
f .

The above definition states that in a diagnosable system it

is not possible to come across two execution sequences with

the same observable behaviour (π(s1) = π(s2)), so that only

one of them has failure transitions. For further details about

the above definition we refer the reader to [3] .

A diagnoser is an automaton built from the model of the

system to be diagnosed. This automaton has only observable

events of the system and is used to estimate the current

states of the system after observing a sequence of events.

Diagnosers achieve two major goals : (i) check if the system

is diagnosable and (ii) on-line monitoring of the system

for the purpose of fault diagnosis. For further details on

diagnosis and diagnosability, see [1].

IV. YEN’S LOGIC

Consider a Petri net (N , M0), each formula in the Yen’s

logic is created from three elements: Variables, Terms and

Atomic Predicates. There are two types of variables: marking
variables μ1,μ2, . . . ranging over the marking of N . As a

675675675675675675675675674

result, marking variables are assigned to Petri net markings,

which are denoted by M,M0, For example, we write

μi := Mi to assign marking variable μi to the marking Mi.

Transition Sequence Variables σ1,σ2, . . . ranging over finite

sequence of the transitions. Transition variables are assigned

to members of T ∗, which are denoted by s,s0,s1,

Terms are defined recursively via the following three rules:

1) each c ∈N
P is a term, where P is the set of places in N .

2) for each pair of marking variables μi,μ j, where i < j,
μ j− μi is a Term. 3) Finally, for any pair of Terms T1 and

T2, T1−T2 is also a Term. There are two types of Atomic
Predicates: Transition Predicates and Marking Predicates.
Transition Predicates: For each z ∈ Z

T and c ∈ N both z	
#(σi)> c and z	#(σi)≥ c are Predicates. In particular, we

can see that (by using −z) z	#(σi)∼ c and for transitions

t, #(t,σ1)∼ c, where ∼∈ {<,≤,>,≥} are all Predicates.

Marking Predicates: For each marking variable μ, each place

p ∈ P and each z ∈ Z, μ(p)≥ z and μ(p)> z are Predicates.

In addition, for each pair of terms T1,T2 and places p1, p2 the

expressions T1(p1) = T2(p2), T1(p1)> T2(p2) and T1(p1)<
T2(p2) are Predicates.

The above are Atomic Predicates which are used to

produce Predicates. A Predicate is either a Marking Pred-

icate, or Transition Predicates or disjunctive normal forms

i.e.
∨

1≤i≤r
∧

1≤ j≤mi
φ j

i , where each φ j
i is either a Mark-

ing Predicate or a Transition Predicate. Following [8] and

[9], we are interested in predicated formulas of the form

φ(μ1, . . . ,μn,σ1, . . . ,σn) i.e. formulas which are compliant

with the above description and have equal number of marking

and transition variables. For such predicate formulas we say

an execution sequence s := M0
s1→ M1

s2→ . . .Mn−1
sn→ Mn if

φ(M1, . . . ,Mn,s1, . . . ,sn) is true. In other words, assignments

μi := Mi and σi := si where 1 ≤ i ≤ n make φ true. In

this case we write s � φ , where φ is an abbreviation of

φ(μ1, . . . ,μn,σ1, . . . ,σn). We also say a Petri net N satisfies

φ , denoted by N � φ , if φ satisfies at least one of its

execution sequences of N . In other words, N � φ iff

∃s ∈ L(N , M0) such that s � φ .

V. DESCRIPTION OF THE PROBLEM

To describe the problem that has motivated this paper, we

shall make use of a simplified business process used within

a typical telecommunication company. Suppose the scenario

that a domestic customer telephones to report a malfunction

such as the broadband connection being slow. We refer to

such problems and malfunctions as ”tasks” or ”jobs”. The

following example describes a simplified business process

from the arrival of the job to its completion.

Example 1: In Petri net of Fig. 1, when the tasks arrive

(firing of s), depending on the nature of the problem which

is reported, every task is allocated to one of the three

Departments. Within each Department, there are a few large

and complex workflows which we have (seriously) simplified

to two cases. Either the problem is resolved or the engineers

discover that the allocated job can NOT be resolved within

their Department. This would be a case of wrong allocation

of jobs and can arise from a multitude of reasons, among

Fig. 1. A Problem to Resolve System

them wrong information from the customers or wrong as-

signment of jobs or the case that one fault triggers another.

In the case that the job is resolved, the Department declares

that ”Job Completed” by firing of C1, C2 or C3, which

ultimately results in the firing of e marking the ”Completion

of the (overall) task.” In case that a Department is not

able to complete the job (firing of N1, N2 or N3), further

investigation is required. As a result, a token is placed in

p0 so that the job is re-allocated by the Customer Service

department. We assume that transitions s and e, which mark

arrival and completion of jobs are observable. In addition,

transitions that mark arrival of the jobs in each Department

(S1, S2 and S3) are also observable, as they are used by

the Department to inform the Customer of the progress of

the job. For example if the customer is accessing through a

browser to make an online report, he is informed that the

relevant department will deal with the problem. Observable

transitions in Fig. 1 are depicted by solid rectangles, while

empty rectangles represent unobservable transitions.

In the above example firing of N1, N2 or N3 result in

a repetition of a chain of activities that indicates wrong

allocation of jobs to the departments. Since the activities are

repeated, the job is not completed Right First Time (RFT). In

this case, we say RFT failure has happened. Right First Time

failures are becoming increasingly important in Telecom

industry [6]. Occurrence of a RFT failure may result in

676676676676676676676676675

unhappy customers, increases cost of resolving the problems

and may entail financial penalties. As a result development of

methods of discovery of RFT failures so that remedial actions

can be adopted is essential. In addition, in large organisations

such methods must be automated to allow dealing with large

systems.

In the above example, the transition a marks allocation

of jobs and the transition e marks the completion of a job.

Ideally, to ensure no RFT, we wish that every allocated job

is completed. In other words, for each execution sequence s
of the Petri net.

#(a,s) = #(e,s) (1)

If equation (1) happens, we have no RFT failure. However,

it is not possible to completely eliminate the RFT failure

in a large telecommunication company. As a result, the

management sets Service Level Agreement (SLA) such as

the number of failures should be below a value δ ≥ 0 to

specify acceptable levels of failure. SLA is satisfied iff for

each execution sequences, equation (2) is true.

#(a,s)−#(e,s)≤ δ (2)

a) Description of the problem :: Petri net of Fig. 1

represents a model of a plant and equation (2) represents

a constraint (a SLA) which if violated, a failure has hap-

pened. Petri net of Fig. 1 has no failure transitions. As a

result, existing fault diagnosis techniques can not be directly

applied. One can argue that, one must model failure by

modifying the Petri net of Fig. 1. This would mean adding

extra transitions and places to simulate violation of equation

(2). In our experience, this is not an easy task. In addition,

modifying Fig. 1 may result in cumbersome and large Petri

nets which will be hard to understand. Thirdly, advocates

of modelling failure must modify his design as soon as the

SLA changes. As a result, there is a clear scope for extending

existing fault diagnosis techniques in Petri nets for the case

that the fault is associated to a violation of constraints such

as SLA.

b) Violation of equation (2) can be represented as Yen’s
logic formulas :: Each sequence s that violates equation (2)

has the value Δ(s) := #(a,s)−#(e,s) > δ . Such sequence s
can be broken into three consecutive sequences s1, s2 and

s3 such that Δ(s1) = δ , Δ(s2) = 1 and (possibly) Δ(s3)≥ 0.

Hence if equation (2) is violated, we conclude

∃M1,M2∃s1,s2 ((M0
s1→M1

s2→M2)∧
((#(a,s1) = 1)∧ (#(a,s2)−#(e,s2) = δ))) (3)

Conversely, if (3) is valid, then s = s1s2 is an execution

sequence that violates equation (2). Since equation (3) is a

Yen’s logic formula, see section IV, violation of equation (2)

can be expressed in Yen’s logic.

VI. DIAGNOSIS OF VIOLATIONS OF CONSTRAINTS

In the previous section, we made a case for extending the

theory of diagnosability to the cases that failure is not mod-

elled as the events within the plant. In this section we shall

present an extension of the classical notion of diagnosability,

see section III, to deal with the failure caused by violations

of the constraints. Suppose N = (P,T, pre, post) is a Petri

net with an initial marking M0. To simplify, we assume that
(N , M0) is deadlock free. In the Petri net of Fig. 1 a token

in place p9 at initial marking ensures that the Petri net is

live and safe. Suppose the set of transitions T = To ∪Tu is

divided into observable To and unobservable Tu, To∩Tu = /0.

Notice there is no notion of failure transition. However, we

assume that there is a Yen’s logic predicate φ representing a

a violation of constraint which means a failure has happened.

So, a sequence of execution s, for which s � φ contains a

failure.

Definition 2: Suppose c represents a constraint which its

violation is seen as a failure of type T i
f . Also, assume that

the violation of c is expressed as Yen’s logic formula φ on a

Petri net (N , M0) which is deadlock free. We say a failure

of type T i
f is diagnosable if there are no execution sequences

s1 and s2 in L(N , M0) satisfying the following:

1) π(s1) = π(s2),
2) s1 � φ while s2 � φ ,
3) s2 is of arbitrary length after satisfying φ .
The above definition is an extension of the definition 1

by Cabasino et al [3] which itself extends the definition of

diagnosability of [1].

Lemma 1: The definition 1 is a special case of the defi-

nition 2.

Proof: Assume that in a given Petri net some of

the events are modelled as failure transitions, i.e. there

are classes of failure T 1
f , . . . ,T

n
f ⊂ Tu so that firing of any

transition t ∈ T i
f means that a failure of class T i

f has occurred.

Consider a constraint of the form ∑t∈T i
f
#(t,s)< 1, where s is

a sequence of the execution of the Petri net. If this constraint

is evaluated as true, then none of the failures in T i
f will appear

in s. The constraint

n∧

i=1

∑
t∈T i

f

#(t,s)< 1 (4)

means that no failure transition of T 1
f ∪ ·· ·∪T n

f will appear

in s. According to both Remark 8 and the proof of Theorem

9 in [9], equation (4) can be written in a Yen’s logic format

as

∃M1∃s ((M0
s→M1)∧ (

n∨

i=1

(∑
t∈T i

f

#(t,s)≥ 1))) (5)

in which any appearance of a failure transition of any class

T i
f will make the value of the sum greater than or equal

to one. As a result, the Yen’s logic formula above will be

satisfied i.e. a failure has happened.

From Lemma 1, we can conclude that the problem of

diagnosis of a failure in DESs modelled using Petri net

can be reduced to the satisfiability problem for Yen’s logic

formula.

677677677677677677677677676

VII. A DES APPROACH TO DIAGNOSE VIOLATIONS OF

CONSTRAINTS

Suppose that N = (P,T, pre, post) is a Petri net with

initial marking M0. Let us assume that c is a constraint

which its violation represents a failure. Also, assume that

φ is a Yen’s logic formula that represents the failure, i.e.

violation of c. In section VI, we presented a definition of

diagnosability that extends the classic notion of diagnosabil-

ity. In the new definition, we do not have any concept of

failure transitions. The systems under study in this paper are

partially observable. As a result, the set of transitions T is

partitioned to observable To and unobservable Tu transitions.

In this section we show that the extended definition of

diagnosability and creation of diagnosers can be reduced to

similar problems in classic diagnosability theory of Discrete

Event Systems. The outline of the solution, which is depicted

in Fig. 2, involves creation of a new Petri net N ′. This new

Petri net has failure transitions T ′f so that

1) A violation of constraint c can be diagnosed in N
according to definition 2 iff N ′ is diagnosable with

respect to the fault classes in T ′f , definition 1.

2) Any diagnoser that diagnoses occurrences of the fail-

ure events of T ′f in N ′ can diagnose a violation of

constraint c in N .

N , φ (no failure N ′(added transition

transition) for failure)

diagnoser

Create N ′

Prod
uc

e diag
no

ser

di
ag

no
sis

diagnosis

Fig. 2. Producing diagnosers to identify violation of constraint φ

In what follow, we suppose π , π ′ denote the projection

maps in N and N ′, respectively.

Lemma 2: Suppose that N = (P,T, pre, post) is a dead-

lock free Petri net with an initial marking M0. Assume that

c is a constraint which its violation is a Yen’s logic formula

of the form ψ := φ1∧φ2 · · ·∧φn, where each φi is a marking

predicate. Then, we can create, in polynomial time, a new

Petri net N ′ = (P′,T ′, pre′, post ′) with initial marking M′
0

such that

1) (N , M0)� (N ′, M′
0), i.e. P⊂ P′, T ⊂ T ′ and M′

0 |P=
M0,

2) (N ′, M′
0) is deadlock free,

3) N ′ has new transitions, among them tend ∈ T ′ \ T ,

so that if tend is fired the marking of N ′ changes to

M′
0. In particular, for each place p, where M′

0(p)> 0,

post ′(tend , p) = M′
0(p),

4) for every execution sequence s of (N , M0), if s � ψ ,

then there is an execution sequence s′ of (N ′, M′
0)

such that s′ contains tend and π(s) = π ′(s′). Conversely,

for every execution sequence s′ of (N ′, M′
0) which

contains tend , there exist an execution sequence s in

(N , M0) such that s � ψ and π ′(s′) = π(s).
Proof: The proof is a direct consequence of Theorem

9 of [9], which states that there is a transition tend so that

N � ψ iff firing of tend results in marking�0. This means (4)

and (1) are satisfied. In effect, firing of tend , which has no

output places, empties the Petri net of all tokens resulting

in a deadlock by going to state �0. To make the Petri net

deadlock free, we follow the method suggested in [10] to

connect tend to all places p with M′
0(p)> 0 and give the arc

weight of M′(p). As a result firing of tend will produce the

initial marking. Hence (2) and (3) are satisfied.

Lemma 3: Suppose that N = (P,T, pre, post) is a dead-

lock free Petri net with an initial marking M0. Suppose

that φ is a Yen’s logic formula with predicates of the form

φ := ψ1 ∨ψ2 · · · ∨ψr, where each ψi := φ 1
i ∧ φ 2

i · · · ∧ φ n
i in

which φ j
i is a marking predicate. Then, we can create, in

polynomial time, a new Petri net N ′ = (P′,T ′, pre′, post ′)
with initial marking M′

0 such that

1) (N , M0)� (N ′, M′
0) i.e. P⊂ P′, T ⊂ T ′ and M′

0 |P=
M0,

2) (N ′, M′
0) is deadlock free,

3) T ′ has a set of extra (unobservable) failure transitions

T ′f = {t1
end , t2

end , . . . , tr
end} (i.e. T ′f ⊆ T ′ \T) such that

firing of each ti
end result in the initial marking M′

0,
4) for every execution sequence s of (N , M0), if s � φ ,

then there is an execution sequence s′ of (N ′, M′
0)

such that s′ contains at least one of the failure transi-

tions of T ′f and π(s) = π ′(s′). Conversely, for every

execution s′ of (N ′, M′
0) which contains at least

one of the failure transitions of T ′f , there exist an

execution sequence s in (N , M0) such that s � φ and

π ′(s′) = π(s).
Proof: The proof is a direct consequence of Lemma 2.

We need to repeat the theorem r times.

Theorem 1: For any given Yen’s logic formula φ on a

deadlock free Petri net (N , M0), we can produce a new

deadlock free Petri net (N ′, M′
0) so that

1) (N , M0)� (N ′, M′
0),

2) N and N ′ have the same set of observable transitions,

3) for every execution sequence s of (N , M0), if s � φ ,

then there is an execution sequence s′ of (N ′, M′
0)

such that s′ contains a transition from T ′f and π(s) =
π ′(s′). Conversely, for every execution s′ of (N ′, M′

0)
which contains a transition from T ′f , there exist an

execution sequence s in (N , M0) such that s � φ and

π ′(s′) = π(s).
Proof: Starting from an arbitrary Yen’s logic predicate,

we shall apply Lemma 3.2 of [8] and replace any Yen’s logic

transition predicates with equivalent marking predicates.

Then the theorem is a direct result of Lemma 3.

As stated in Lemma 3 when a Yen’s logic predicate is in con-

junctive normal form
∨

1≤i≤r
∧

1≤ j≤mi
φ j

i , each
∧

1≤ j≤mi
φ j

i
represents a class of failure, which means that we have a

failure if all conditions captured in φ j
i are satisfied on a

sequence. Following the notation of Lemma 3, we shall write

678678678678678678678678677

T ′f
i = {ti

end} to represent the class of failure associated to

ti
end , where i = 1,2, . . . ,r. Any diagnoser that can identify

occurrence of a failure in T ′f = T ′f
1∪·· ·∪T ′f

r in N ′ can be

used to detect violations of constraint in N . This is because

N and N ′ have the same set of observable transitions.
Theorem 2: Suppose that N , N ′ and φ satisfy condi-

tions of Theorem 1. N is diagnosable with respect to φ iff

N ′ is diagnosable with respect to T ′f .
Proof: The proof has two parts, if and only if. To prove

if part, we suppose N is diagnosable with respect to φ , but

N ′ is not diagnosable with respect to T ′f . As a result, by

definition 1 there are two execution sequences s′1,s
′
2 ∈ (T ′)∗

such that π ′(s′1) = π ′(s′2), no failure transition of T ′f appears

in s′1 but s′2 has at least one failure transition from T ′f . Since

N satisfies Theorem 1, then by condition (3) of which, we

infer that there exist two sequences s1 and s2 in (N , M0)
such that s1 � φ , s2 � φ and π(s1) = π ′(s′1), π(s2) = π ′(s′2).
Because of π ′(s′1) = π ′(s′2), then π(s1) = π(s2). By definition

2, this contrasts the assumption. Hence, if N is diagnosable

with respect to φ , it is necessarily that N ′ is diagnosable

with respect to T ′f .
We prove now the only if part. Assume that N ′ is

diagnosable with respect to T ′f , but N is not diagnosable

with respect to φ . Consequently, by definition 2 there are two

sequences s1, s2 ∈ T ∗ such that π(s1) = π(s2), s1 � φ , s2 � φ .

Again, since N ′ satisfies Theorem 1, then by condition (3)

of which, we conclude that there are two sequences s′1, s′2 in

(N ′, M′
0) such that s′1 contains at least one failure transition

from T ′f , but s′2 does not and π ′(s′1) = π(s1), π ′(s′2) =
π(s2). Because of π(s1) = π(s2), then π ′(s′1) = π ′(s′2). This

results in contradiction to the assumption. Hence, being N ′
diagnosable with respect to T ′f is sufficient condition for N
to be diagnosable with respect to φ .

Theorem 3: Suppose that N , N ′, φ and T ′f satisfy

conditions of Theorem 1 and N , N ′ are diagnosable with

respect to φ and T ′f , respectively. Any diagnoser Δ that can

identify occurrence of failure in T ′f can identify if φ holds

and vice versa.
Proof: The proof is a direct consequence of Theorem

2.
Remark: The shape of each individual formula in a Yen’s

logic predicate is important. For example, a less interesting

special case is when in the Yen’s logic formula all the non-

zero coefficients are for observable transitions. For example,

when in ∑t∈T z(t)×#(t,s) we have z(t)= 0 if t unobservable.

In such a case, the sum can be calculated from the observable

events. This is similar to the case that in classic failure

diagnosability when some failure transitions are observable.

Interesting cases occur when z(t) = 0 for one or more

unobservable transition.
Example 2: Constructing the Petri net N ′

Consider Petri net N of Fig. 1 of our running example. A

special case of RFT failure is described using equation (3)

of section V. By Lemma 2, we can create a new Petri net

N ′ which has failure events corresponding to the violation

RFT as formulated in equation (3). However, construction of

N ′ by applying the procedure in [9] will result in very large

Petri nets. We followed the procedure described in section

6 of [9] and constructed the Petri net N ′ ended up with

over 40 extra transitions and 7 extra places. This makes the

execution of diagnosers impossible from practical point of

view. Fortunately, for the Petri net of example 1 and Yen’s

logic formula described in the equation (3) there is a much

smaller Petri net N ′ that satisfies Lemma 2. This Petri net

is depicted in Fig. 3.
Checking that N ′ satisfies Lemma 2 is straightforward.

The initial marking of N ′ (Fig. 3) is such that ∀p ∈
P, M′

0(p) = M0(p). In addition M′
0(D) = 0 and M′

0(C) = 3.

As a result, condition (1) of Lemma 2 is satisfied. tend is

the only added transition to the set of transitions of N . As

tend is unobservable, condition (2) of Lemma 2 is satisfied.

Firing tend , after a violation has happened, will produce the

initial marking M′
0. We have created the reachability graph

(Fig. 4 with initial state marked by thick border line) of N ′
and showed that N ′ is deadlock free. At the same time, it

satisfies conditions (3) and (4) of Lemma 2.
Reachability graph in Fig. 4 shows that the Petri net N ′

of Fig. 3 is bounded and has no cycle of unobservable

events. Hence, we can use Theorem 1 of [1] to verify if

it is diagnosable or not. For this end, we need to produce a

diagnoser from the Reachability graph following the method

of [11]. In fact, the reachability graph and diagnoser have

been produced using the tool described in [12].

Fig. 3. Petri net N ′ of the example 1

Fig. 5 depicts a part of the diagnoser of the Petri net N ′
of Fig. 3. The rest of this diagnoser has not been included

679679679679679679679679678

200000100001

310000000000

201000000001

200100000001

200010000001

200001000001

210000000001

200000001001

000100000003

000010000003

000001000003

200000000011

010000000003

000000001003

000000010003

000000100003

000000000103

100000000102

200000010001

101000000002

110000000002

200000000101

100000001002

100100000002

100010000002

001000000003

100000100002

100001000002

100000010002

300000000010

100000000012

s

a

S1

S2

S3

N1

R1

N2 R2

N3

R3

a

C3
C3

R1
N1

e

S3

S2

S1

C2

C1

C2

C1

a

R3

N3

R2
N2

R1

N1

e

S3

S2

S1

N3

R2

N2

C1

Tend

s

R3

C3

C2
e

s

Fig. 4. Reachability graph of the Petri net N ′

300000000010 0 310000000000 0

201000000001 0

200100000001 0

210000000001 0

101000000002 0

200000001001 0

200000000101 0

200010000001 0

210000000001 0

200000010001 0

101000000002 0

200000000101 0

200001000001 0

210000000001 0

200000100001 0

101000000002 0

200000000101 0

100100000002 0

100000001002 0

100000000102 0

110000000002 0
001000000003 0

100010000002 0

110000000002 0

001000000003 0

100000010002 0

100000000102 0

100001000002 0

110000000002 0

001000000003 0

100000100002 0

100000000102 0

200000000011 0

210000000001 0

101000000002 0

000100000003 0

000000001003 0

000000000103 0

010000000003 0

300000000010 1

000010000003 0

000000010003 0

000000000103 0

010000000003 0

300000000010 1

000001000003 0

000000100003 0

000000000103 0

010000000003 0

300000000010 1

100000000012 0

110000000002 0

001000000003 0

e

e

e

e

S1

S2

S3 s

s

s

s

S1

S2

S3

e

s

S1

e

S2

S3

S1

S2

S3

e

e

s

S1

S2

S3
S1

S2

S3

S1

S2

S3

tend - uncertain state

tend - uncertain state

tend - uncertain state

310000000000 1

201000000001 1

S1

S2

S3

Fig. 5. The diagnoser of the Petri net N ′

due to space constraints, and dotted arrows show that. Each

diagnoser state includes a number of rows. Each row has

two parts: first part represents marking of N ′, which is a

vector of dimension |P′| = 12. The second part, which is

separated from the first part, decodes the failure information.

Each column of this part represents failure type represented

by a label. This label is either 0, in case that there is no

failure, or 1 which indicates failure. When all values of one

column that correspond to one failure type are 0(1), that

means the diagnoser is certain that the failure must (must

not) have happened. On the other hand, if the column entries

include both 1 and 0, this refers to that the diagnoser state

is uncertain, i.e. a failure may have happened.
According to Theorem 1 of [1], in the presence of this

diagnoser, the problem of verifying the diagnosability can be

reduced to the problem of finding the indeterminate cycles
(cycles of uncertain states) in this diagnoser. As there are

no indeterminate cycles, Petri net N ′ is diagnosable. By

Theorem 2, N is diagnosable too and the diagnoser of Fig.

5 can detect violation of the constraint expressed in equation

(3). We shall exemplify this next.
Consider the system shown in Fig. 1. Assume that we have

two sequences of observable events; s1 = sS1S1S1s and s2 =
sS1S1es. The former sequence satisfies equation (3), where

a close inspection of this sequence in Fig. 4 reveals that the

difference between number of executions of a and e is greater

than δ = 2. The other sequence dose not satisfy this equation

because there are only two appearances of the event S1 which

means there are two executions of the unobservable event a
against one execution of the event e; hence the difference

value is less than the value of δ .
Let us trace running the diagnoser, shown in Fig. 5, for

these two sequences to know what would be its decisions

in both cases. Regarding sequence s1, when the diagnoser

680680680680680680680680679

observes the event s this takes the diagnoser to a normal

state. The same thing happens for the second appearance of

S1 whereas observing the third S1 enters the diagnoser into

an uncertain state. Finally, the event s makes the diagnoser

certain about the occurrence of the violation. On the other

hand, projection of the sequence s2 on the diagnoser shows

normal states for all the events in this sequence.

VIII. RELATED WORK

A wide range of SLA and QoS statements related to ratio

of events, such as error rate, percentage of availability can be

expressed in the Yen’s logic. For example, consider the ratio

of message loss in communication channel. In this example,

let us assume that t1 represents sending of a message to a

channel and t2 represents arrival of the message at the other

end. It is required that the ratio of the loss be
#(t1,s)
#(t2,s)

≤ p
q . This

means q× #(t1,s)− p× #(t2,s) ≤ 0. The following formula

represents Yen’s logic expression for this constraint

∃M1,M2∃s1,s2 ((M0
s1→M1

s2→M2)∧
((#(t2,s1) = 0)∧ (q×#(t1,s2)− p×#(t2,s2)> 0))),

where the ratio p
q > 1 and q �= 0.

In our approach, we adopted the extended method in [11]

of what has been suggested in [1] to generate the diagnoser

and verify the diagnosability. Unfortunately, this method

has the problem of exhaustive enumeration of reachable

markings. To overcome this problem, several methods [3],

[13]–[16] have been introduced to reduce the enumeration

of the markings of Petri net and as a result reduce the

size of the diagnoser. One of the works suggested in this

regards has been presented by [13]. In this work, the notion

of basis markings has been proposed that relies on finding the

set of markings consistent with some observable sequence.

Then, a set of markings are enumerated reached from basis
markings set by firing unobservable transitions. This set of

basis markings is used to build a deterministic automaton

which is called basis reachability tree used as a diagnoser.

A similar idea can be found in [15], but to deal with general

Petri net models compared with the previous idea. Adopting

any of these ideas to create a diagnoser, rather than the

idea suggested in [11], reduces the size of the diagnoser.

In addition to this, creating the diagnoser will be in one step

and without the need to create an automaton (reachability
graph) from the Petri net and then produce another one which

represents the diagnoser.

As mentioned in section VII, regarding creating a new

Petri net from another, the creation procedure described in [9]

produces a large Petri net. As result, that leads to creating a

diagnoser with large state space. Implementing this diagnoser

in order to detect violations of constraints is not possible

from practical point of view. Therefore, it is there is a clear

scope for presenting methods of producing Petri net N ′ such

that the size does not grow inhibitively. This remains an area

for future research.

IX. CONCLUSIONS

A New definition of diagnosability in partially observable

Discrete-Event Systems modelled using Petri nets has been

presented in this paper. This new definition adopts a new

formalism to model a failure as a violation of logical

constraints. In order to explain the notion of this definition,

an example that represents Right-First Time (RFT) failure

has been described and studied in this context. We have

proved that the classic definition of diagnosability represents

a special case of this new definition. The suggested method

consists of the following steps. Firstly, we create a new Petri

net from the original one with failure transitions which its

firing corresponds to violations of constraints. Constraints in

here are written in Yen’s logic. Secondly, we use the existing

approaches to diagnose these failures in the new Petri net. In

other words, the diagnoser that can diagnosis these failures in

the new Petri net has the same ability to diagnosis a violation

of constraints in the original model.

REFERENCES

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans-
actions on Automatic Control, vol. 40, no. 9, pp. 1555–1575, 1995.

[2] S. Genc and S. Lafortune, “Distributed diagnosis of Place-Bordered
Petri nets,” IEEE Transactions on Automatic Science and Enginnering,
vol. 4, no. 2, pp. 206–219, 2007.

[3] M. P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu, “Diagnosability
analysis of unbounded Petri nets,” in 48th IEEE Conference on
Decision and Control, Shanghai, China, December 2009, pp. 1267–
1272.

[4] F. Basile, P. Chiacchio, and G. D. Tommasi, “Sufficient conditions for
diagnosability of Petri nets,” in Proceedings of the 9th International
Workshop on Discrete Event Systems, Gteborg, Sweden, May 2008.

[5] M. Dotoli, M. P. Fanti, A. M. Mangini, and W. Ukovich, “On-line fault
detection of discrete event systems by Petri nets and integer linear
programming,” Automatica, vol. 45, no. 11, pp. 2665–2672, 2009.

[6] M. Alodib and B. Bordbar, “A model-based approach to fault diag-
nosis in service oriented architectures,” in Proceedings of the IEEE
European Conference on Web Services (ECOWS), Netherlands, 2009,
pp. 129–138.

[7] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.

[8] H.-C. YEN, “A unified approach for deciding the exitence of certain
Petri net paths,” Information and Computation, vol. 96, pp. 119–137,
1992.

[9] M. F. Atig and P. Habermehl, “On Yen’s path logic for Petri nets,”
International Journal of Foundations of Computer Science, vol. 22,
no. 4, pp. 783–799, 2011.

[10] W. van der Aalst, “Verification of workflow nets,” Application and
Theory of Petri Nets, vol. 1248, pp. 407–426, 1997.

[11] S. Genc and S. Lafortune, “Distributed diagnosis of discrete-event
systems using Petri nets,” in Applications and Theory of Petri Nets,
vol. 2679, Eindhoven, The Netherlands, June 2003, pp. 316–336.

[12] L. Ricker, S. Lafortune, and S. Genc, “DESUMA: A tool integrating
giddes and umdes,” in Discrete Event Systems, 2006 8th International
Workshop on, July 2006, pp. 392–393.

[13] D. Corona, A. Giua, and C. Seatzu, “Marking estimation of Petri nets
with silent transitions,” in IEEE Conference on Decision and Control,
Atlantis, Paradise Island, Bahamas, December 2004.

[14] A. Giua and C. Seatzu, “Fault detection for discrete event systems
using Petri nets with unobservable transitions,” in Proceeding of the
44th IEEE Conference on Decision and Control, and the Eurpean
Control Conference, Seville, Spain, December 2005, pp. 6323–6328.

[15] G. Jiroveanu, R. K. Boel, and B. Bordbar, “On-line monitoring of large
Petri net models under partial observation,” Discrete Event Dynamic
Systems, vol. 18, pp. 323–354, 2008.

[16] G. Jiroveanu and R. K. Boel, “The diagnosability of Petri net models
using minimal explanations,” IEEE Transaction on Automatic Control,
vol. 55, no. 7, pp. 1663–1668, 2010.

681681681681681681681681680

