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Abstract— This paper presents a new technique for failure di-
agnosis in partially observable discrete event systems modelled
as Petri nets. In this new technique we adopt Integer Fourier-
Motzkin Elimination (IFME) method. We start with a Petri
net and produce the state equations. The state equations are a
set of integer valued inequalities in variables that represent
number of firing of transitions. Occurrences of failure can
also be expressed by inequalities. Then we extend the set of
inequalities obtained from the state equations to two new sets.
The first is created from adding the inequality for failure. The
second is created from adding the negation of the inequality
for failure. Applying the IFME method to the two resulting
sets of inequalities, the variables corresponding to unobservable
transitions will be eliminated. Then we prove that for acyclic
Petri nets, the reduced set of inequalities after the elimination
can be used to diagnose failures.

I. INTRODUCTION

Research into failure diagnosis in partially observable
discrete event systems (DES) has received considerable
attention in the past three decades. A popular approach is
to assume existence of a formal representation of the plant
behaviour captured in a modelling language. Two common
modelling languages are often used; Automata and Petri
nets [1]–[5]. Using these languages, failures are modelled as
unobservable transitions. Among others, the seminal paper
by Sampath et al. [1] formulates the diagnosis and diag-
nosability problem in the systems modelled by Automata.
Petri nets provide a rich modelling environment and are
widely used in model based failure diagnosis [6] and [3].
An overview of the different approaches suggested for failure
diagnosis in discrete event systems can be found in [7]. Here,
we use Petri nets for modelling of the plant.

In this paper, we introduce a new approach for failure
diagnosis in partially observable discrete event systems us-
ing Integer Fourier-Motzkin Elimination (IFME) method.
Fourier-Motzkin Elimination (FME) is a method to solve a
set of inequalities in real variables [8]–[11]. FME method
is an extension of Gaussian elimination method which is
commonly used in equations. Similar to Gaussian elimina-
tion, FME eliminates variables from a set of inequalities
obtaining inequalities with fewer variables. IFME method is
an extension of the classic FME to cope with integer valued
variables [12] and [13].

The outline of the method suggested in this paper is as
follows. We start with a Petri net and produce the state
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equations, denoted E, [14]. The state equations are a set of
integer valued inequalities in variables that represent number
of firing of transitions. Occurrences of failure can also be ex-
pressed by inequalities. This can be done as follows. Assume
that tn is a failure transition. Then the inequality of the form
c := xn ≤ 0, where xn is a variable representing the number
of firing tn in a given firing sequence σ , holds if σ does not
contain tn. Clearly, the negation of this inequality expresses
the occurrence of the failure. After modelling failure as
an inequality of the form c′ := xn > 0, we simultaneously
create two sets of inequalities by adding the inequality c
and negation of c (c′) to E. Then we apply the IFME to the
created sets, denoted E∪{c} and E∪{c′}, by eliminating all
variables corresponding to unobservable transitions. Suppose
we denote the resulting sets of inequalities as R and R′

respectively. Then we prove that for acyclic Petri nets, R
and R′ can be used to diagnose failure. The advantage of
using R and R′ is that since all variables relate to observable
events, we can check that for a given sequence σ , if the
projection to observable events satisfies R and R′.

This paper is organized as follows. Section II presents a
brief introduction to Petri nets’ theory and FME method.
Modelling of failure via inequalities and a formulation of
failure diagnosis is described in section III. Section IV
describes our main results involving using IFME for failure
diagnosis. We end the paper with related works and conclu-
sions.

II. PRELIMINARY

A. Petri nets

In [14] a Petri net is defined as a four tuple N =
(P,T, pre, post), where P and T are two nonempty finite sets
of places and transitions, respectively. We denote m = |P|
and n = |T | as the number of places and transitions. pre :
P× T → N and post : P× T → N. For a given transition
t, an input (output) place of t is a place p such that
pre(p, t) (post(p, t)) is positive, respectively. A = [ai j] is
an n×m matrix of integers called incidence matrix, where
ai j = post(p, t)− pre(p, t) assuming that the set of places are
ordered to correspond the coordinates of the matrix. In this
paper N= {0,1,2, . . .} is the set of non-negative integers, Z
is the set of all integers and R is the set of real numbers.

A state of a Petri net, known as a marking, is represented
as M : P→N capturing the number of tokens in each place.
We sometimes represent a marking as an m× 1 matrix of
non-negative integers. A transition t is enabled at a marking
M if for each M≥ pre(., t), where pre(., t) is an n×1 matrix
with coordinates pre(p, t) for p ∈ P. An enabled transition



can fire resulting in a new marking M′, denoted by M t→M′,
where M′=M+A(., t). A sequence of transitions σ = t1 . . . tk
of T is called enabled at a marking M, if there are marking
M1, . . . ,Mk so that M

t1→M1
t2→M2 · · ·

tk→Mk. In this case, we
write M σ→ Mk and refer to Mk as a state Reachable from
M and σ is the firing sequence. We write R(N , M) for
the set of all reachable states from M. The initial state of
the system is represented by an initial marking M0. We will
write (N , M0) for a Petri net with its initial marking M0.

The set of all finite-length strings of the transitions in T
is denoted by T ∗ and is called the Kleene-closure of T. As
a result, members of T ∗ are created from concatenation of
finite number of elements of T. In particular, T ∗ contains
the empty string ε, so that tε = εt = t for all t ∈ T. Every
subset of T ∗ is called a language on the alphabet T . Suppose
that we have a firing sequence σ of (N , M0), then the
Parikh vector # : T ∗→ Nn is a map which assigns to every
firing sequence σ a map #(σ) that produces the number of
firing each transition in σ . In other words, for #(σ) : T →N,
#(σ)(t) is the number of occurrence of t ∈ T within the
sequence σ . Sometimes, we write #(t,σ) to represent the
number of the occurrences of t in σ .

The set of sequences of transitions resulting in a reachable
marking is called the Language of the Petri net and is denoted
by L(N , M0) i.e. L(N , M0) = {σ ∈ T ∗ | ∃M M0

σ→M}.
Suppose that a destination marking M is reachable from

M0 in a Petri net N through a firing sequence σ , we can
then find M using the following state equations:

M = M0 +AT x≥~0 (1)

where A is the incidence matrix of N , and x ∈ Nn is a
n-dimensional column vector with x = (x1, . . . ,xn) and xi =
#(ti,σ) for ti ∈ T . Then, for any firing sequence σ of N ,
there exists x = #(σ) satisfying (1).

Consider the Petri net of Fig. 1, the set of inequalities in
(2) represents the state equations for the Petri net.

x1 ≤ 1
− x1 + x2 ≤ 0
− x1 + x3 ≤ 0

− x2 + x4 − x7 ≤ 0
− x3 + x5 + x7 ≤ 0

− x4 + x6 ≤ 0
− x5 + x6 ≤ 0

− x1 ≤ 0
− x2 ≤ 0

− x3 ≤ 0
− x4 ≤ 0

− x5 ≤ 0
− x6 ≤ 0

− x7 ≤ 0

(2)

Finally, a directed circuit in a Petri net is a closed directed
path from one node (place or transition) back to itself. A
Petri net having no directed circuits is called an acyclic Petri
net. For this subclass of Petri nets, the state equations in (1)
is a necessary and sufficient condition for reachability of

markings. For further information about Petri nets, we refer
the reader to [14].

B. Fourier-Motzkin Elimination method

Fourier-Motzkin elimination (FME) method has originally
been suggested to solve a set of linear inequalities and also to
test if the set solvable or not. In other words, given a matrix
A ∈ Rm×n and a vector b ∈ Rm, test if a set of inequalities,
say E, of the form Ax ≤ b, where x = (x1,x2, . . . ,xn) ∈ Rn

is a vector of variables, has a solution and, if any, find it.
As we may multiply each inequality by a positive scalar, we
may assume that all entries in the first column of A are 0, +1
or -1. Without lost the generality, the set E can be rewritten
as shown in (3). Thus the problem is to solve this set (the
inequalities might need to be reordered first).

a′ix
′ ≤ bi, i = 1, . . . ,m1

a′jx
′− xn ≤ b j, j = m1 +1, . . . ,m2

a′kx′+ xn ≤ bk, k = m2 +1, . . . ,m

(3)

where x′ = {x1,x2, . . . xn−1}, i.e., the same set of vari-
ables without xn. Assume that l = max(a′jx

′− b j, j = m1 +
1, . . . ,m2) and u = min(bk− a′kx′,k = m2 + 1, . . . ,m). Since
the last two lines of (3) are equivalent to l ≤ xn ≤ u, then the
variable xn can be eliminated. This yields the reduced set R
in (4) as an equivalent to the set E in (3):

a′ix
′ ≤ bi, i = 1, . . . ,m1

a′jx
′−b j ≤ bk−a′kx′, j = m1 +1, . . . ,m2,

k = m2 +1, . . . ,m

(4)

By repeating this process, we can successively eliminate
the last n−1 variables xn,xn−1, . . . ,x2, and end up with a set
of inequalities in one variable x1 which is trivial.

Theorem 1. [11] Assume that the variables xk+1, . . . ,xn
have been eliminated in order by using FME method de-
scribed above from a set of linear inequalities E. This
results in the reduced set R. Then α1, . . . ,αk is a solu-
tion of R iff there exists values αk+1, . . . ,αn such that
α1, . . . ,αk,αk+1, . . . ,αn is a solution of E.

In fact, the FME method described above is appropriate
for eliminating the real variables. In case where the variables
are integers (∈ Z) there is an extension of FME method.
This extension is called Integer Fourier-Motzkin Elimination
(IFME) method, see [12] and [13]. In this paper, we have
chosen the method presented in [13]. This method better
meets our needs as it is somewhat simpler and more efficient.
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Fig. 1. Example of an acyclic Petri net.



For sake of brevity, we have not included the details of IFME
method here and for more details we refer the reader to [13].

III. PROBLEM DESCRIPTION

In this section we describe the problem of failure diagnosis
in DES modelled by Petri nets as outlined in references
[15] and [3]. Consider a Petri net (N , M0) with a set of
transitions T = {t1, t2, . . . , tn}. Suppose that T is partitioned
into two sets: observable transitions To and unobservable
transitions Tu. We further assume that failures are unob-
servable transitions, i.e., Tf ⊆ Tu, in which Tf is the set of
transitions which are modelling occurrences of failures. The
set Tu may have other transitions which model no failure,
i.e., they model normal events. In this paper, we assume that
the system has a single failure.

In Petri nets modelling partially observable DES, each ob-
servable transition is associated to an event (given as a label).
We assume that if a transition fires, the associated event is
observed. In other words, in every execution of events, a
sequence of transitions from To can only be observed. We
also assume that there are no two transitions of the Petri
nets sharing the same event (label). A Diagnoser (defined
below) uses such information to identify if the failure has
(not) happened or may have happened.

Also, consider the projection function π : T → To ∪ {ε}
that maps unobservable transitions to the empty string ε,
i.e. π(t) = ε for t ∈ Tu while, π(t) = t for t ∈ To. The
projection function π can be extended to the Kleene-closure
of T by π : T ∗ → (To ∪ {ε})∗ where for each sequence
of transitions σ and each transition t, π(σt) = π(σ)π(t).
We assume π(ε) = ε and that π(tε) = π(εt) = ε for each
t ∈ Tu. Likewise, we can define another projection that maps
observable transitions for a given sequence to the empty
string as πu : T ∗→ (Tu∪{ε})∗.

Denote by s = π(σ) the observed sequence corresponding
to a given firing sequence σ ∈ T ∗.

Now, based on the definition of the valuation described in
[16], we shall present the following definition.

Definition 1. Let x = (x1, . . . ,xn) be a set of variables. We
suppose that the variables range over N. A valuation ν for
x is a function that associates a value in N to each variable
xi in x.

Remark: In the light of Definition 1, given a sequence σ ∈
T ∗, Parikh vector #(σ) represents a valuation of x. In other
words, for each xi of x, xi = #(ti,σ), where i = 1,2, . . . ,n.

Definition 2. Suppose that e is an inequality of the form
a1x1+ · · ·+anxn ≤ b in the variables set x = (x1, . . . ,xn),xi ∈
N and a1, . . . ,an,b∈N. Consider a valuation ν as α1, . . . ,αn
assigned to value x1, . . . ,xn respectively. Then we write ν � e
to say that the valuation ν satisfies the inequality e if and
only if a1α1 + · · ·+anαn ≤ b.

Definition 3. Suppose that we have a set of inequalities E =
{ei | 1≤ i≤ d} where ei has the form of e in Definition 2.
Consider a valuation ν for the variables of the inequalities

in E. Then ν � E iff ν � e1∧·· ·∧ed (“∧” is the conjunctive
operator).

Lemma 1. Given a Petri net (N ,M0), we can derive a
corresponding set of inequalities E in the form −AT x≤M0
(derived from (1)), where x≥ 0 and A is the incidence matrix
of N . If N is acyclic, then marking M is reachable from
M0, i.e., M0

σ→M iff there exists x satisfying E and x= #(σ).

Proof: See the proof of Theorem 16 in [14].
In this paper, we use inequalities in two ways. Firstly,

the state equations constraints can be written as a set of
inequalities E. Secondly, failure can also be written as an
inequality.

Representation of a failure as an inequality: Suppose
that transition ti ∈ T is a failure transition. Occurrence of ti
in a firing sequence σ can be trivially written as

#(ti,σ)> 0. (5)

On the other hand, we can express the case where ti does
not appear in σ as

#(ti,σ)≤ 0. (6)

Now if we consider that the case where there is no ti in
σ corresponds to a satisfaction of a constraint. Likewise, we
can say that appearance of ti in σ corresponds to a violation
of the constraint. Let us denote the constraint by c and the
violation of the constraint by c′, i.e., c and c′ represent the
inequalities in (6) and (5) respectively.

In what follows, we shall present the definition of the
Diagnoser. This definition is inspired by previous works of
[1] and [3].

Definition 4. A Diagnoser is a function ∆ : T ∗o →{N,F,FN}
that associates to each observed sequence s with respect
to the failure modelled by a transition t ∈ Tu one of the
following diagnosis states:
• ∆(s) = N if ∀σ ∈ L(N ,M0) and π(σ) = s, #(σ) � c.

This state is NoFault as there is no firing sequence
having the same observation containing the failure
transition, i.e., no failure has happened.

• ∆(s) = F if ∀σ ∈ L(N ,M0) and π(σ) = s, #(σ) � c′.
This state is Faulty as all firing sequences having the
same observation containing the failure transition, i.e.,
the failure has certainly happened during the observed
sequence s.

• ∆(s) = FN if there are two sequences σ1, σ2 ∈
L(N ,M0), π(σ1) = s, π(σ2) = s, #(σ1) � c and #(σ2) �
c′. In which case, the behaviour of the system is am-
biguous because both NoFault and Faulty states are
possible during the observed sequence. For this reason,
this state is called Uncertain state.

Example 1: To explain the failures diagnosis notions
in Petri nets mentioned above, let us consider the Petri
net depicted in Fig. 1. Assume that the initial marking of
this net is M0 = [1000000]. The observable transitions are
shown by solid rectangles, while empty rectangles represent



unobservable transitions. In this net, there is only one failure
modelled by the transition t7. In this example, the constraint
c can be written as x7 ≤ 0 and its negation c′ as x7 > 0.

Assume that no firing of any transition has been observed
at the initial marking. In which case, we are certain that
no failure has happened as there is no any unobservable
transition enabled at the initial marking. Let us also assume
that the sequence s = t1 is observed at the initial marking
M0. By observing this sequence, we are not certain about the
diagnosis state as there are at least two possible sequences,
for example, σ1 = t1t2 and σ2 = t1t3t7 such that σ1,σ2 ∈
L(N ,M0), #(σ1) � c and #(σ2) � c′. Hence, we say that
the diagnosis state is Uncertain. Likewise, we have the
same diagnosis state when the sequence t1t4 is observed.
In this case we have at least two sequences, for instance
σ1 = t1t2t4 and σ2 = t1t3t7t4, with π(σ1) = π(σ2) = t1t4 such
that #(σ1) � c but #(σ2) � c′. In both cases, the failure
may have happened, but also the diagnosis state could be
NoFault. Thus ∆(s) = FN.

Now suppose that the sequence s = t1t4t4 is observed. In
which case, for any σ ∈ L(N ,M0) such that π(σ) = s, σ

has the transition t7. As a result, we are certain that c is
violated and the diagnosis state is ∆(s) = F . On the other
hand, observing s = t1t4t6 excludes the possibility of firing
any sequence having the transition t7 as t6, if fired, requires
at least one token in both places p6 and p7 and this is
impossible in a case where t7 fires. Hence #(s) � c for all σ

such that σ ∈ L(N ,M0) and π(σ) = s, i.e., the failure has
not occurred during observing the sequence and the diagnosis
state is ∆(s) = N.

IV. FAILURE DIAGNOSIS: MAIN RESULTS

In this section, we shall present the main results of our
work. Suppose that N is an acyclic Petri net. Without
any loss of generality, suppose that we have renamed the
transitions of N such that the first k transitions are ob-
servable, i.e., To = {t1, t2, . . . , tk}. The remaining transitions
are unobservable, i.e., Tu = {tk+1, tk+2, . . . , tn}. We further
assume that the system has a single failure and tn is the
only failure transition of the system. We introduce variables
x1,x2, . . . ,xn representing the number of firing of t1, t2, . . . , tn
as described in section III. Suppose that E := M0 +AT x≥~0
represents the state equations, where x = (x1,x2, . . . ,xn) as
explained in section II-A. We further assume that c is the
inequality xn ≤ 0 and c′ is the negation of c, i.e., the
inequality xn > 0. Apparently, for each firing sequence σ

of (N ,M0), if σ contains tn, i.e., the failure transition, then
#(σ), the Parikh vector of σ , satisfies c′. Conversely, for
a firing sequence σ , if #(σ) satisfies c, then σ has no the
failure transition tn.

Fig. 2 depicts a general sketch of our method. Assume
that we start with an acyclic Petri net model. First, we
obtain a set of inequalities E := M0 +AT x ≥~0. Then, we
create two sets of inequalities E∪{c} and E∪{c′}. Applying
IFME method simultaneously to both E ∪{c} and E ∪{c′},
we obtain two reduced sets R and R′ by eliminating every
variable corresponding to a transition in the set Tu. We use

Fig. 2. Sketch of the solution.

the reduced sets of inequalities to diagnose failure occurrence
of tn as follows.

Theorem 2. Suppose that N is an acyclic Petri net with an
initial marking M0. Suppose that E is the set of inequalities
−AT x ≤ M0 created from the state equation of N , see
Lemma 1. Assume that T = To ∪ Tu, To = {t1, . . . , tk}, Tu =
{tk+1, . . . , tn} and tn is a failure transition. The vector of
variables x1, . . . ,xn corresponds to the number of firing the
transitions t1, . . . , tn. Assume also that c is the inequality xn≤
0 and c′ is its negation. Suppose that the set of inequalities
R and R′ are respectively produced from applying of IFME
to both E ∪ {c} and E ∪ {c′} to eliminate all variables
corresponding to transitions in Tu. Then, for any given
sequence of observable events s = π(σ), where σ is a firing
sequence in N (M0

σ→M), if
1) #(s) 2 R, then ∆(s) = F (Faulty).
2) #(s) 2 R′, then ∆(s) = N (NoFault).
3) #(s) � R and #(s) � R′, then ∆(s) = FN (Uncertain).
4) #(s) 2 R and #(s) 2 R′, it is not possible to have this

case.

Proof: In what follows assume that #(s) = (α1, . . . ,αk).
Proof of 1: Assume that #(s)2R, but the diagnosis state is

not Faulty. If #(s)2R, then for every valuation (αk+1, . . . ,αn)
of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2
E ∧c by Theorem 1. As a result, ∀σ ′ ∈ L(N ,M0) such that
π(σ ′) = s, #(σ ′)� c′, i.e., #(tn,σ ′)> 0. Hence the failure has
happened during observing s. This contrasts the assumption.

Proof of 2: Using the same argument in Proof of 1
replacing R with R′.

Note that the proofs of 1 and 2 are still valid for Petri nets
which are not acyclic.

Proof of 3: Assume that #(s) � R and #(s) � R′, but we
are certain about the diagnosis state. If #(s) � R, then there
exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that
ν = (α1, . . . ,αk,αk+1, . . . ,αn) and ν � E ∧ c by Theorem 1.
If ν � E ∧ c, then ν � E. Considering that N is acyclic,
then there exists σ ′ such that M0

σ ′→M′, #(σ ′) = ν . Hence,
#(tn,σ ′) ≤ 0 which implies that σ ′ contains no failure.
Now, we claim that π(σ ′) = s. The proof of this claim is
accomplished by induction on the length of the observed



sequence denoted |s|.
(Basis step): If |s| = 1, then π(σ ′) = s because #(π(σ ′)) =
#(s).
(Induction step): We assume that the claim is true for all s
with |s| ≤ k1 (Induction hypothesis). Also, we prove it true
for s with |s| = k1 + 1. Suppose s = ωt where t ∈ To and
ω ∈ T ∗o . Since σ ,σ ′ ∈ L(N ,M0) and #(π(σ)) = #(π(σ ′)) =
#(s), then for σ ′ = σ ′1t ′σ ′2 we have

M0
σ ′1→M′1

t ′→M′2
σ ′2→M′, t ′ ∈ To, and σ ′1 ∈ T ∗,σ ′2 ∈ T ∗u

where t ′ is the last observable transition of σ ′. Also σ ′2 can
be empty. For σ = σ1tσ2 we have

M0
σ1→M1

t→M2
σ2→M, σ1 ∈ T ∗,σ2 ∈ T ∗u

Because π(σ) = s =ωt and t is the last observable transition
in σ , then π(σ1) = ω . By induction hypothesis, π(σ ′1) = ω .
Since #(π(σ ′)) = #(s) = #(ωt), then t = t ′ (if t 6= t ′ then
#(π(σ ′)) 6= #(s) and this is not true). As a result, π(σ ′) =
π(σ ′1)t

′ = ωt = s and this proves the claim.
Similarly, we can prove that if #(s) � R′, there exists a

sequence σ ′′ such that M0
σ ′′→M′′, #(σ ′′) � c′ (#(tn,σ ′′)> 0)

and π(σ ′′) = s.
To conclude, since σ ′,σ ′′ ∈ L(N ,M0) with π(σ ′) =

π(σ ′′) = s, #(σ ′) � c and #(σ ′′) � c′, hence we have
Uncertain state, see Definition 4. This contrasts the assump-
tion.

Proof of 4: Assume that #(s) 2 R and #(s) 2 R′,
but this case is possible. If #(s) 2 R, then for every
valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν =
(α1, . . . ,αk,αk+1, . . . ,αn), ν 2 E ∧ c by Theorem 1. Also,
if #(s) 2 R′, then for every valuation (βk+1, . . . ,βn) of
(xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn), ν 2
E ∧ c′ by Theorem 1. Rephrasing this statement, we can
say that there exists at least one valuation (βk+1, . . . ,βn)
of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn) and
ν � E ∧ c taking into account that c′ is the violation of
c and σ is a firing sequence of N , i.e., #(σ) � E. Here
we have contradictory statements. Hence this case is an
impossible case. This contrasts the assumption and completes
the proof.

Simply, the above theorem states that given an observed
sequence, the satisfaction of the Parikh vector of the se-
quence is checked against both sets R and R′. Then diagnosis
states are estimated according to the outcomes. In particular,
if the observable sequence does not satisfy R, then the diag-
nosis state is Faulty. In contrast, if the observable sequence
does not satisfy R′, then the diagnosis state is NoFault.
Otherwise, the diagnosis state is Uncertain. Note that the
case where the observable sequence does not satisfy both R
and R′ is not possible. Apparently, Theorem 2 provides a
systematic procedure to detect firing of the failure transition.

Example 2: Recall that the Petri net of Fig. 1, where the
transition failure is t7, and its associated set of inequalities
is as described in (2). Assume that we have augmented this
set once by adding the constraint c := x7 ≤ 0 and another by
adding the negation of the constraint c′ :=−x7 ≤−1 (Note
that this inequality is rewritten in the standard form of the
set of inequalities defined in Lemma 1, and also the non-

negative constraint x7 ≥ 0 is previously removed from E).
Then, applying IFME method to each augmented set results
in the two reduced sets R and R′ described in (7) and (8)
respectively. Note that all variables corresponding to unob-
servable transitions Tu = {t2, t3, t5, t7} have been eliminated in
both sets. The set of inequalities in (7) and (8) are in variables
representing the observable transitions To = {t1, t4, t6}.

x1 ≤ 1
− x1 + x4 ≤ 0
− 2x1 + x4 ≤ 0

− x4 + x6 ≤ 0
− x1 + x6 ≤ 0
− 2x1 + x4 + x6 ≤ 0
− x1 ≤ 0

− x4 ≤ 0
− x6 ≤ 0

(7)

———————————————————————–

x1 ≤ 1
− x1 + x6 ≤ − 1
− 2x1 + x4 + x6 ≤ 0

− x4 + x6 ≤ 0
− 2x1 + x4 ≤ 0
− x1 ≤ − 1

− x4 ≤ 0
− x6 ≤ 0

(8)

Considering these two sets, let the observed sequence
s = ε , then #(t1,s) = 0, #(t4,s) = 0, #(t6,s) = 0 as we have
not observed any transition from the set To = {t1, t4, t6}. By
looking at (7) and (8), we find that the latter is not satisfied.
In which case, we are certain that no failure has happened.
Likewise, when s = t1t4t6, we have #(t1,s) = 1, #(t4,s) = 1,
#(t6,s) = 1. Substituting these values of variables in (7) and
(8) establishes that (8) is not satisfied. Thus we conclude a
similar diagnosis state, i.e., ∆(s) = N.

Now, assume that s = t1t4t4, then #(t1,s) = 1, #(t4,s) = 2,
#(t6,s) = 0. In such a case, (7) is not satisfied which implies
that the failure has certainty happened, i.e., we have ∆(s) =
F . Finally, let s = t1t4, this yields #(t1,s) = 1, #(t4,s) = 1,
#(t6,s) = 0. Verifying these values against (7) and (8), we
obtain that both of them are satisfied. Based on these results,
we infer that the failure may have happened, i.e., ∆(s) = FN.

V. RELATED WORK

Failure diagnosis problem in partially observable discrete
event systems have first been studied in the Automata frame-
work (see [1]) as mentioned before. That work takes into
account the possibility of multiple failures. The notion of
solution suggested starts by creating from the model of the
system an Automaton called Diagnoser. The Diagnoser is
built using the observable events. In fact, the notion adopted
uses strings matching method in order to diagnose failures.
In other words, using a string of observable events to first
find an exact match in the Diagnoser. Then, checking the
Diagnoser state reached from the initial state by tracking
events in the Diagnoser matching that string.



The results obtained in [1] have been extended in Petri nets
setting (see [15]). In that work, the Diagnoser is created using
two steps. First, transforming a Petri net into Automaton
via building the reachability graph. Second, producing the
Diagnoser from this Automaton. An improvement to that
work has been suggested in [3] through presenting the notion
of basis marking and justifications.

Obviously, both notions described above employ Automata
to represent the Diagnoser. In the work presented in this
paper, the Diagnoser has been represented by two sets
of inequalities, R and R′. All variables in these two sets
represent the number of firing observable transitions. These
two sets are first derived from the state equations in Petri nets
following by application of IFME method. Then observing
a sequence of the events, the Diagnoser makes the decisions
based on checking the satisfaction of the number of firing
transitions in the sequence against R and R′.

As a matter of fact, we are not the first people who work on
the equations to diagnose failures in discrete event systems.
The state equations usage has been presented in [17] and [5].
In these works, reduction of the failure diagnosis problem
to Integer Linear Programming (ILP) problem has been
described. Then, a ILP problem has to be solved every time
an event is observed. Apparently, the works just mentioned
are different from our work as we do not reduce failure
diagnosis problem into ILP problem.

With respect to extension of the current work, we sum-
marise the future plan as follows. In fact, we have focused
in this paper on diagnosis of a single failure. Imagine
that the system has more than one failure transition. The
extension of the current work to tackle such a problem can
be accomplished as follows. We could produce separated pair
of sets of inequalities Ri and R′i for each failure type i. During
the process of production, all other transitions belonging to
the other failure types are considered as other unobservable
transitions.

In addition, the assumptions made in this paper can be
relaxed. In particular, regarding the cyclicity assumption, we
can include wider subclasses of Petri nets having cycles,
namely trap and siphon circuit Petri nets. In these subclasses
a necessary and sufficient condition for reachability is avail-
able (see [18]). Simultaneously, relaxation of the assumption
where two different transitions are not permitted to have
same labels could be a part of the following work.

Finally, another future direction of research is the diagnos-
ability, i.e., the property of the system in which any failure
occurrence can be diagnosed after a finite delay. The problem
of diagnosability has been presented in Automata setting and
then extended in Petri nets framework. Our goal is to study
this problem in the context of suggested approach.

VI. CONCLUSIONS

In this paper, a new approach is introduced to address fail-
ures diagnosis problem in discrete event systems modelled
by acyclic Petri nets. The systems under study are partially
observable where failures are modelled as unobservable
transitions. In this new approach, we introduce a different

technique to produce the Diagnoser. In fact, the Diagnoser
here is no longer represented as an Automaton but as a
pair of sets of inequalities in variables representing the
number of firing observable transitions. To produce these
sets, IFME method is applied. This method eliminates the
variables representing unobservable transitions from a set
of inequalities representing state equations in Petri nets.
Previously, we create two sets after adding the constraint
(normal behaviour) and its negation (faulty behaviour) to
state equations. The two resulting sets are used for diag-
nosis purposes. The suggested approach has been applied
to systems with a single failure. The extension to include
systems with multiple failures seems to be straightforward.
In parallel, we can relax the cyclicity assumption somewhat.
Overall, we hope that this approach opens a new direction
for research in the field of the failure diagnosis.
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