
A Metamodel Refinement Approach for Bridging
Technical Spaces, a Case Study

A. Staikopoulos and B. Bordbar

School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
{A.Staikopoulos, B.Bordbar}@cs.bham.ac.uk

Abstract. To benefit from positive aspects of an existing diverse set of
Technical Spaces, it is important to develop methods of automated
transformation of models between such domains. Sometimes it is possible to
describe Technical Spaces via metamodels. In such cases, the Model Driven
Engineering and Architecture pose as a natural candidate for dealing with such
transformations between Technical Spaces. This paper deals with the case
where the metamodel of the source Technical Space is more complex than the
metamodel of the destination. Thus, the gap between the two Technical Spaces
is highly non-trivial. The method presented in this paper is based on successive
metamodel refinements to bridge this gap. Finally, the method is applied to the
transformation from Business Process Execution Language to Petri nets.

1 Introduction

Technical Spaces (TS) [11], [14] and Domains [7] consider the working context
where systems and applications are specified and developed, from certain perspec-
tives. To benefit from positive aspects of different Technical Spaces and Domains,
applications belonging to one context may need to be transferred to alternative
contexts, while using their specified tools and technology. For example, models of
Business Process Execution Language (BPEL) [5], as an XML Technical Space, can
be translated to Petri nets [15] to allow verification and analysis of the system [6],
[18]. Such translation facilitates the cooperation of alternative technologies and
techniques rather than their competition while supporting the best possibilities of each
domain [14]. To do so, we need to define mappings across the spaces and eliminate
their conceptual gaps between the two domains.

The Model Driven Development or Engineering [1], [11], [17] can play an
important role, as it provides an approach and a technical framework for establishing
bridges between two Technical Spaces, by providing domain integration and
interoperability via Metamodel mechanisms [14], [17]. However, if there is a large
conceptual gap between the two Technical Spaces, defining a suitable MDA
transformation [9] is a highly non-trivial task. This paper deals with the scenario in
which the metamodel of the Technical Space of the source is richer than the meta-
model of the Technical Space of the destination. The method presented is called One
Step Refinement of the destination metamodel and is based on the destination enrich-

ment to bridge the gap between the two Technical Spaces. We shall demonstrate our
approach by mapping a number of BPEL constructs to Petri nets.

The paper is organised as follows: Section 2 covers the basic concepts involved in
the paper, giving a number of definitions and preliminary information. Section 3
compares the Spaces of Business Processes and Petri nets and discusses issues rela-
tive to their mapping. Section 4 describes the proposed approach for bridging
Technical Spaces and Domains. Section 5 presents how the method is applied with a
number of examples. Section 6 provides various discussion points. Finally, Section 7
presents the conclusions drawn during the authors’ experimentations and summarises
the basic characteristics of the approach adopted.

2 Preliminaries

In this section we shall present a brief overview of the concepts used in the paper:

Technical Spaces and Domains: Technical Spaces [11], [14] represent specific
working contexts with specific implementation technologies, tools and
approaches, where applications are specified, instantiated and utilised from various
tools and engines. Domains [7] on the other hand represent contexts via specific
application aspects and not by given programming language concepts. In some re-
spect, TSs and Domains are comparable when creating contexts as metamodels,
where the first is focusing on the technological and implementation issues, while the
other on conceptual application representations.

Metamodels and Model Driven Approaches: Metamodels are models that for-
mally describe the syntax and semantics of a given context, by modelling languages
such as UML [16]. A model has “an instance of” relationship with its metamodel.
Metamodelling [1], [13] is an essential foundation for model driven development and
architecture. The Model Driven Development (MDD) [1], [17] is a model-centric
software engineering approach, focusing on the design models instead of the code.
One of its most prominent variant is the Model Driven Architecture (MDA) [9], [10]
by OMG. The MDA specifies a technical framework of standards for designing
systems via models. It promotes the creation of highly abstract models that are devel-
oped independently of implementation details, which repeatedly and automatically
can be transformed by tools to specific implementations and technologies [9], [13].
Similarly to MDD the Model Driven Engineering (MDE) [11] is a form of generative
engineering building upon the idea of MDA. It supports the integration of Technical
Spaces and promotes their synergy in a smooth way by providing bridges [8], [12].

Next, we provide some basic information regarding the Technical Spaces that will be
used in our case study. These are as follows:

Business Process Execution Language: The Business Process Execution Lan-
guage for Web Services (WS-BPEL or BPEL for short) [7] specifies the process in-
stance to be mapped. The BPEL provides an XML notation and semantics for speci-
fying business process behaviour, based on collaborating participants (external Web
services). The behaviour is defined upon a set of interconnected hierarchical activities

that are formed in various ways similar to workflow patterns, simulating loops and
parallel execution for example.

Petri nets: The Petri nets (PNs) [15] specify the semantic domain of the process.
A PN is a particular kind of directed graph consisting of places (p), transitions (t),
which are connected with arcs either from a place to a transition (PTArc) or from a
transition to a place (TPArc). Graphically, places are drawn as circles, transitions as
bars and arcs as directed arrows. Tokens are represented by black dots placed in
places to simulate the dynamics of the system. PNs can also be considered as a
mathematical tool to describe and study information processing systems that are char-
acterised as concurrent, distributed, parallel or non-deterministic.

3 Mapping and Bridging Technical Spaces

As TSs and Domains represent metamodelling contexts, it makes sense to shift from
one Space or Domain to another in order to use its context, concepts, approach and
tools (please refer to Fig. 1). In this respect, Kurtev et. al. [14] forward the idea that
there should be more cooperation than competition among alterative technolo-
gies/Spaces and similar among domains.

To realise such an idea, we need to establish bridges between the different Techni-
cal Spaces, with specified mappings and properties. In that way, Technical Spaces or
Domains are no longer isolated islands but cooperating units, allowing original in-
stances to be transferred to alternative representations, with an objective to solve a
given problem by using the best possibilities of each technology.

Furthermore, the Model Driven Development and Engineering with transformation
approaches and tools can automate the generation of the corresponding target Space
instances and domains [2], [3], [4], when they are applied upon well-established
points. Thus, the bridges have to be established upon well formalised TS or Domain
metamodels capturing precisely the TS and Domain languages, technologies and
characteristics.

PN
Metamodel

PN
native Language

BPEL
Metamodel

BPEL
native Language

BPEL
Tools & Support

PN
Tools & Support

?
mapping

Fig. 1. Mapping BPEL and PN Technical Spaces and representations

Sometimes, however, it is not possible at the first attempt to map directly two meta-
models together, as the Technical Spaces or Domains may be rather different and not
in accordance with each other. Such problems often occur when one Space may de-
fine or possess characteristics that the other one does not define or accounts for. In
this paper, such problems are investigated and an approach on bridging the gap
among quite different Spaces is proposed.

To realise and present the approach the authors experiment on bridging the Tech-
nical Spaces of BPEL and PNs with a case study.

The BPEL language [5] (see Fig. 2(a)) specifies business process models via XML
Schemas and technologies. Similarly, PNs [15] (see Fig. 3(a)) specifies processing
systems in graphical representations. As both Spaces and Domains are originally
based upon different languages, we need to represent them in a common formalism,
for example a UML metamodel representation [16]. That will assist our objective to
map them together upon common means, tools and techniques. In order to do so, we
assume that metamodelling techniques are capable enough to specify the languages
precisely. For BPEL and PNs we do not have such problems [18], [19] and following
Fig. 2 and Fig. 3 depict such different representations among native and metamodel
representations.

Fig. 2. Sample of BPEL (a) and a metamodel segment of BPEL (b)

C

AB

Trans1

Trans 2

3

3

3

PetriNet

marking{derived}
label

Transition

enabled : boolean
fired : boolean

label

OutputPlace

InputPlace
Arc

weight

Place

label

Token

PTArc TPArc

target1

target
1

source1

source
1

*

0..*

Fig. 3. Sample of PN (a) and a metamodel of simple Petri net (b)

It can clearly be seen that the metamodel of BPEL is more sophisticated than the
metamodel of PN, including complex, high-level constructs such as “Invoke”,
“Flow” and “Scope”. As a result, there is a visible gap between the two Technical
Spaces.

4 A Method for Bridging Technical Spaces

In order to map two different Technical Spaces represented by metamodels, one
needs to identify and match their corresponding metamodel elements and supported
characteristics. However, identifying corresponding meta-elements is not an easy
task. In this case the BPEL metamodel is very complex when compared to PNs,
comprising complicated structures, whereas the PN metamodel defines just few
model elements.

To bridge the discrepant Technical Spaces, we propose a method that is based
upon the successive refinement of the destination metamodel. The method is depicted
in Fig. 4 and is described as follows:

Refinement of the destination: Assuming that the aim is to define a model trans-
formation from a Technical Space modelled via a metamodel N (in this example a
BPEL) into a Technical Space modelled via a metamodel M (a simple PN). In this
paper, the emphasis is placed upon one-way mappings from N to M, where the meta-
model of the source N is more expressive or richer than the metamodel M, in the
sense that there is a considerable number of metamodel elements of N, which cannot
be directly mapped into metamodel elements of M.

In some cases, it might be possible to map some of the model elements of N into M
as depicted by the ψ0 mapping. Now, consider a model element β1 of N that cannot be
directly mapped into any model elements of M. However, suppose that it is possible
to construct β1 via model elements of M:=M0. This lead to one step refinement M1:=
M0 ⊕ α1 such that β1 can be mapped to α1. The process can be repeated until an exten-
sion Mκ (after κ stages) is created, such that all model elements of N can be mapped
successfully and meaningfully into model elements of Mκ.

Fig. 4. Refinement of the Destination Metamodel

In this case, the technical space Mκ and N are near enough to be mapped. Now, if all
step refinements from M to Mκ are decomposable (see Definition1), then it is possible

to define model transformations ψ1 from Mι to Mι-1 (1≤ι≤ κ) such that the mapping ϕ =
ψ0°ψ1°ψ2° … ψκ°ψ maps N to M.

Definition1: Assuming that M is a metamodel and M ⊕ α is a One Step Refinement of
M by adding a. Then, we say M ⊕ α is decomposable, if we can define a model trans-
formation from M ⊕ α to M.

Consequently, a metamodel extension M ⊕ α may be decomposable, when the newly
introduced concept α can be represented with the original metamodel elements of M,
without losing any essential information during the decomposition.

The successive refinement of the destination metamodel can be implemented either
by profiles (referred as light-way extensions) or more conservative metamodel
extensions (based upon heavy-weight extensions) [13].

5 Applying the Method Adopted – Case Study

Let us consider the Technical Spaces N and M described by the BPEL and PN meta-
models respectively. The aim is to establish a bridge among these Spaces by
successively refining the destination M (PN) metamodel. To demonstrate the method
and raise a number of related issues, the BPEL “Invoke” activity to an equivalent
Petri net representation will be mapped.

The BPEL “Invoke” activity provides a two-way operation (request/reply) be-
tween a business process and a Web service participant. Its operational semantics will
block the process till the participant replies back with an answer [5]. The BPEL meta-
model of Fig. 2(b) describes “Invoke” and its associated elements, as input and out-
put variables used by operations provided by participants.

Within the destination metamodel (PN) “Invoke” does not have a clear counter-
part. The PN metamodel as previously discussed (please refer to preliminary section),
consists of just few elements.

Assuming that we want to extend the Technical Space M of a simple PN with the
notion or concept α of “Invoke” operation. In order to satisfy the previously
described characteristics, the extension metamodel M ⊕ α will be refined as the one
depicted in Fig. 5(a) and its equivalent PN instance representation as the one depicted
in Fig. 5(b).

The introduced “Invoke” element represents a new concept, created as a self con-
tained element, allowing to be reused from other language constructs, such as struc-
tured activities to make full compact models. The “Invoke” element can be described
as a specialised type of transition and can be treated as such [6]. It extends “BasicAc-
tivity” that is the common classifier with other similar activities such as “Receive”.
More specifically, “Invoke” directly defines and contains two simple Transitions,
three specialised places identified as “Wait”, “InputData” and “OutputData”, as
well as two external arcs linking to another PN model, which represents the activity
of a participant. In that respect, “Invoke” is a composite transition having internal
transitions and states, represented by the three place types. The “Wait” place
represents the situation (state), where the process waits for the participant’s answer,

by remaining blocked. The “InputData” and “OutputData” places, together with
their tokens, represent respectively the input and output variables used at actual “in”
and “out” parameters of the operation. The operation call is actually represented by
the first internal transition and its completion by the second one. The action can be
considered as atomic, in the respect that it cannot be externally interfered and repre-
sents one unit of action. Finally, the two arcs, one outgoing and one incoming, repre-
sent the interaction of our process with its external participant.

The PN model of Fig. 5(b) depicts an instantiation of its metamodel for performing
the “Invoke” operation as previously described.

PetriNet

marking{derived}
label

Transition

enabled : boolean
fired : boolean

label

BasicActivity
OutputData

InputData

Arc

weight

Place

label

PTArc
TPArc

Wait

Invoke

2

*
Input
Data

wait

Output
Data

mes
received

mes.
send

Invoke within Process External Part icipant

Fig. 5. A PN metamodel extension (a) and instance representation (b) for “invoke”

The M ⊕ α metamodel extension is now a M refinement defining an “Invoke” ele-
ment and making the resulting PN metamodel to be mapped effectively with its corre-
sponding BPEL “Invoke” elements. For example, Fig. 2 depicts the BPEL relevant
metamodel elements. The BPEL metamodel similar to PNs, has an “Invoke” element
that is associated with “InputVariable” and “OutputVariable”, a WSDL “Opera-
tion” provided by a “PartnerLink” and representing the actual participant. In that
way mappings across the two metamodels can be provided easily, defining the notion
of “Invoke” and establishing a bridge of collaboration and mapping.

Additionally, the PN metamodel extension, representing the BPEL “Invoke” op-
eration, is capable of modelling its dynamic and operational capabilities. So, it justi-
fies our initial aim to use it for analysis and simulation purposes. For example, the
internal states and transitions of “Invoke” (see Fig. 5) can be mapped to important
(run time) aspects, such as reading the operation’s parameter variables and writing the
returned results to internal variables. Thus, they allow the simulation and analysis of
our BPEL models by specialised tools, within the PN Space.

To decompose the “Invoke” notion, we have to represent its context with the
original PN metamodel elements such as PN, T, P, TPArc and PTArc (refer to pre-
liminary section). In that case we have to rewrite the metamodel and assist the seman-
tic interpretation of its decomposed elements:

Metamodel Decomposition: If the “Invoke” transition is removed, then we have
to deal with its internal content, which in this case is defined by two simple transi-
tions, three specialised places and two arcs. An element may also have internal de-
fined OCL statements, which need to be transferred equivalently as well. As “In-

voke” is of a type of transition the closer element is a “Transition”. However, the
notion of “Transition” cannot contain “Places” or other “Transitions” of any kind.
Thus, if we preserve such relations we will have a significant violation of its funda-
mental semantics. As the “composition relation” serves the purpose to depict the
constitute elements of an “Invoke” structure, which actually no longer exists (“In-
voke” is decomposed), then there is no reason to be retained.

There are cases, where the appearance of “Invoke” can be identified as a pattern of
loosely combined elements similar to grammars, which identify the tokens of a lan-
guage. Similarly, the specialised “Places” should also be decomposed. In this case
the most relevant type or element is that of a “Place”. As a “Transition” is allowed
to have associations with “Places” via “Arcs”, there is no problem for these relation-
ships to be preserved and modelled analogously, however this time they belong to the
PN context and not to the “Invoke”.

Semantic Interpretation: As the specialised elements such as “Wait” do not exist
any longer, identifying and distinguishing them may not be an easy task, as now all
are of the same type “Place”. However, we may address at some extent such prob-
lems, if we annotate the association ends with their type names or use the attribute
“Label” (see Fig. 3) to mark their types. In this case, “Labels” are used as “classifi-
ers” to reveal the intention of being of a specific type. Analogously, OCL statements
can be used to distinguish them, if the Space or Domain allows them. Alternatively,
we may mark the modelling element with stereotypes, which effectively is similar to
trying to make the metamodels profile-able.

PetriNet

marking{derived}
label

Transition

enabled : boolean
fired : boolean

label

Place

label

PTArc

TPArc

Arc

weight

OutputData
Wait

InputData

wait
2

*

Fig. 6. Decomposing Invoke PN metamodel elements regarding the original

Finally, the mapping of a BPEL “Invoke” element to a decomposed PN extension
depends largely on to how successively one has managed to decompose the context of
the notion introduced and how easily this can be identified. If the previous require-
ments are met, then it is possible to establish a meaningful mapping. However, this
time would be much more difficult to define and more complicated to distinguish
than before.

6 Discussion

There are two major prerequisites to the success of our method. The first point is that,
as depicted in Fig. 4, we must identify and map the primary and fundamental ele-
ments of our Technical Space N and then gradually build the more complicated ele-
ments on top of the already refined metamodels at the source. This is a “bottom up”
modelling practice. In particular, there are different ways of refining a source meta-
model. For example the authors can model invoke in three different ways utilising
suitable OCL statement. It seems possible to come up with scenarios that a model
element of the source “can not” be added to destination to create further refinement,
which can be interpreted as, two Technical Spaces are too far from each other. Fur-
ther research and case studies on the matter are required.

The second major prerequisite is the ability to decompose, see Definition 1, a
refined metamodel. Currently, it is not very clear to authors under what circumstances
it is possible to decompose successively a metamodel. However, it seems crucial that
the refinement does not change the semantics of the metamodel, i.e. the semantics of
M, as a part of M ⊕ α must remain unchanged. For example, in PNs, constructs such
as “Place” may have different semantic interpretations regarding the context which is
used. For example, within an “Invoke” activity “Place” represent the “InputData”
and “OutputData” for an operation, where in “Switch” activity they can represent
the “PreCondition” and “PostCondition”. Therefore, when it is to decompose them
we may loose semantic information, so the model elements may be misinterpreted
during instantiation and mapping from tools. For that reason we have to device ways
in order to incorporate such information to our original metamodels. This can take
various forms from using OCL statements into labelling association ends or stereo-
typing. Further research on the matter is required.

7 Conclusion

This paper presents a method of bridging two Technical Spaces, which can be ex-
pressed via metamodels. The presented method is based on the MDA and aims to
address the scenarios that the metamodel of the destination Technical Space has less
complex structure than the metamodel of the source Technical Space. To bridge the
conceptual gap, the metamodel of the destination is refined by adding model elements
corresponding to model elements of the source Technical Space. We have presented
samples of application of the approach to bridge the gap between the Technical Space
of BPEL and PN.

References

[1] Atkinson, C. Kuhne, T. Model-driven development: a metamodeling foundation, Uni-
versity of Mannheim; Software, IEEE, Publication Date: Sept.-Oct. 2003, Volume: 20,
Issue: 5 p. 36- 41, ISSN: 0740-7459, (2003)

[2] Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping Web Ser-
vices to Implementation Platforms. Technical report: 04.01, LINA, University of Nantes,
Nantes, France (2004).

[3] Bordbad, B., Staikopoulos, A.: Modeling and Transforming the Behavioural Aspects of
Web Services. In: Proc. 3rd Workshop in Software Model Engineering - WiSME2004,
UML (2004)

[4] Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services.
In: Proc. Conceptual Modelling for Advanced Application Domain (eCOMO), Shanghai,
China, p. 667-678, (2004)

[5] BPEL: BEA, Microsoft, IBM, SAP, Siebel, Business Process Execution Language for
Web Services, Version 1.1. (2003)

[6] Chun Ouyang, van der Aalst, Stephen Breutel, Marlon Dumas, Arthur ter Hofstede, Eric
Verbeek, Formal Semantics and Analysis of Control Flow in WS-BPEL, (2005)

[7] Greenfield, J, Keith Short: Software Factories, Wiley, ISBN: 0471202843, (2004)
[8] Ivan Kurtev, Adaptability of Model Transformations, PhD Thesis, University of Twente,

ISBN 90-365-2184-X, (2005)
[9] J. Miller and J. Mukerji: "MDA Guide Version 1.0.1, OMG Document Number:

omg/2003-06-01", OMG, 12.6.2003, http://www.omg.org/cgi-bin/doc?omg/2003-06-01
[10] J. Siegel, Developing in OMG’s Model Driven Architecture, Object Management Group,

November (2002)
[11] J.M. Favre, "Towards a Basic Theory to Model Model Driven Engineering", 3rd Work-

shop in Software Model Engineering, WiSME 2004, http://www-adele.imag.fr/~jmfavre
[12] Juliane Dehnert, van der Aalst, Bridging the Gap Between Business Models and Work-

flow Specifications, International Journal of Cooperative Systems, (2004)
[13] Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture-

Practice and Promise, (2003)
[14] Kurtev, J. Bézivin, and M. Aksit. Technological spaces: An initial appraisal. In Int. Feder-

ated Conf. (DOA,ODBASE, CoopIS), Industrial track, Los Angeles, (2002)
[15] Murata, Tadao, Petri Nets: Properties, Analysis and Applications. In: Proceedings of the

IEEE, Vol. 77, No. 4, p 541-580, April (1989)
[16] OMG: UML 2.0 Superstructure Specification. Document id: ptc/03-08-02 (2003)
[17] Gitzel, R. and Korthaus, A. (2004): The Role of Metamodeling in Model-Driven Devel-

opment, In: Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics
and Informatics (SCI2004), Orlando, USA, July, (2004)

[18] van der Aalst, W M P, van Hee, K M and Houben, G J, Modelling and analysing work-
flow using a Petri-net based approach. Proc. 2nd Workshop on Computer- Supported Co-
operative Work, Petri nets and related formalisms, p. 31-50, (1994)

[19] Y. Yuhong, A. Bejan, Modelling Workflow within Distributed Systems, 6th International
CSCW in Design, Canada, (2001)

