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A Protocol for Preventing Insider Attacks in
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Abstract—Recent technical advances in utility computing have allowed small and medium sized businesses to move their
applications to the cloud, to benefit from features such as auto-scaling and pay-as-you-go facilities. Before clouds are widely
adopted, there is a need to address privacy concerns of customer data outsourced to these platforms. In this paper, we present
a practical approach for protecting the confidentiality and integrity of client data and computation from insider attacks such as
cloud clients as well as from the Infrastructure-as-a-Service (IaaS) based cloud system administrator himself. We demonstrate
a scenario of how the origin integrity and authenticity of health-care multimedia content processed on the cloud can be verified
using digital watermarking in an isolated environment without revealing the watermark details to the cloud administrator.
Finally to verify that our protocol does not compromise confidentiality and integrity of the client data and computation or degrade
performance, we have tested a prototype system using two different approaches. Formal verification using ProVerif tool shows
that cryptographic operations and protocol communication cannot be compromised using a realistic attacker model. Performance
analysis of our implementation demonstrates that it adds negligible overhead.

Index Terms—Cloud Computing, Trusted Computing, Protocol, Late Launch, Digital Watermarking
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1 INTRODUCTION

CLOUD Computing is an exciting and promising
new paradigm that allows clients to outsource

storage and computational resources on demand.
While cloud computing bases on current technologies
such as virtualization and service oriented architec-
ture, the major driving factors of this technology are
the advancement in machine architecture, the require-
ment to process and/or maintain large data sets and
high bandwidth network channels. Additionally, fea-
tures such as multi-tenancy, auto-scaling and low cost
enables cloud computing to flourish more successfully
than its predecessor- the Grid.

One third of the IT company respondents in a recent
cloud computing survey [23], stated that they are
already using cloud based services. An additional 40%
respondent companies are in a transitionary phase to-

• Imran Khan is with the Department of Computer Science, National
University of Computer and Emerging Sciences, FAST-NUCES, Is-
lamabad, Pakistan. E-mail: imrankhan@nu.edu.pk.

• Zahid Anwar is with the National University of Science and Tech-
nology (NUST), Islamabad, Pakistan and with the University of
North Carolina at Charlotte, USA. Emails: zahid.anwar@seecs.edu.pk,
zanwar@uncc.edu.

• Behzad Bordbar is with the School of Computer Science, University of
Birmingham, Edgbaston, Birmingham, UK.
E-mail: B.Bordbar@cs.bham.ac.uk.

• Eike Ritter is with the School of Computer Science, University of
Birmingham, Edgbaston, Birmingham, UK.
E-mail: eike@cs.rittere.co.uk.

• Habib-ur Rehman is with the Department of Computer Science at
Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,
KSA. E-mail: habibr@ieee.org

• This work was conducted at and supported by the National Univer-
sity of Computer and Emerging Sciences (FAST-NUCES), Islamabad,
Pakistan, National University of Sciences and Technology (NUST),
Islamabad, Pakistan and University of Birmingham, Birmingham, UK.

wards adopting cloud based services. Recently iCloud
has played the role of a crime fighter [24], serving
to track down the iPhone of a passenger which was
stolen on a cruise ship. In this work, our focus is
on the Infrastructure as a Service (IaaS) based cloud
model. As IaaS resides at the lowest level, it allows
the development of verifiable security solutions and
then layer the software stack on top of it.

Companies are adopting cloud based IT solutions
as public clouds become the source of a rich and
novel range of IT solutions ranging from massive on-
line collaborative content storage to health-care work-
flow management systems. At the converse, the wide
adoption of cloud based services is badly suffering
due to confidentiality and security concerns especially
from insider attacks [1]. One way to ensure confi-
dentiality in the cloud environment is to constantly
store customer data in encrypted form and decrypt
it on the cloud platform on the fly when being re-
trieved or being operated on. However this approach
is not practical due to its high computational cost
[43][44] and in case of a untrusted cloud platform
the confidentiality of the data can be compromised
at the point the data is decrypted for computation.
Researchers have proposed homomorphic encryption
schemes [2], that allow computations to be carried
out on encrypted content, producing an encrypted
result which, when decrypted, matches the result of
operations performed on the plaintext. However so
far only primitive operations are supported and there
is a large amount of overhead. Moreover there is a
strong requirement to make the operations of the IaaS
based cloud transparent to clients. That means that
clients be able to verify the underlying cloud platform
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and services, to ensure that the platform owner is
not compromising the integrity and confidentiality of
their data and computation.

In current research work [12][11], on cloud plat-
forms security has predominantly focused either
on protecting these platforms from malicious cloud
clients or on protecting cloud clients from each other’s
unwanted activities. The problem of protecting clients
from the possible malicious acts of insiders such as
cloud providers is not adequately addressed. There
are organizations, for instance health-care and mil-
itary, which are hesitant to move to cloud based
services due to confidentiality concerns. Therefore
practical solutions in this direction are required for
wide adoption of cloud based services.

In this paper, we propose an approach to ensure the
confidentiality and integrity of client data and com-
putation on the cloud platform. This is to ensure that
private data is not exposed to internal parties such
as the cloud administrator and other cloud clients.
Our approach makes use of remote attestation [4],
and a late launch based technique, called Flicker [29],
to verify the integrity of the cloud platform. This
technique secures the virtual machine (VM) launch
operation and further allows the launched VM to per-
form operations on sensitive data in full isolation. To
test our approach, we have implemented a prototype
by extending a popular open source cloud computing
solution known as Eucalyptus [15]. The extra integrity
verification processing overhead of our approach is
found to be minimal. To illustrate the practicality of
our proposed protocol, we have demonstrated how it
can be used to verify presence of a hidden watermark
in a health-care multimedia context. This is done in a
manner that preserves the confidentiality of the wa-
termark contents and the integrity of the verification
process. The contribution of our work is as follows:

• We propose a protocol for secure launch of a
client VM on a trusted cloud node. Other than
secure launch, our second proposed protocol en-
ables a client to protect the confidentiality and
integrity of its data and computation from other
client applications in the cloud and from the
cloud system administrator.

• In our proposed protocol architecture, the Trusted
Computing Base (TCB) is reduced to the size
requirement of the Flicker based code executed
and its input and output. The software stack
from the BIOS up to the virtual machine monitor
(VMM) level is thus removed from the suggested
TCB of client sensitive code executed on the cloud
platform.

• In a virtualized cloud environment, past system
configuration cannot guarantee current or future
trustworthiness of a system. We have shown
how to provide assurance to clients in such an
environment.

• We have verified the confidentiality and integrity

security properties of our proposed protocols us-
ing the ProVerif automatic cryptographic protocol
verifier. We have also verified that our proposed
protocols are secure against man-in-the-middle
attacks.

The rest of the paper is organized as follows. Sec-
tion 2 provides background knowledge about Trusted
Computing, cloud virtualization environments and
protocol verification. The design and details of our
proposed protocols are presented in Section 3. Imple-
mentation details are presented in Section 4. Verifica-
tion of security properties of our proposed protocols
is discussed in Section 5. Evaluation is presented in
Section 6. Section 7 provides a review of related work
and existing research. Finally, we have concluded the
discussion on our work in section 8.

2 PROBLEM BACKGROUND

2.1 Trusted Computing
Major hardware vendors, including Intel, Dell and HP,
have founded a consortium called Trusted Computing
Group (TCG). The objective of this group is to build
trust in computing devices such as PDAs, mobile
devices and PCs and to provide a transparent view
of the platform software stack to its owner. According
to the TCG specifications [20], all electronic devices
complying with TCG standards should be equipped
with a hardware chip called Trusted Platform Module
(TPM) [20]. A TPM is a secure storage area where
cryptographic keys and other secure data can be
stored. The key and data stored inside the TPM is
protected from malicious alteration. The data stored
inside the TPM normally includes platform configu-
ration status. The platform status stored inside TPM
can then be provided to external entities, through a
process called Remote Attestation, to convey platform
trustworthiness. The Trusted Computing Base (TCB)
of a system is the collection of all hardware, firmware,
and/or software modules that are vital for the security
of the overall system. Any vulnerabilities occurring
inside the TCB can compromise the security of the
entire system.

2.2 Remote Attestation
In remote attestation, the platform (firmware and
software) configuration is captured and stored in a
tamper resistant and cost effective chip called a TPM.
Confidential information is held inside the TPM and
is then signed and reported to a remote entity for
verification and attestation purposes. This entire pro-
cess is termed as remote attestation by the TCG [20].
In remote attestation, to the TPM chip some form of
integrity measurement system such as Linux Integrity
Measurement Architecture (IMA) [21], is needed to
generate and report the attestation of the system to the
remote entity. TPMs [20], store platform integrity in
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the form of hashes of loaded software in data registers
called Platform Configuration Registers (PCRs). Quote
operation is used to attest the values of TPM PCRs.
TPM Quote comprises of a subset of PCRs values to-
gether with a nonce all signed by a TPM Endorsement
Key (EK). The private part of the EK is used for
signing purposes during Quote generation and is used
to convince remote verifiers that assertions in the TPM
Quote have been signed by a trusted TPM.

2.3 Virtualization
According to Sempolinski et al. [28], there are six fun-
damental components of a generic cloud computing
stack; (1) hardware and OS, (2) VMM, (3) VM disk
image archive, (4) front-end, (5) network and (6) cloud
framework. Among these, virtualization is the key
enabling technology of an IaaS based cloud. Virtual-
ization, cost effectively abstracts system resources and
supports multiple and heterogeneous operating sys-
tems simultaneously on a single hardware platform.
In addition to the computation resources, the net-
working resources are also virtualized. Xen and KVM
are two of the most popular open source VMMs [28].
A typical VMM generally includes a hypervisor which
in turn supports and executes multiple clients VMs.
Particularly in case of Xen a special administrative
VM called dom0, runs and controls client guest VMs.
The dom0 VM runs under the control of a platform
owner.

2.4 Late Launch
Late launch [20], commonly refers to technologies that
allow the execution of a secure kernel or secure VM
on a system after running un-trusted software. This
means that the chain of trust is not started from
system boot but is rather initiated dynamically at a
later stage. Certain family of processors from both
Intel and AMD provides an implementation of this
technology. Intel named its implementation ’Trusted
eXecution Technology (TXT)’ [30] while AMD calls
their technology ’Secure Virtual Machine (SVM)’ [3].

TPM v1.2 allows for dynamic PCRs (PCRs 17-23),
which can be reset without rebooting the system. Late
launch on Intel systems consists of calling the GET-
SEC [SENTER] instruction in CPU protection ring0,
which takes as an argument a physical memory ad-
dress range. This memory range is called Measured
Launch Environment (MLE). The processor protects
the MLE against various attacks through hardware
based defenses. The processor disables direct memory
access (DMA) to the MLE memory pages. Interrupts
and debuggers are also disabled to protect the MLE
launch.

To invoke a late launch with SENTER, first of all
the Authenticated Code Module or ACMod must be
loaded into memory. The ACMod is then executed af-
ter the platform’s chipset (with its built-in public key)

verifies the signature and extends its measurement
into PCR 17. ACMod then measures the equivalent
of an AMD SLB i.e. Measured Launch Environment
(MLE) [30], extends the measurement into PCR 18,
and then executes it. For further information, we refer
the reader to Flicker [29].

2.5 Sealed Storage
One of the key features provided by the TPM for se-
curing sensitive code and data is sealed storage. A TPM
contains a special 2048-bit key called Storage Root Key
(SRK). The private part of the SRK never leaves the
TPM in plaintext. The storage key is used to seal other
data and sensitive information. The seal operation
takes a set of PCRs as input, and then encrypts the
given data using the SRK. The seal operation outputs
cipher text C along with the list of PCRs provided and
its corresponding values.

The corresponding unseal operation takes cipher
text C and the PCRs list as input. It then compares
the PCRs list against their current values. It decrypts
C only if a match occurs and then decrypts the
suggested data. All these operations take place inside
the TPM.

2.6 Flicker
Flicker [29], is an infrastructure based on late launch
technology for secure execution of a small piece of se-
curity sensitive code, called Piece of Application Logic
(PAL), on systems where BIOS, OS and DMA devices
are not trusted. A PAL is a piece of application logic
that performs a well defined task. Flicker executes the
PAL in full isolation on the system from all other soft-
ware and hardware (including OS and VMM). This
isolation is possible due to hardware enhancements
in modern commodity platforms from both Intel and
AMD (AMD’s secure virtual machine Technology and
Intel’s TXT). On Intel platforms, invoking a Flicker
session suspends the current execution environment
(OS and VMM) and then executes the SENTER in-
struction for setting up the secure environment for
PAL execution. At the end of Flicker session, the
previous execution environment is resumed.

The main goal of the Flicker architecture is to mini-
mize the mandatory TCB of a security sensitive code.
Thus, the attestation provided is both meaningful
and provable to a remote party due to a small TCB.
Fig. 1 shows the minimization in TCB by using Flicker.
Suppose we want to execute App n, which contains
security sensitive code S. The left hand side of Fig. 1
shows the execution of App n in a standard model.
Here the shaded region shows the suggested TCB of
App n. In a standard model the chain of trust starts
from machine boot. The suggested TCB in this case is
very large and consists of BIOS, boot loader, OS and so
forth. The right hand side of Fig. 1, shows the scenario
when Flicker is used. In this case, the suggested TCB
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Fig. 1. TCB of applications running with and without
Flicker protection [29]

is minimized, and includes CPU (in some situations
additional chipsets), TPM and the Flicker framework
used to execute security sensitive code S in complete
isolation.

2.7 Protocol Verification

We will later define security protocols for secure VM
launch and secure computation. As the adversary is
actively looking for weaknesses, correctness of secu-
rity protocols is very important. However, significant
flaws have been found in widely used protocols, often
years after the protocol has been defined. Examples
are the Needham-Schroeder public-key protocol [33]
which was found to have a serious flaw 17 years
later [34], the SAML-based Single Sign-On for Google
Apps [35], or the still re-occurring flaws in widely
used protocols such as openssl [36] and openssh [37].
Formal models have been developed for reasoning
precisely about security protocols in order to detect
such flaws. Models based on process calculi (e.g. ap-
plied pi-calculus [38]) model the participants in a
security protocol as processes and the messages as
communication between processes.

Automated tools for the verification of security
protocols based on these models have been devel-
oped, e.g. ProVerif [39] and SATMC [40]. We will
use ProVerif which is well suited to handle the kind
of security property required in this paper. We will
verify a correspondence property, which states that
a certain event is always preceded by another event.
This property enforces that the decryption of a virtual
machine happens only with a key that the client has
sent.

3 DESIGN
In the first part of this section, we will introduce
the two definitions ”Level I security” and ”Level II
security” that are frequently used in the rest of the
paper and are very significant to our protocol design.

3.1 Level I vs Level II security
Trusted Computing and remote attestation enable a
remote party to challenge a given platform and verify
its security properties remotely. If the current state of
a system is successfully verified, the remote party can
trust this system for future operations. Here we intro-
duce two definitions related to Trusted Computing.

Definition 1

Level I security: Platform Integrity Attestation, where
before transferring computation and data, a remote
party verifies through remote attestation, that the
target platform belongs to the actual cloud hosting
provider as well as executes trustworthy hardware,
firmware and software. The client can then trust the
challenged platform after verifying its current state
through remote attestation for future operation.

Definition 2

Level II security: Integrity and confidentiality, where
a remote party not only verifies the integrity of the
target platforms hosting provider, hardware, firmware
and software but also requires additional security
measures to ascertain that the confidentiality and
integrity of sensitive operations executed on the target
platform will not be compromised. Level II security
assurance can be provided with Intel TXT technology
based mechanism called Flicker and will be detailed
in the coming sections.

Trusted Computing and remote attestation is based
on the concept of trust. If we verify the current status
of a platform using remote attestation which shows
that the platform current status is trustworthy that
means that the platform is running some well-known
good software stack (configuration). Then tradition-
ally [17][18], on the basis of current trust the platform
is trusted for future operations. The basis for this
argument is that if the current platform status is well-
known and trustworthy then the platform is likely
to behave expectedly in the future and hence can
be trusted for future operations. Our above Level I
security definition corresponds to this property.

Now consider a cloud virtualized environment with
the system administrator running in dom0 and con-
trolling the overall environment of the cloud Node
Controller (NC). After initial attestation to the client,
the system administrator can then run any arbitrary
process in dom0, get access to client memory and
can thus compromise his data confidentiality and
integrity. It shows that the client cannot trust the
current cloud node configuration on the basis of a
previous verification. Therefore, only Level I security
assurance is not sufficient for the virtualized cloud
environment.

According to our proposed protocol, the client first
verifies the platform configuration before launching
his VM in the cloud. After VM launch, the client
computation on normal data is performed as usual
in the cloud environment. However, when the client
wants some computation on highly sensitive data
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then it cannot simply rely only on Level I security.
As the client has previously verified cloud platform
during VM launch then according to Level I security
it can trust the platform for sensitive computation as
well. However, the problem is that the cloud system
administrator can run an arbitrary process in dom0
after initial verification and hence can compromise
client confidentiality and integrity. Therefore, we pro-
pose Level II security whereby computation on client
sensitive data is performed in full isolation from
the cloud system administrator. Such assurance is
achieved through our proposed approach based on
late launch and the Intel Trusted eXecution Tech-
nology (TXT) hardware based mechanism, Flicker.
Flicker architecture employs a TPM chip based on
Intel’s Trusted eXecution Technology (TXT) for stor-
age of session configuration representing a hash of
the computation. After launch of the Flicker session
the Flicker specific kernel executing user sensitive
computation has isolated access to the full platform
processing capabilities.

In terms of security requirements, cloud clients can
be divided into two broad categories. One category
of clients fully trusts cloud providers for its data
and encrypted form on the CS and computation. For
example, a banking application wants to find the hour
of the day at which the highest number of clients have
visited the bank. The other category of clients needs
strong assurances from the cloud platform owner in
order to trust it for its sensitive data and computation.
For example, a health-care application wants to find
the address of a particular patient without revealing
private attributes, such as the type of disease, inside
the cloud platform.

We propose that there should be two different sets
of infrastructure within a cloud for these two different
categories of clients. For the first category, the current
cloud offering with isolation provided by the under-
lying virtualization technology is sufficient. However,
for the second category of clients, NCs should be
equipped with a TPM chip and have support for late
launch mechanism. The primary goal of our proposed
protocol architecture is to support the security needs
of the second category clients.

Here we present a protocol architecture for secure
VM launch and for ensuring a secure execution en-
vironment for client sensitive data and computation
inside a client guest VM on a cloud platform. Fig. 2
shows a general cloud design. The client VMs are
stored on Cloud Storage (CS). For a security sensi-
tive client, its corresponding VM will be stored in
encrypted form on CS. The Client VM executes on
the NC whereas the Cloud Controller (CC) provides
an interface to the client. For the protocol details
described in this section, we assume the case of a
security sensitive client on an Intel machine.

Cloud Controller: 
Eucalyptus, OpenStack, Open Nebula 

User

DHCP
DNS

Node Controller (NC)

Hypervisor

VM VM
Cloud 

Storage

Fig. 2. Generalized architecture of a cloud environ-
ment

3.2 Secure VM Launch
The client VM is stored in an encrypted form on the
CS, so that it can only be launched on trusted NCs.
The purpose of the secure VM launch protocol is to
get the VM decryption key DkVM securely from the
client, decrypt the VM and then launch it on a trusted
node.

The protocol proceeds in two phases. In the first
phase, we certify the public keys of the client (pkc)
and Flicker (pkf ). This is performed by using the
TPMs of the client and the NC to establish a secure
channel between the client and the Flicker session-
using the secure channel protocol of Flicker [29].

In the first step, the client sends a request to the
NC for its VM launch. When the NC receives this
request, it initiates a Flicker session and executes PAL
P and extends PCR 18 with the measurement of PAL
P and with its input and output (Flicker session con-
figurations). P is an application code used to generate
Flicker asymmetric keys and support the VM decryp-
tion process. Here we represent the private and public
portion of the Flicker asymmetric key by Pkf and
pkf respectively. The private part of the asymmetric
key Pkf generated inside Flicker is then sealed for the
subsequent invocation of the same Flicker session. The
purpose of this asymmetric key pair is to get the VM
decryption key DkVM securely from the client. In the
next step, NC then sends the Flicker public key pkf

and the TPM Quote of the system to the client. When
NC generates a Quote, it includes the value of PCR
18 in the Quote operation and hence Quote reflects the
Flicker session configurations signed with the TPM
private key. Attestation from the Flicker session can
convince the client that the PAL P executed inside
Flicker protections and that the public key pkf was
a valid output of the session. After verifying the TPM
Quote the client then establishes a secure channel to
the Flicker session.

Inside the Flicker session, PCR 18 is extended with
the measurement of PAL and with its input and
output (Flicker session configurations). The output in
this case is the public part of the Flicker asymmetric
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Decrypt 
VM with 

DkVM

{na , pub(Pkc)} pub(Pkf)

NC

TPM Flicker 
Session

{na , nf } pub(Pkc)

{ nf , DkVM} pub(Pkf) 

Client

{na , pub(Pkc)} pub(Pkf)

{na , nf } pub(Pkc)

Makes VM available to NC

{ nf , DkVM} pub(Pkf) 

Fig. 3. Secure VM launch protocol

key pkf generated inside the Flicker session. In this
way, extending the measurement of PAL output into
PCR 18 enables the NC to convince the client that
the Flicker asymmetric key pkf was indeed generated
inside Flicker protection. The client can check the
value of PCR 18 in the TPM Quote to verify whether a
legitimate PAL was executed and the asymmetric key
pkf was indeed generated inside the Flicker session.
The client can verify this by re-computing the SHA1
hash of the PAL and its output (asymmetric key in
this case) and matching it with the value of PCR 18.
If the NC self generates the asymmetric key pkf and
sends it to the client, the client will see a difference in
the value of PCR 18 from the Quote sent by the NC.

The second phase consists of the protocol to se-
curely communicate the VM decryption key DkVM

to the Flicker session and is illustrated in Fig. 3.
Here Pkc and Pkf are the private keys of the client
and the Flicker respectively and pub is the function
generating the public key from the private key. na

and nf are nonces which are used to protect against
replay attacks. According to our protocol, the client
sends NC the nonce na and its public key pkc, both
encrypted with the Flicker public key pkf . Therefore,
the message can only be decrypted inside the Flicker
session. The NC then initiates a Flicker session with
the client message as its input.

Inside the Flicker session, the nonce and the public
key of the client pkc are verified. After verification,
the Flicker generates a new nonce nf . The nonce nf ,
the public key of the client pkc and the private key of
the Flicker session Pkf are stored in the TPM using
sealed storage. Flicker then returns nonces na and nf

encrypted with the client public key pkc so that only
the corresponding client can decrypt the message.
The NC then forwards the message to the client. The
client then verifies nonce na from the message to

Node Controller (NC)

Hypervisor

Dom0 Guest
_____
_____

_____
_____

... PAL

PAL

Flicker Session

TPM

Fig. 4. Confidentiality sensitive computation

make sure that the message was indeed sent from
the corresponding Flicker session. The client then con-
structs a message with the VM decryption key DkVM

and nonce nf encrypted with Flicker public key pkf .
The message is then forwarded for the corresponding
Flicker session to the NC.

The NC then captures the message and initiates an-
other Flicker session and provides the client message
as its input. Inside the Flicker session the nonce nf ,
the public key of the client pkc and the private key of
Flicker Pkf are read from sealed storage. The nonce
nf is verified and then the VM is decrypted with
the decryption key DkVM . The decrypted VM is then
made available to the NC which launches the VM and
connects the client to its VM. The sealed storage is used
as described in Section 2.5 above, ensuring that only
same Flicker sessions can read or write this storage.

3.3 Confidentiality Sensitive Computation
After secure VM launch through the protocol pro-
posed in section 4.2, the next step is to ensure the
confidentiality of client sensitive data and computa-
tion. Here we present a protocol for confidentiality
sensitive computation based on Level II security.

The computation inside the security sensitive client
VM is divided into two categories, normal computa-
tion and security sensitive computation. The normal
computation takes place as usual on the virtualized
platform with the system administrator running in
dom0. The same procedure however, cannot be fol-
lowed for security sensitive computation as an in-
sider such as the system administrator can run ar-
bitrary processes in dom0 and can compromise the
confidentiality of client data and computation. The
integrity information exchanged during VM launch
cannot guarantee this protection.

In our proposed protocol the computation on sensi-
tive data is organized as PAL, which executes inside
Flicker protection. The sensitive data is only visible
to the client PAL inside the Flicker session and is
processed there in full isolation from the rest of the
system, as shown in Fig. 4. In this way, confidentiality
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Flicker 
Session

Guest VM Client

{nc , pub(Pkc)} pub(Pkf)

{nc , ng } pub(Pkc)

{ng , Dkf} pub(Pkf) 

get Dkf 

decrypt f 
Process f

Fig. 5. Confidentiality sensitive computation protocol

of client data is enforced. Consider as way of illus-
tration that the client has a confidential file f stored
in encrypted form on the NC. He wishes to perform
some computation on f, without revealing its content
to cloud NC system administrator.

Similar to the protocol used for secure VM launch,
we first establish a secure channel between the client
and the Flicker session using the TPM. The detailed
protocol which is used afterwards is shown in Fig. 5.
The client starts by forwarding a nonce nc and
pub(Pkc) to its VM on the Node Controller (NC).
The client VM then executes PAL C inside Flicker
protection. After verifying nonce nc and client public
key pkc, the Flicker then sends nonce nc and its nonce
ng encrypted with the client public key pkc to its VM
running on the NC. The client VM then forwards
the message from the Flicker session to the client
application.

After verifying nonce nc, the client then forwards
the message containing file f decryption key DKf

along with nonce ng encrypted with Flicker public key
pkf to the Flicker session on the NC. The client guest
VM on the NC captures the messages, initiates the
Flicker session and forwards the message as input to
the session. In this way, the DKf will only be acquired
by PAL C executed inside the Flicker session. The
client VM subsequently executes PAL C inside Flicker
protection and decrypts file f with DKf . File f is then
processed inside the Flicker session and the result
is then returned to the client VM after processing f
inside Flicker protection. The entire process shows
that f is only visible in plaintext inside the Flicker
session. In this way, the client can perform sensitive
computation on the cloud node in full isolation from
the underlying NC software stack. In this way, client
confidentiality is ensured, protecting the data from
other guest VMs and the NC system administrator.

3.4 Privacy-preserving watermark verification of
health-care data on the cloud

We present a scenario based on the proposed ap-
proach for ensuring patient privacy by protecting
data confidentiality and integrity of the watermark
[42] verification process on an untrusted cloud for
laboratory test results in the health-care domain. Wa-
termarking is a method of secretly transferring digital
information through a carrier signal, such as an image.
Here we consider as an example multimedia content
from a particular health-care scenario. A public figure
such as a politician (John) is admitted to clinic C for
medical treatment. There is a strong requirement that
the particulars of the medical condition of the visiting
politician be kept highly confidential. John’s physician
at C decides that Magnetic resonance imaging (MRI)
of John’s head is required for diagnosing his ailment
and as a result John visits laboratory L for his head
MRI.

C hosts health-care application, P for managing
patient data on a cloud platform. Johns‘ MRI image
must be transferred from L’s database to P in order
to diagnose Johns‘ disease. As the cloud platform
is potentially untrusted, there are two main require-
ments for the MRI image to be transferred from L to
P. Firstly, in order to ensure confidentiality of Johns‘
medical data, the MRI image should be transferred
from L to P in such a manner that the information-
watermark in the MRI image should only be viewable
to P. Secondly, the application will necessitate non-
repudiation or undeniable information (a proof) from
L that the MRI image for patient John was indeed
forwarded by L. This is necessary for C, so that in
case of a conflict, a wrong MRI image (for example a
forgery) sent by the laboratory or an attacker, it may
be easily detected.

Using digital watermarking, L secretly transfers to
P, the MRI image along with a unique watermark
M as proof of origin. The pseudo code for hidden
watermark transfer along with Johns‘ MRI image is
shown in the Table 1. In the given pseudo code,
L first creates a watermark M that combines the
patient ID and the Lab-ID of L. The watermark M
is then embedded into MRI image I using Watermark
encoding algorithm A and session key K, creating a
watermarked image Ī . Session key K is used in the
embedding process so that only the receiver with key
K can decode the image for the given watermark. For
non-repudiation and integrity check, L signs the hash
(SHA1) of Ī and stores it in ī. For secure transfer, key
K is encrypted with P’s public key pkp and stored in
sec. L then forwards the watermarked image (Ī), signs
watermark image hash (̄i) and forwards the encrypted
key (sec) to P.

P first verifies the signature and then the integrity
of the received watermark image by re-computing
hash of Ī and comparing it with ī. As the cloud



IEEE TRANSACTIONS ON CLOUD COMPUTING 8

Notation: 
I: Image to be watermarked; !: Watermarked image; K: Session key 
A: Watermarking algorithm; P-ID: Patient ID; Lab-ID: L laboratory ID 
"#$: Private key of L laboratory; %#$: Public key of L laboratory 
"#&: Private key of P cloud application 
%#&: Public key of P cloud application 
 
Pseudo code:  
L laboratory: 
M ← (P-ID, Lab-ID) // Generate a watermark 
!	← encode.A(I, K, M) //  Embed a watermark 
(	← "#$ (hash(!)) // For non-repudiation and integrity check  
sec← %#&(K)  // Encrypt K with P public key 

L laboratory  
),			(	,			+,-.////0  P cloud application 

 
P cloud application: 
P verifies signature and applies integrity check using !, ( , %#$  
Flicker(!, 123) // P initiates flicker session  
K ← "#&(sec) // Gets session key K to decode ! 
M ← decode.A(!, K) // Gets embedded watermark M 
Gets P-ID  // Gets patient ID  
Gets Lab-ID // Gets Lab-ID of L laboratory 
 

TABLE 1
Digital watermarking application running under

Flicker-based isolation

platform is untrusted, P then checks the watermark
inside the Flicker session using the following pro-
cedure: sec is first decrypted using P’s private key
Pkp, to get key K. Watermark M is then obtained by
using the watermark decoding algorithm A, session
key K and watermark image Ī . The patient ID and
Lab ID is then verified from the obtained watermark
M. As watermark is obtained and checked for the
patient ID and Lab ID inside the Flicker session, its
value remains confidential from the cloud platform
administrator, other super users and clients.

4 IMPLEMENTATION
In this section, we present a brief description of
our proof-of-concept implementation of the proposed
protocol architecture.

For the realization of remote attestation, we used
the most popular and widely used approach called
Integrity Measurement Architecture (IMA) [21]. IMA
is based on binary attestation. When configured, IMA
calculates and extends hashes of all software com-
ponents loaded after the boot process into relevant
PCRs. To preserve privacy of the NC, we have used
the Attestation Identity Key (AIK) for signing PCRs
values during the Quote generation. We have used a
Trusted Java [6] based software stack known as Java
Trusted Software Stack (jTSS) for communicating with
the TPM through the TPM driver.

We have used the open source IaaS based cloud-
Eucalyptus for our testing due to availability of its
various modular features such as CC and NC. The
design of Eucalyptus [15], is an open-source answer
to the commercial Amazon EC2 cloud and is API-
compatible with EC2. Other open source IaaS based
cloud systems such as OpenStack [25], Nimbus [27]
and OpenNebula [26], may also be used. Most of
these platforms have the ability to be deployed as
an overlay on top of highly decentralized resource
configurations, for instance multiple clusters, work-
station pools, distributed storage, and locally stored
running virtual disks. Eucalyptus in particular has
a hypervisor-agnostic architecture and supports two
well known hypervisors, Xen and KVM. The ma-
jority of Eucalyptus components have well defined
web-service based interfaces (described by WSDL
documents) and are developed using standard Web-
services packages such as Apache, Axis2 and Ram-
part.

The NC is the core component of the Eucalyptus
cloud where client VMs execute and is a major focus
of our discussion. In our particular implementation
the Eucalyptus NC is an HP elitebook 8560 laptop
with 2.2 GHz processor and 4 GB of primary memory.
NC is running Linux kernel 2.6 in dom0 and Xen is
used as VMM. Eucalyptus NCs are divided into two
groups, one for normal clients and one for security
sensitive ones. For security sensitive clients, the NC
is also equipped with a TPM chip and supports the
Intel TXT technology.

As a typical cloud based VM can be up to 2
GB in size, it will be computationally infeasible to
encrypt or decrypt the entire VM. A VM normally
consists of three images: a boot disk image, a kernel
image and an initial ramdisk image. Therefore, from
a performance prospective, it is desirable to encrypt
only that portion of a VM image which is important
from a security point of view. The kernel is the
most fundamental part of the operating system of
a VM, and supports user level application requests
via system calls. We want to ensure that a client
VM is running with a client provided trusted kernel.
Therefore, instead of encrypting the entire VM, we
encrypted only the kernel. The Linux kernel we used
in our experimentation was 50 MB in size. Therefore,
here in our discussion, whenever we mention VM
encryption or decryption, we are only referring to the
kernel.

The Eucalyptus NC is the central point of our
discussion, as client, VMs actually execute on the NC.
In the original Eucalyptus design, the NC receives
a request from the CC for VM launch which then
launches the VM from the CS. However in case of
the security sensitive group of NCs, the VM to be
launched is stored in encrypted form on the CS. After
reading an encrypted VM from the CS, the NC first
executes a special PAL P inside the Flicker protection,
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by calling the SENTER instruction. P is trusted by
the client and includes the functionality needed to
support getting the VM decryption key DkVM from
the client. After getting the VM decryption key DkVM

using the protocol described in the previous section,
the NC then launches the VM and connects the client
to its VM.

According to default Flicker implementation, the
PAL can have a maximum size of 512 KB and can have
input and output as a maximum size of 116 KB. We
have made changes to the Flicker code to allow it to
read encrypted VM as input and to return a decrypted
VM as output. We then pass the VM image and its
decryption key as input to the Flicker session for
decryption, so that it can be launched after returning
from the Flicker session. The VM is then decrypted
inside the Flicker session, and is made available to the
NC as output of the Flicker session. The decrypted
VM is then launched by the NC. In this way, VM
launch is restricted to trusted NC only.

5 VERIFICATION
The suggested protocol ensures confidentiality and
integrity of the clients’ data. We use ProVerif [39]
to automatically verify that the data is not revealed
to the attacker and that the protocols proposed do
not suffer from man-in-the-middle attacks. Checking
these two properties is sufficient to ensure confi-
dentiality because we show that only the client can
access the data, and secondly no other principal can
masquerade as the client. We make the following
assumptions:

• The attacker has access to all communication
(except the communications on private channels).
We assume that the cloud provider may be part
of the attacker.

• The attacker may modify, replay and re-arrange
messages but not break cryptography.

• Neither the Flicker session nor the TPM nor the
client is compromised. However, the attacker can
interact with the Flicker session.

• The public keys of the client and Flicker can be
used to provide a secure communication channel
between the client and the Flicker session. For
this purpose we use the TPM as described in
section 2.2.

ProVerif is based on the applied pi-calculus [38],
which models a security protocol as follows: Agents
are modeled as processes, and messages between
agents are modeled as communication between pro-
cesses. The attacker is modeled as the environment
and hence has access to all communication (except
the communications on private channels).

ProVerif transforms the protocol specified as a pro-
cess into Horn clauses. The Appendix at the end of
this paper lists the ProVerif code. There are two files,
one for the verification that only the client can access

the data, and the other one for the verification that
man-in-the-middle attacks are not possible. The given
code consists of the following parts:

• Description of the channels involved in the pro-
tocols (line 3-7).

• Description of the cryptographic operations such
as symmetric and asymmetric encryption (lines
8-19).

• The property that only the client can access the
data is formalized as the property that the at-
tacker does not get access to the virtual machine
of the client (line 23).

• The absence of a man-in-the-middle attack is
modeled by the query whether one event (the
Flicker session has received the key for the virtual
machine) is always preceded by another unique
event (the client has sent the key for the virtual
machine) (line 22-29).

• Description of client and the Flicker session (lines
31-56).

Since we assume that the attacker has access to ring
0 and therefore has full access to the node controller,
the node controller is effectively part of the attacker.
Hence there is no agent (process) corresponding to the
node controller in our model.

When we run ProVerif on both files, it terminates
very quickly and shows that both queries are true. All
three protocols were verified and satisfy confidential-
ity.

The integrity of the data is guaranteed as the virtual
machines are encrypted with a key which is known
only to the client.

6 EVALUATION AND DISCUSSION
Although we conducted our experimentation on Intel
based machines but the work can easily be adapted to
an AMD based architecture. On an AMD architecture,
the SKINIT instruction is used to invoke a Flicker
session whereas in our Intel based machine the Flicker
session is started with GETSEC [SENTER]. However
the security property and protection provided by a
Flicker on both machines is similar. On an Intel ma-
chine, the attestation requires at least PCRs 17 and 18
to be sure that a given PAL is executed inside Flicker
protection. While in case of an AMD architecture it
is reduced to only PCR 17. The reason is that an
AMD architecture does not use a chipset module for
launching a Flicker session.

Our approach provides security at two different
levels with varying TCB size. Before launching a VM,
the client attests the integrity of the entire platform
and the suggested TCB starts from the BIOS up to the
VMM. This attestation depicts the current behavior
of the platform. After trusting the current platform
behavior and VM launch, our approach takes care
of protecting client confidentiality and integrity on
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Fig. 6. Performance evaluation

the NC from the cloud clients and cloud system ad-
ministrator through isolated Flicker based execution.
The property of our isolated Flicker based sensitive
computation is that it has very small TCB. The sug-
gested TCB consists only of Flicker code, its input
and output, and the client PAL. In our confidentiality
sensitive computation protocol, input to the Flicker
session is an encrypted file and Flicker output is the
result of performing some computation on that file
(decrypted inside Flicker). So for client based sensitive
computation, it is not required to trust the software
stack from BIOS up to the VMM.

Initially a guest VM needs two Flicker sessions
to perform computation on sensitive encrypted data.
The first session is used to get the decryption key
of encrypted confidential data from the client. The
second Flicker session is then used to process the
given data. Subsequent operations on the same con-
fidential data will need only a single Flicker session,
as the guest VM has now the key for data decryption
and performing operation on data inside the Flicker
session.

The Flicker session suspends the normal execution
of a cloud node and runs in full isolation. This can
be considered a type of financial loss to the platform
owner because the platform resources are not fully
and efficiently utilized. In order to avoid the suspen-
sion of normal execution on a node, McCune et al.
[14] suggest an architecture to have only a subset of
CPU cores assigned to a Flicker session while normal
execution continues on other cores. This way secure
and normal execution will take place at the same
time on the same cloud node. Further research is
desirable in this direction in order to enable execution
of sensitive and normal code side by side on the same
platform.

We call an outsource computation as sensitive if it

operates on some confidential data. According to our
protocol, confidential data is only processed inside
Flicker protection. So sensitive computation can only
process sensitive data inside Flicker protection. As
a result, confidentiality of both data and sensitive
computation is preserved. According to our proposed
protocol, sensitive computation executes as PAL in-
side Flicker protection. Therefore a client can enforce
through remote attestation used by our protocol that
only client trusted outsourced computation can access
client confidential data. Hence, clients can send de-
cryption key for confidential encrypted data to only
those Flicker sessions whose computation the client
trusts.

In this paper, our main focus is on protection of
the PAL from the cloud system administrator and
all other software running in the system. Here we
discuss how to protect the Node Controller (NC) from
a malicious PAL. The NC can only allow execution
of legitimate PALs, by verifying it in some manner,
e.g. using proof carrying code [9]. X86 architecture
has 4 privilege rings, with ring 0 and ring 3 being
most and least privileged respectively. As GETSEC
[SENTER] is a privileged instruction used to launch a
Flicker session, therefore a Flicker session can only be
invoked by code executing in CPU protection ring 0.
In this way, the NC allows execution of only legitimate
PALs that it trusts or verifies in some manner [9].

Inside a Flicker session, paging is being disabled
and segmentation is enabled, and the PAL is exe-
cuted in CPU protection ring 3. The NC sets relevant
segment register [29], to define the memory region
the PAL can access. The PAL executes in CPU ring 3
protections and hence it can only access the memory
defined in the segment registers. We have extended
the default input/output size to allow for VM encryp-
tion/decryption. In this way the PAL can only access
the memory limited by segment registers and cannot
access the memory region of other processes and VMs.

Here we consider the performance aspects of our
protocol. The performance intensive operation can be
categorized into those that occur inside the Flicker ses-
sion and those that occur outside. The most expensive
operation outside the Flicker session was the TPM
Quote operation which took 756.37ms (millisecond),
as shown in Fig. 6. The Flicker session was invoked
on the NC with the SENTER instruction with a total
execution time of 29.4ms. PCR extend operation was
used to extend the measurement of PAL into PCR 18
which took 1.27ms. The asymmetric 1024-bit RSA key
for the Flicker was generated in 190.6ms. The sealing
and unsealing of the private part of the RSA key was
performed in 98.9ms and 810.3ms respectively. The
VM key was decrypted using 1024-bit RSA key in
4.1ms. The PAL then decrypts the VM with client
supplied 128-bit Advance Encryption Standard (AES)
symmetric key which took 2.2 seconds.

As mentioned earlier, our audience is security sen-



IEEE TRANSACTIONS ON CLOUD COMPUTING 11

sitive clients whose main concern is security and con-
fidentiality of their data and computation. Therefore,
the tradeoff overhead is acceptable for the isolation
and security features obtained by using our proposed
protocol.

7 RELATED WORK
Our work benefits from related work in trusted com-
puting, trusted virtual machine monitors and special-
ized encryption based approaches. Several approaches
in the first two categories are based on reliance on
a trusted hypervisor also known as trusted virtual
machine monitor (TVMM) [17][18]. The suggested
TVMM model prevents platform administrators and
other super users from examining or modifying client
VMs. TVMM has the property of being able to defend
its own integrity on the deployed platform. Hyper-
visors are unfortunately complex software and as a
result inflate the Trusted Computing Base (TCB). Due
to hypervisors’ complexities and large TCB there are
many challenges that need to be addressed for the
emergence of a practical TVMM.

Approaches that rely on a Trusted Computing

Base

We further classify approaches that make use of a
TCB into two generic categories, i.e. trusted virtual
machine monitor and modified VMM. Approaches
in the first category build their solution on top of
an existing TVMM assuming that it would provide
the desired properties of confidentiality and integrity
and a root of trust. Whereas modified VMM based
approaches detail certain modifications to the design
of existing hypervisor’s for providing desired root of
trust.

Trusted virtual machine monitor based approaches
Terra [17] is one of the initial and influential re-

search works that aims to provide secure closed box
execution environment and an open general purpose
system side by side on a single platform. Terra is
based on a TVMM to make the function of a single
node communicating in a distributed environment,
transparent. This approach protects client compu-
tation integrity and confidentiality by providing a
closed-box execution environment to a user VM from
the platform administrator interference and inspec-
tion. The TVMM provides an interface to a man-
agement VM for allowing the allocation of memory,
storage and other resources to the client VM. TVMM
allows remote parties to trust the client VM closed-box
execution environment by providing the attestation of
the environment to the remote parties.

A technique for achieving client computational in-
tegrity and data confidentiality in an IaaS based cloud
is presented in Khan et al. [22]. The technique is based
on using remote attestation and a trusted virtual
machine monitor (based on a TVMM). A trusted third
party is used for the establishment of trust between

cloud clients and cloud nodes. The cloud provider
first attests and registers its nodes with a trusted
third party which in turn verifies the cloud platform
properties using remote attestation.

Modified VMM based approaches
Murray et al. [19], analyzed the Xen architecture

and proposed architectural recommendations for the
emergence of a TVMM based on the Xen hypervisor.
In order to reduce the TCB and make the attestation
more meaningful, they presented a technique based
on disaggregation property in a Xen based envi-
ronment. The technique moves the domain building
process of the administrative domain into a special
domain called DomB which is removed from the TCB.

Another approach called Self-Service Cloud (SSC)
[32], attempts to restrict the privileged administrative
domain in Xen from examining client VM computa-
tion and data. SSC divides administrative rights into
a per-client administrative domain and system-wide
domain. The given model provides clients the ability
to manage privileged system operations related to
their own VMs.

CloudVisor [31], uses nested virtualization for pre-
venting the administrative domain from encroaching
upon the integrity and confidentiality of client VMs.
CloudVisor divides the virtualization functionality
into VM management and security protection. The
management VM is responsible for management of
client VMs while a tiny security monitor that runs
beneath a commodity VMM such as Xen provides
protection of client VMs integrity and confidentiality.
Nested virtualization however imposes high over-
heads because privileged operations must be handled
by both the bare-metal and nested hypervisor’s, slow-
ing down I/O intensive client applications.

TVEM [10], provides a virtual environment on a
cloud platform to ensure protection of client data and
computation. TVEM is a software based appliance
and is supported by hardware based solutions, i.e.
Intel Virtualization Technology for Directed I/O (VT-
d) [13] and Trusted eXecution Technology (TXT). Sep-
arate responsibilities are assigned to the information
owner and the service provider in the proposed vir-
tual environment. Virtual environment is the software
component encompassing layers from the operating
system to the application software in the VM, and is
controlled by the information owner. TVEM provides
the information owner the ability to attest the virtual
environment for the desired integrity and confiden-
tiality properties.

Dewan et al. [16], present a technique to guard criti-
cal data of a client application running in a virtualized
environment where a VM may include malware. The
proposed approach uses a lightweight hypervisor for
fine grained software-based run time memory pro-
tection. It places application critical data in protected
memory regions and then registers it with the client
application. Access to the protected memory region is
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controlled by the VMM on the basis of authenticity
of an application. The approach also suggests a data
locker component for the VMM to prevent leakage
of the application persistent storage to malwares and
rootkits.

Specialized encryption based approaches

Lei et al. [5], proposed homomorphic encryption
schemes [2] for performing sensitive computation on
encrypted data inside an untrusted cloud platform
that provides input/output confidentiality and result-
ing integrity. The authors have shown how common
engineering and scientific computational tasks such as
matrix inversion computation (MIC) can be securely
outsourced to an untrusted cloud platform. The origi-
nal matrix is encrypted before being outsourced to the
cloud and then processed in encrypted form. Trans-
formation is applied on the result received from the
cloud to get accurate inversion of the original matrix.
Homomorphic encryption, however limits the types
of operations that can be performed. Moreover this
approach overburdens the client and is not desirable
for thin client environments, such as mobile devices,
with limited resources.

Vimercati et al. [8], consider a cloud scenario where
storage and computation services are used from dif-
ferent cloud providers. Data resides in encrypted form
on a storage provider and is transferred to a com-
putation provider for processing in encrypted form.
The outcome of the result is then again encrypted
and returned to the client, which then transforms the
result into clear text and verifies its integrity. The main
shortcoming of this approach is that if limited com-
putation needs to be performed on the data the client
will still need to outsource storage and computation
from multiple providers. Also it needs to bear the
reservation and communication overhead involved in
moving the data to the computation service provider.

A protocol for providing confidentiality and con-
trolling access to the data in the cloud is proposed by
Tysowski et al. [7]. The given approach recommends
modifications to attribute-based encryption to control
access to data based on possession of certain attributes
by authorized users. The data owner determines at-
tributes required for data access to protect data con-
fidentiality from unauthorized users. The data owner
then generates, encrypts and then uploads data to the
cloud to be accessed only by authorized users.

Ports et al. [41], attempt to protect application code
and its data from the compromise of untrusted operat-
ing system in a virtualized environment by providing
encrypted view of the memory pages of a client
application to the operating system. The proposed
approach allows a protected application running in
a virtual machine (VM) to interact directly with the
VMM through a user level code, called shim. The
direct communication between the shim and VMM
allows the application to protect its resources, such
as files in memory. However, the proposed approach

does not consider a cloud environment where the
attacker is potentially more powerful and may have
control of the platform and communication channel
in addition to the operating system.

Unlike existing approaches our proposed protocol
considers user computation integrity and data con-
fidentiality against a powerful attacker such as an
untrusted cloud system administrator. The applica-
tion code is executed with hardware protection, in
complete isolation from a potentially compromised
VMM. Cryptographic operations and computation is
performed at the provider side, which allows support
for thin clients, such as mobile devices.

8 CONCLUSION AND FUTURE WORK
In the last few years, cloud computing has experi-
enced very high growth rates and is showing great
prospects. One of the biggest challenges to the wide
adoption of cloud based services is client confiden-
tiality and integrity concerns. In this paper, we have
presented and formally verified a practical solution to
address this problem. Our solution includes a protocol
for secure VM launch which enables clients to verify
cloud platform configuration before launching their
VMs on the cloud. In addition, a protocol for perform-
ing sensitive computations in a cloud environment
is presented. We have formally verified the security
properties of our proposed protocols using ProVerif.
Currently our implementation is for Intel based sys-
tems but it can easily be adapted to AMD. Evaluation
results show that our solution is practical in terms
of performance. In the future, we are planning to
perform rigorous penetration testing of our protocol
using an actual deployment.
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APPENDIX
Table 2, contains ProVerif code used for the verification of
security properties of our proposed protocol.
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1  set verboseClauses = explained. 
2   
3  free !"#$:bitstring [private]. 
4  free getQuote:bitstring. 
5  free c, d: channel. 
6  free e, f, g: channel [private]. 
7  free success: bitstring. 
8   
9  (* encryption and decryption functions *) 
10  fun enc (bitstring, bitstring, bitstring): bitstring. 
11  fun dec (bitstring, bitstring): bitstring. 
12  fun senc (bitstring, bitstring, bitstring): bitstring. 
13  fun sdec (bitstring, bitstring): bitstring. 
14  fun pub (bitstring): bitstring. 
15   
16  (* decryption followed by encryption produces original 
message *) 
17  equation forall xk: bitstring, xr:bitstring, xm: 
bitstring; sdec(xk, 
18  senc(xk, xr, xm)) = xm. 
19   
20  equation forall xk: bitstring, xr:bitstring, xm: 
bitstring; dec(xk, 
21  senc(pub(xk), xr, xm)) = xm. 
22   
23  query attacker (!"#$). 
24   
25   
26   
27   
28   
29   
30   
31   
32  (* the actions of the client *) 
33  let client(%&':bitstring) =  
34      in (e, pubF:bitstring); 
35      new na:bitstring; 
36      new r1:bitstring; 
37      out (c, enc (pubF, r1, (na, pub(%&')))); 
38      in (c, x:bitstring); 
39      let (=na,  nF:bitstring) = dec (%&', x) in 
40      new r2:bitstring; 
41      out (c, enc (pubF, r2, (nF, !"#$))). 
42   
43   
44  (* the action of the flicker session *) 
45  let flicker =  
46      new %&(: bitstring;  
47      out (e, pub (%&());  
48      out (c, pub (%&()); 
49      in (c, x:bitstring); 
50      let (xna:bitstring, xpubC:bitstring) = dec (%&(, x) in 
51      new nF:bitstring; 
52      new r:bitstring; 
53      out (c, enc (xpubC, r, (xna, nF))); 
54      in (c, y:bitstring); 
55      let (=nF, !"#$:bitstring) = dec (%&(, y) in 
56      out (c, success). 
57   
58  (* the specification of the whole system: key generation, 
afterwards running client and flicker in parallel *) 
59  process  
60      ! ((new %&':bitstring; out(c, pub(%&')); (client 
(%&'))) | flicker) 

 

TABLE 2
ProVerif security verification code
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