
Analysis of Mobility Algorithms for Forensic Virtual Machine Based Malware
Detection

Nada Alruhaily, Behzad Bordbar, and Tom Chothia
School of Computer Science

University of Birmingham
Birmingham, UK B15 2TT

Emails: {Nma012, B.Bordbar, T.P.Chothia}@cs.bham.ac.uk

Abstract—Forensic Virtual Machines are a new technology
that replaces signature-based malware detection for the cloud.
Forensic Virtual Machines are mini-VMs which are used to
identify symptoms of malicious behaviour on customer VMs.
Scanning using these mini-VMs consumes less resources than
a full scan would and their small size reduces the possibility
of the FVMs themselves containing vulnerabilities. A mobility
algorithm embedded in every FVM specifies how it chooses
which customer VM to scan. Although multiple scanning
strategies have been introduced, there is no work which
provides a comparison of these strategies. In this paper, we
develop a probabilistic approach which tells us which strategy
is best for a given cloud environment and particular family of
malware. Our framework uses Bayesian probability in addition
to a malware knowledge base in order to simulate the scanning
process of a number of FVMs.

Keywords-Forensic Virtual Machine; Mobility Algorithms;
Malware; Behavioural Analysis

I. INTRODUCTION

The massive growth of the cloud usage have led to an
increase in the related security concerns. Subsequently, mul-
tiple techniques have been proposed to minimise the risk and
to detect the abnormal behaviour that might be carried out
by malicious activities. Virtual Machine Introspection (VMI)
was one of the proposed techniques that help to increase the
security level of the cloud by allowing monitoring the state
of Virtual Machines (VMs) in real time through checking
their memory pages and other behaviours such as registries
and disk changes [1]. It is a powerful technique that can be
used by giving some VMs a special privilege in order to
inspect and analyse the target VM from the outside. This
makes it hard for the attacker to know that these VMs are
being investigated. An improvement to this technique has
also been introduced by [2], where they proposed a more
robust and secure cloud environment through offering an
encrypted Virtual Machine Introspection system referred to
as CryptVMI. Furthermore, in order to offer this mechanism
to cloud users on public cloud platform and to get the desired
benefit of it easily, Baek et al. in [3] have made it available
as-a-service through the virtualisation of the VMI interface.

Based on the VMI technique, Harrison et al. and Shaw
et al., in [4] and [5] respectively, proposed and developed

Forensic virtual Machines (FVMs) which is an architecture
for using VMI to detect symptoms of malicious behaviour.
FVMs benefit from a mini virtual machines that are used to
detect any abnormal behaviour carried out by the inspected
VMs. In fact, making FVMs small with fewer functionality
reduces the attack surface. Each FVMs are dedicated to
identify the existence of a specific symptom that can be
resulted from a malicious activity. When an infected VM
identified, a mitigation plan will then be applied by the cloud
Command and Control centre (C&C).

However, due to the high cost and the fact that lots
of resources need to be used when deploying FVMs [5],
a further development have been introduced which allow
FVMs to check multiple VMs at the same time using prepro-
grammed strategies which have been referred to as Mobility
Algorithms. The purpose of these Algorithms is to arrange
the movement of FVMs from one VM to another which
help in using a single FVM for checking multiple VMs
rather than creating a dedicated FVM per VM. Accordingly,
this work address some unanswered questions regarding
developing a technique that help to choose the most effective
Mobility Algorithm to be used by FVMs.

In this paper, we developed a probabilistic approach to
analyse Mobility Algorithms. The framework uses Bayesian
probability in addition to our implemented malware knowl-
edge base in order to simulate the scanning process of
a number of FVMs. Based on the resources that have
been used during the scan, the total cost is calculated in
order to identify the suitable Mobility Algorithms. Our
framework showed that there is a considerable difference
on the scanning performance when using different scanning
strategies and it was able to show the optimum strategy given
parameters that represent the scanned environment such as
the number of VMs, the deployed FVMs and the cost of false
positive and false negative. Our framework shows that the
optimum strategy, in most of the tested cases, is a strategy
which has been produced previously by [4] and it has been
described later on this paper in Section V-B. In summary,
this paper makes the following contributions:

1) We developed a probabilistic approach that helps to
compare the cost and the performance of the FVMs

scanning strategies and identifies the optimum strategy
for each given environment to be used in the scan.

2) The framework has been tested and evaluated using
real malware data.

3) Based on our data, the framework showed that the
optimum strategy for most of the tested Malware fam-
ilies and types is a strategy which has been produced
previously by[4].

The rest of this paper is organised as follows: Section II
describes preliminary information about Cloud Computing,
Forensic Virtual Machines and mobility algorithms. Sec-
tion III introduces the problem under discussion, while Sec-
tion IV-A presents the sample preparation and data collection
procedure. Then the main probabilistic approach is described
in section IV-B. The results of the experiment along with the
evaluation are then proposed in section V. The paper is then
concluded with Section VI.

II. PRELIMINARIES

Cloud infrastructure relies on virtualisation technology,
which allows division of the resources between multiple
instances of virtual machines (VMs) that, in turn, resulted
in the efficient use of the existing computing resources [6].
VMs were defined by [7] as ”A hardware-software duplicate
of a real existing computer system in which a statistically
dominant subset of the virtual processors instructions exe-
cute on the host processor in a native mode”.

In the following sections we shall briefly review the idea
of Virtual Machine Introspection[1] and its latest improve-
ment and application with regard to cloud security. We shall
also describe the notion of Forensic Virtual Machines [4] and
how they have been used as a replacement of the signature-
based detection systems in the cloud. In Section II-A we
will explain the outline of the Introspection approach while
in Section II-B we describe the recent developed FVMs and
several related notions such as Mobility Algorithms.

A. Virtual Machine Introspection

Virtual Machine Introspection (VMI) is a new technology
that enables one VM to scan, monitor and modify the current
state, such as memory pages and registries, of another VM
- when having the sufficient privilege - while remaining
hidden. VMI technology was first introduced by [1]. They
suggested that instead of having the (IDS) within the cus-
tomer’s VM, the IDS can be pulled outside the host, which
will give it a good view over the addressed VM, in addition
to let it remain invulnerable to attacks. The proposed IDS (
so-called Livewire) has been built for a customised version
of VMware Workstation for Linux x86.

Kourai and Chiba in [8] and Keshavarzi in [9] have
also introduced an IDS that targets distributed computer
systems. The implemented IDS in both benefits from the
VMI technology, where it isolates the server that it monitors
from the IDS. This allows to provide a complete isolation

between the IDS and the attacker malicious code.In addition
to its wide usage in developing cloud’s IDS, VMI also
have been used in improving other services, such as digital
forensics [10] [11]. There are also further research which
have been carried out in order to provide introspection-as-
a service in the cloud through introducing written libraries
and tools[12] [13] [3].

B. Forensic Virtual Machines

Harrison et al. in [4] made some improvements to the
previous works in the area of introspection. They introduced
a technique that makes use of mini virtual machines, known
as Forensic Virtual Machines (FVMs), which can be used
to inspect the memory pages of other VMs to identify the
existence of specific symptoms that arise due to malicious
behaviour. FVMs try to identify these symptoms instead of
looking at the behaviour itself, which works in a similar
way to diagnosing illness the human body. Fig. 1 gives an
overview of the implemented approach where it shows a
number of mini VMs (FVMs) which have been given the
required privilege that let them inspect the other VMs.

FIGURE 1: FVMS INSPECTING CUSTOMER’S VMS.

FVMs can inspect multiple VMs at the same time, which
reduces the cost of FVMs created, on one hand, and in-
creases the security, on the other hand [4][5]. This is because
the number of FVMs inspecting an exact VM becomes
unknown for the attacker. In addition, each of the FVMs are
dedicated to identify the existence of an only one symptom,
and when a symptom is discovered, Domain 0 (Dom 0) will
report it to the C&C centre, which will, in turn, identify
the suitable mitigation based on this fact and in relation to
other information as well. Shaw et al, have developed these
FVMs further in order to reduce the size of these VMs to
make verifying the integrity of these special VMs less time
consuming [5].

1) Mobility algorithms: After each FVM is created, it
is initialised with a special scanning strategy or so- called
Mobility Algorithm that is responsible for scheduling the

movement of the FVM from one VM to another. Harrison
et al. and Shaw et al., in [4] and [5] respectively, proposed
three different Mobility Algorithms which vary from simple
to dynamic ones such as random movement, scanning ac-
cording to a determined order, in addition to introducing an
advanced scanning strategy or algorithms.

III. DESCRIPTION OF THE PROBLEM

FVM is an innovation technology that can be used to
replace the signature-based detection systems on the cloud.
It helps to reduce the usage of the resources and the
memory consumption, which in turn will boost the scanning
performance on the cloud. During the scan, each FVM
will be initialised with a chosen Mobility Algorithm, which
defines the FVM movement from one VM to another during
the scan.

Currently, there are multiple scanning strategies that can
be used during the initialisation of FVMs. For example,
FVMs can be prompted to scan VMs randomly, according to
a specific order or based on a dynamic Mobility Algorithm.
During the scan, each scanning strategy may allocate a
different number of resources, therefore, the scanning cost
can be increased due to various factors such as:

• The type of malware infection or family.
• The state of the scanned environment, such as the

number of VMs scanned and the FVM initialised.

Therefore, a further development have been introduced by
[5] that allow FVMs to check multiple VMs at the same
time using preprogrammed strategies or the Mobility Al-
gorithms. This resulted in an urgent need for an approach
that helps in understanding and analysing the current state
of the scanned environment in order to nominate a specific
scanning strategy based on each scanned environment.

In the following sections we shall present a solution that
help to identify and nominate the optimum scanning strategy
based on the current state of a given environment.

IV. SKETCH OF THE SOLUTION

In this paper, as a solution for the described problem, we
present a probabilistic approach that helps in identifying the
optimum Mobility Algorithm given parameters that repre-
sent the scanned environment such as the number of VMs,
the deployed FVMs and the cost of false positive and false
negative. The framework can be broken down to three steps
as shown in Fig. 2. Section IV-A describes the procedure
which has been followed in order to collect the required
malware data, whereas section IV-B covers the remaining
two steps of the solution.
By using this approach, the scanning strategy with the lowest
scanning cost can be identified which, in turn, helps in
boosting the scanning time and procedure.

FIGURE 2: OUR PROPOSED SOLUTION.

A. Sample preparation and building the knowledge base

In order to achieve the objectives of this research, it was
essential to develop a knowledge base, which consists of a
large number of malware and benign symptoms. This helps
in providing a broad picture of the possible and expected
symptoms in terms of both malicious and normal activities.
The following section provides an overview of the procedure
that have been followed to collect the required malware data.
Initially, a python-based tool (maltrieve)[14] was used to
parse a list of malware websites and download the latest
malicious code uploaded to them. This list includes: Mal-
ware Domain List, VX Vault, Malc0de, Malware Black List
and Sacour.cn. However, the problem was that downloading
malware using such tool only can result in a considerable
bias in the database. Therefore, we have combined this
method with collecting malware based on their families in
order to minimise such a disadvantage. We have used all of
the top 10 and 20 malware families recorded on Internet
Security Threat reports by Symantec[15] and Microsoft
Security Intelligence Reports [16](2006-2013), respectively.
For this purpose, a python script was written to pull all
samples resulting from the search request for each family,
including all known variants, from an open malware source
”Open Malware”[17]. It has been noted that the bias in the
database was minimised and more samples from the most
common malware families were downloaded, and as a result
of the previous step, 14746 malware samples have been
collected.

Using the above methods, we have implemented a down-
loading framework, which is shown in Fig. 3, to help down-
loading malware automatically from the mentioned different
sources, in addition to sending them to Anubis sandbox,
an online sandbox [18]. After the analysis is completed,
behavioural analysis reports can be automatically retrieved,
and parsed so that the recorded features can be added to
our knowledge base. Apart from the information parsed, the
knowledge base also includes some valuable data such as the
approximate discovered date of each malware family and the

risk level, as well as the distribution level of the malware
family which has been set by Symantec and Avira websites
[19][20].

FIGURE 3: OUR DOWNLOADING FRAMEWORK.

B. Identifying the optimum Mobility algorithm to be used in
the scan

The main problem that this research addresses is identify-
ing the optimum Mobility Algorithm that can be adopted in
the scanning process. We have benefitted from our knowl-
edge base in implementing a framework that simulates the
process of FVM scanning. Fig. 4 shows an overview of the
implemented simulator.
The simulator is obtained based on probability theory and
Bayes theorem; it mainly benefits from information recorded
or derived from our knowledge base, such as the probability
of seeing an exact symptom given that there is a malware
infection. Such information is used to develop a sample
environment or a case study with a number of infected
or non-infected VMs along with a number of symptoms,
that can be seen on them on either case. The scan is then
carried out by by multiple FVMs which are initialised with
a specific Mobility Algorithm after setting multiple param-
eters, such as the number of scanned VMs, the cost of false
positive FP , the false negative FN and the initial belief
of a malware infection p(Malware). This implemented
environment with the initialised VMs and FVMs is used
then as a case study to simulate the scanning process. Thus,
during the scanning process, the framework will be able to
update its initial belief of an infection according to the new
evidence gathered using Bayes Theorem role. The evidence
in this case is like confirming or denying the existence of a
symptom on a specific VM. Updating the initial belief after
each step of the scan will help the simulator in determining
the infected and the non-infected machines. Therefore, in
order to nominate the optimum and most beneficial strategy,
it is necessary to determine the cost of the scan after each
step, in addition to calculating the overall cost of the scan.
We shall describe the framework mathematically as follows:

FIGURE 4: FVM GUIDING FRAMEWORK

Definition 1: For set of boolean symptoms: S1, . . . Sn

(which may be True or False) Set of all symptom sub-
assignments is defined as:

AS = {{Si = b | Si ∈ S, b ∈ {True, False}} | S ∈ P(S)}
(1)

an example of set of symptoms can be: {S2 = True, S5 =
False, S8 = True} which is a member of AS.
From our obtained knowledge base we would like also to
derive the following information, for all S ∈ AS:

- p(S | M) : is the probability of seeing S when
there is malware.
- p(S | B) : is the probability of seeing S when malware
is not present

By applying Bayes law, we can then calculate the degree
of belief in having a malware infection p(M |S) taking into
account the likelihood of the evidence occurring in addition
to the initial belief p(M):

p(M |S) = p(S | M).p(M)p(S) (2)

where p(S), the probability of seeing a group of symptoms
S, can be calculated as follows:

p(S) = p(S | M).p(M) + p(S | B).(1− p(M)) (3)

As a result, depending on the value of p(M |S)
we can claim that there is a malware if
p(M |S) ≥ a pre agreed threshold , as an example, if
we assume that the VMs we are scanning are infected with

a probability of 0.4, we can then describe the VMs status
as follows:

p(M|S)

{
≥ 0.4, there is a malware
< 0.4, there is no malware

(4)

Subsequently, we can say that false positive and false
negative can be calculated based on p(M |S) and it would
be possible to calculate the cost of the overall scan using the
proposed framework, therefore, a conclusion can be drawn
based on the results such as follows:

Definition 2: Let the cost of false positive represented as
FPC, and the cost of false negative as FNC and the cost
of reading S as SC, the cost of scanning for a group of
symptoms S in a VM is:

Cost(S) =

{
SC + (1− p(M |S)).FPC, p(M |S) ≥ 0.4

SC + p(M |S).FNC, p(M |S) < 0.4
(5)

where
• p(M |S), refers to the degree of belief in having an

infection on the scanned machines.
• FNC, refers to the cost of incorrectly identifying a

machine as non-infected.
• FPC, refers to the cost of incorrectly identifying a

machine as infected.

V. EXPERIMENT RESULTS AND VALIDATION OF THE
OUTCOMES

A. Modelling the environment

We shall describe the following assumptions that have
been made during the experiment before presenting the
experiment procedures and results:

1) Because we assume that we are dealing with only a
snapshot of a system, we are not considering the case
when a system state changes from infected to non-
infected or vice versa during the scan.

2) We assume that when an FVM scans for a specific
symptom, it will eventually identify it.

3) We are assuming discrete time steps where the scan
of each symptom take the same amount of time.

In addition to the above assumptions, it is important to
state that the framework results depend on the malware data
examined during the experiment. We have also examined
the framework using registry key changes as symptoms, and
for each family, we have used the most common changes
in the registry keys recorded mostly by Symantec [19] and
Microsoft [21].

B. Description of the Experiment and Analysing the Results

The four Mobility Algorithms that have been tested can
be described briefly as follows:

1) Strategy 1: is a random strategy where the next
scanning target is chosen completely randomly at the
beginning of each step of the scan.

2) Strategy 2 and 3: in both, each FVM has different
preprogrammed priorities, and it chooses the next
scanning targets based on these priorities. The
priorities in both strategies have been set based on
the probability of seeing a malware given a group
of symptoms S which have been calculated based
on our knowledge base. Therefore, when an FVM
that scans for symptom sp is informed that sm and
sn have been found on two different machines VMi

and VMj respectively, the FVM has to check their
predefined priorities to determine which machine has
the symptom that - together with the symptom that it
scans for - has the highest probability between the two,
p(Malware | sp ∩ sm) or p(Malware | sp ∩ sn). It
will then set this machine as the next scanning target.
The only difference between these two strategies
is that the former will make the decision based
on the probability of having a malware given only
two observed symptoms, whereas the latter will be
considering three symptoms all together.

3) Strategy 4: it has been actually proposed previously
by [4], in which they grouped the malicious behaviour
into configurations, where C = c1, c2, ..., cm denote
the set of all the important configurations. Each of
these configurations consists of a subset of symp-
toms where it can be represented as follows: S =
s1, s2, ..., sn. Their strategy can be mathematically
written as follows:

F (v) =

K∑
i=1

Disc(ci, v)

size(ci)
val(ci)

+ λ [CurrentT ime− LastV isited(v)]
(6)

where
•

Disc(ci,v)
size(ci)

is the ratio of the number of discovered
symptoms that belongs to the configuration ci, to the
total number of symptoms in the same configuration.

• val(ci) is the severity value of configuration ci assigned
by a security expert.

• [CurrentT ime− LastV isited(v)] is the time passed
since a VM has been scanned or visited by any FVM.

• λ is the Loneliness Parameter where λ > 0, and the
smaller the number we set this parameter to, the less
important the time of the last visiting will be.

We have tested the mentioned FVM’s strategies on four
malware families and three malware types. These families
and types have been chosen randomly from our database and
the type of each malware family has been identified based on
the Symantec online database [19]. Table I shows the tested

1 2 3 4
8

9

10

11

12

13

14

15

16

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

a) Adware.Popuppers

1 2 3 4
14

15

16

17

18

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

c) W32.Sality

1 2 3 4
8

9

10

11

12

13

14

15

16

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

b) W32.Rontokbro.U@mm

1 2 3 4
15.0

15.5

16.0

16.5

17.0

17.5

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

d) Trojan.FakeAV

FIGURE 5: THE 95% CI OF THE MEAN COST FOR EACH MALWARE FAMILY

malware families along with the number of malware samples
that have been used during the experiment, in addition to the
type of malware that each family belongs to.

During the test, we have recorded the results of 20 trial
where In each trial we simulate the run of 800 scans and
record the average cost of these scans in order to get a more
robust results. We have calculated the Cost based on the
previously mentioned assumptions as follows:

Cost(S) =

{
SC + (1− p(M |S)).FPC, p(M |S) ≥ 0.4

SC + p(M |S).FNC, p(M |S) < 0.4
(7)

Given the following estimated values:
FNC = 15 and FPC = 5

In each test, FVMs were initialised to scan for a different
malware family by identifying their distinctive registry key
changes. Then, based on the calculated cost, the simulator
nominates the most efficient Mobility Algorithm that reduces
the cost in each case. The strategies performance is repre-
sented on Fig. 5 and Fig. 6 based on a 95% confidence
interval calculation of the mean cost of each strategy. It can
be seen from Fig. 5 that none of the strategies’ confidence
interval, when tested with each family, have shown any
overlap. This shows that there is a significant difference
in the performance between the tested strategies. Based
on Fig. 5, it can be concluded that the optimum strategy

for Adware.Popuppers, Rontokbro and Sality is the fourth
strategy, where it gives the lowest scanning cost, whereas
strategy 2 shows the lowest scanning cost when used to scan
for Trojan.FakeAV. Fig. 5 also shows that strategy 1 - the
random strategy - gives always the highest cost given the
tested malware families.

TABLE I: MALWARE FAMILIES USED ON THE EXPERIMENT

Malware Family no. of Samples Malware Type
Adware.Popuppers 167 Adware

W32.Rontokbro@mm 210 Worm
W32.Sality 109 Virus

Trojan.FakeAV 102 Trojan

The strategies also have been tested not only on malware
families, but also on their types in order to see if the
optimum strategy can vary from family to family within the
same malware type. Table II shows the tested malware types,
the tested families in each type along with the number of
malware samples that have been used during the experiment.
The distinctive symptoms that have been used during the
FVMs initialisation on family testing have also been used
during the initialisation of FVMs when testing the related
malware type. This is based on the assumption that all
malware families within the same type share the same
symptoms. The results are shown on Fig. 6 and it can be seen
that the optimum Mobility Algorithm for all tested malware
types tends to be the fourth strategy with the highest cost

1 2 3 4
9

10

11

12

13

14

15

16

17

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

1) Adware

1 2 3 4

22.5

23.0

23.5

24.0

24.5

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

2) Worms

1 2 3 4

17.5

18.0

18.5

19.0

19.5

20.0

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

3) Viruses

FIGURE 6: THE 95% CI OF THE MEAN COST FOR EACH MALWARE TYPE

given when the scan performed randomly (strategy 1). It
can be seen also in the case of Adware that the dependency
between the symptoms is relatively strong, which induce the
gap between Strategy 1 results and the rest of the strategies
, as strategy 1 chooses the next scanning target randomly.

TABLE II: MALWARE TYPES USED ON THE EXPERIMENT

Malware type families tested within this type no. of Samples

Adware

Adware.Popuppers
Adware.Clkpotato!gen3

Adware.Istbar
Adware.Slagent

Adware.ZenoSearch

167
32
26
26
14

Worms

W32.Rontokbro@mm
W32.Spybot.Worm

W32.Benjamin.Worm
W32.Mabezat.B!inf

W32.SillyFDC

210
196
88
35
25

Viruses

W32.Sality
W32.Virut

W32.Whybo!inf
W32.Licum
W32.Xpaj.C

109
97
88
27
21

VI. CONCLUSION

Before initialising and using Forensic Virtual Machine
Based Malware Detection system, it is important to be able
to recognise the most beneficial FVM’s Mobility Algorithms
which gives the optimum scanning results with the minimum
spending cost. This article presented a probabilistic approach
in order to improve FVMs scanning performance. We have
implemented also a framework that collects malware auto-
matically. We have shown in this paper that some scanning
strategies can consume less resources with some malware
families and checking which strategy is the optimum before
initialising FVMs can improve the scanning procedure.

Now, that we have successfully demonstrated that the
proposed technique work, our future goal is to address some
limitations on the existing work. For example, we have not
consider the case when a system state change from infected
to non-infected or vice versa during the scan. We have also,
for the simplification purpose, consider only the case when
all the VMs on the system current snapshot are infected with
the same family or type of malware. However, considering
the size of the cloud, a VM can be subject to multiple

attacks, therefore, having multiple malware families or type
on the same time should be taken into account. Thus, our
future goals are to add new extensions that address these
current limitations.

REFERENCES

[1] T. Garfinkel, M. Rosenblum et al., “A virtual machine intro-
spection based architecture for intrusion detection.” in NDSS,
2003.

[2] F. Yao and R. Campbell, “Cryptvmi: Encrypted virtual
machine introspection in the cloud,” in Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, June
2014, pp. 977–978.

[3] H. W. Baek, A. Srivastava, and J. van der Merwe, “Cloudvmi:
Virtual machine introspection as a cloud service,” in Cloud
Engineering (IC2E), 2014 IEEE International Conference on,
March 2014, pp. 153–158.

[4] K. Harrison, B. Bordbar, S. T. Ali, C. I. Dalton, and A. Nor-
man, “A framework for detecting malware in cloud by identi-
fying symptoms,” in Enterprise Distributed Object Computing
Conference (EDOC), 2012 IEEE 16th International. IEEE,
2012, pp. 164–172.

[5] A. L. Shaw, B. Bordbar, J. Saxon, K. Harrison, C. Dalton
et al., “Forensic virtual machines: dynamic defence in the
cloud via introspection,” in Cloud Engineering (IC2E), 2014
IEEE International Conference on. IEEE, 2014, pp. 303–
310.

[6] D. E. Williams, Virtualization with Xen (tm): Including Xe-
nEnterprise, XenServer, and XenExpress: Including XenEn-
terprise, XenServer, and XenExpress. Syngress, 2007.

[7] R. P. Goldberg, “Architectural principles for virtual computer
systems,” DTIC Document, Tech. Rep., 1973.

[8] K. Kourai and S. Chiba, “Hyperspector: virtual distributed
monitoring environments for secure intrusion detection,” in
Proceedings of the 1st ACM/USENIX international conference
on Virtual execution environments. ACM, 2005, pp. 197–
207.

[9] M. Keshavarzi, “Traditional host based intrusion detection
systems’ challenges in cloud computing,” Advances in Com-
puter Science: an International Journal, vol. 3, no. 2, pp.
133–138, 2014.

[10] C. Benninger, S. Neville, Y. Yazir, C. Matthews, and
Y. Coady, “Maitland: Lighter-weight vm introspection to
support cyber-security in the cloud,” in Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, June
2012, pp. 471–478.

[11] “V. systems. volatility,” https://www.volatilesystems.com,
2015.

[12] F. Westphal, S. Axelsson, C. Neuhaus, and A. Polze, “Vmi-
pl: A monitoring language for virtual platforms using virtual
machine introspection,” Digital Investigation, vol. 11, pp.
S85–S94, 2014.

[13] B. D. Payne, “Libvmi - virtual machine introspection,” http:
//libvmi.com, 2015.

[14] K. Maxwell, “Maltrieve,” https://github.com/technoskald/
maltrieve, 2015.

[15] Symantec, “Internet security threat report,”
http://www.symantec.com/security response/publications/
threatreport.jsp, 2015.

[16] Microsoft, “Microsoft security intelligence report,” http://
www.microsoft.com/security/sir/default.aspx, 2015.

[17] Open Malware, http://www.offensivecomputing.net, 2015.

[18] International Secure Systems Lab, “Anubis - malware analysis
for unknown binaries,” https://anubis.iseclab.org, 2014.

[19] Symantec, “Symantec security response,” http:
//www.symantec.com/security response/landing/azlisting.jsp,
2015.

[20] Avira Virus Lab, http://www.avira.com/en/support-virus-lab,
2015.

[21] Microsoft, “Malware encyclopedia,” http://www.microsoft.
com/security/portal/threat/Threats.aspx, 2015.

https://www.volatilesystems.com
http://libvmi.com
http://libvmi.com
https://github.com/technoskald/maltrieve
https://github.com/technoskald/maltrieve
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.microsoft.com/security/sir/default.aspx
http://www.microsoft.com/security/sir/default.aspx
http://www.offensivecomputing.net
https://anubis.iseclab.org
http://www.symantec.com/security_response/landing/azlisting.jsp
http://www.symantec.com/security_response/landing/azlisting.jsp
http://www.avira.com/en/support-virus-lab
http://www.microsoft.com/security/portal/threat/Threats.aspx
http://www.microsoft.com/security/portal/threat/Threats.aspx

