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Abstract. To benefit from positive aspects of an existing diverse set of  
Technical Spaces, it is important to develop methods of automated  
transformation of models between such domains. Sometimes it is possible to 
describe Technical Spaces via metamodels. In such cases, the Model Driven 
Engineering and Architecture pose as a natural candidate for dealing with such 
transformations between Technical Spaces. This paper deals with the case 
where the metamodel of the source Technical Space is more complex than the 
metamodel of the destination. Thus, the gap between the two Technical Spaces 
is highly non-trivial. The method presented in this paper is based on successive 
metamodel refinements to bridge this gap. Finally, the method is applied to the 
transformation from Business Process Execution Language to Petri nets.  

1   Introduction 

Technical Spaces (TS) [11], [14] and Domains [7] consider the working context 
where systems and applications are specified and developed, from certain perspec-
tives. To benefit from positive aspects of different Technical Spaces and Domains, 
applications belonging to one context may need to be transferred to alternative  
contexts, while using their specified tools and technology. For example, models of 
Business Process Execution Language (BPEL) [5], as an XML Technical Space, can 
be translated to Petri nets [15] to allow verification and analysis of the system [6], 
[18]. Such translation facilitates the cooperation of alternative technologies and  
techniques rather than their competition while supporting the best possibilities of each 
domain [14]. To do so, we need to define mappings across the spaces and eliminate 
their conceptual gaps between the two domains.  

The Model Driven Development or Engineering [1], [11], [17] can play an  
important role, as it provides an approach and a technical framework for establishing 
bridges between two Technical Spaces, by providing domain integration and  
interoperability via Metamodel mechanisms [14], [17]. However, if there is a large 
conceptual gap between the two Technical Spaces, defining a suitable MDA  
transformation [9] is a highly non-trivial task. This paper deals with the scenario in 
which the metamodel of the Technical Space of the source is richer than the meta-
model of the Technical Space of the destination. The method presented is called One 
Step Refinement of the destination metamodel and is based on the destination enrich-



ment to bridge the gap between the two Technical Spaces. We shall demonstrate our 
approach by mapping a number of BPEL constructs to Petri nets. 

The paper is organised as follows: Section 2 covers the basic concepts involved in 
the paper, giving a number of definitions and preliminary information. Section 3  
compares the Spaces of Business Processes and Petri nets and discusses issues rela-
tive to their mapping. Section 4 describes the proposed approach for bridging  
Technical Spaces and Domains. Section 5 presents how the method is applied with a 
number of examples. Section 6 provides various discussion points. Finally, Section 7 
presents the conclusions drawn during the authors’ experimentations and summarises 
the basic characteristics of the approach adopted.   

2   Preliminaries 

In this section we shall present a brief overview of the concepts used in the paper: 

Technical Spaces and Domains: Technical Spaces [11], [14] represent specific 
working contexts with specific implementation technologies, tools and  
approaches, where applications are specified, instantiated and utilised from various 
tools and engines. Domains [7] on the other hand represent contexts via specific  
application aspects and not by given programming language concepts. In some re-
spect, TSs and Domains are comparable when creating contexts as metamodels, 
where the first is focusing on the technological and implementation issues, while the 
other on conceptual application representations. 

Metamodels and Model Driven Approaches: Metamodels are models that for-
mally describe the syntax and semantics of a given context, by modelling languages 
such as UML [16]. A model has “an instance of” relationship with its metamodel. 
Metamodelling [1], [13] is an essential foundation for model driven development and 
architecture. The Model Driven Development (MDD) [1], [17] is a model-centric  
software engineering approach, focusing on the design models instead of the code. 
One of its most prominent variant is the Model Driven Architecture (MDA) [9], [10] 
by OMG. The MDA specifies a technical framework of standards for designing  
systems via models. It promotes the creation of highly abstract models that are devel-
oped independently of implementation details, which repeatedly and automatically 
can be transformed by tools to specific implementations and technologies [9], [13].  
Similarly to MDD the Model Driven Engineering (MDE) [11] is a form of generative 
engineering building upon the idea of MDA. It supports the integration of Technical 
Spaces and promotes their synergy in a smooth way by providing bridges [8], [12]. 

Next, we provide some basic information regarding the Technical Spaces that will be 
used in our case study. These are as follows:  

Business Process Execution Language: The Business Process Execution Lan-
guage for Web Services (WS-BPEL or BPEL for short) [7] specifies the process in-
stance to be mapped. The BPEL provides an XML notation and semantics for speci-
fying business process behaviour, based on collaborating participants (external Web 
services). The behaviour is defined upon a set of interconnected hierarchical activities 



that are formed in various ways similar to workflow patterns, simulating loops and 
parallel execution for example.  

Petri nets: The Petri nets (PNs) [15] specify the semantic domain of the process. 
A PN is a particular kind of directed graph consisting of places (p), transitions (t), 
which are connected with arcs either from a place to a transition (PTArc) or from a 
transition to a place (TPArc). Graphically, places are drawn as circles, transitions as 
bars and arcs as directed arrows. Tokens are represented by black dots placed in 
places to simulate the dynamics of the system. PNs can also be considered as a 
mathematical tool to describe and study information processing systems that are char-
acterised as concurrent, distributed, parallel or non-deterministic. 

3   Mapping and Bridging Technical Spaces 

As TSs and Domains represent metamodelling contexts, it makes sense to shift from 
one Space or Domain to another in order to use its context, concepts, approach and 
tools (please refer to Fig. 1). In this respect, Kurtev et. al. [14] forward the idea that 
there should be more cooperation than competition among alterative technolo-
gies/Spaces and similar among domains.  

To realise such an idea, we need to establish bridges between the different Techni-
cal Spaces, with specified mappings and properties. In that way, Technical Spaces or 
Domains are no longer isolated islands but cooperating units, allowing original in-
stances to be transferred to alternative representations, with an objective to solve a 
given problem by using the best possibilities of each technology.  

Furthermore, the Model Driven Development and Engineering with transformation 
approaches and tools can automate the generation of the corresponding target Space 
instances and domains [2], [3], [4], when they are applied upon well-established 
points. Thus, the bridges have to be established upon well formalised TS or Domain 
metamodels capturing precisely the TS and Domain languages, technologies and 
characteristics. 
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Fig. 1. Mapping BPEL and PN Technical Spaces and representations 

Sometimes, however, it is not possible at the first attempt to map directly two meta-
models together, as the Technical Spaces or Domains may be rather different and not 
in accordance with each other. Such problems often occur when one Space may de-
fine or possess characteristics that the other one does not define or accounts for. In 
this paper, such problems are investigated and an approach on bridging the gap 
among quite different Spaces is proposed.  



To realise and present the approach the authors experiment on bridging the Tech-
nical Spaces of BPEL and PNs with a case study. 

The BPEL language [5] (see Fig. 2(a)) specifies business process models via XML 
Schemas and technologies. Similarly, PNs [15] (see Fig. 3(a)) specifies processing 
systems in graphical representations. As both Spaces and Domains are originally 
based upon different languages, we need to represent them in a common formalism, 
for example a UML metamodel representation [16]. That will assist our objective to 
map them together upon common means, tools and techniques. In order to do so, we  
assume that metamodelling techniques are capable enough to specify the languages  
precisely. For BPEL and PNs we do not have such problems [18], [19] and following 
Fig. 2 and Fig. 3 depict such different representations among native and metamodel 
representations.  

 

 
Fig. 2. Sample of BPEL (a) and a metamodel segment of BPEL (b) 
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Fig. 3. Sample of PN (a) and a metamodel of simple Petri net (b) 

It can clearly be seen that the metamodel of BPEL is more sophisticated than the 
metamodel of PN, including complex, high-level constructs such as “Invoke”, 
“Flow” and “Scope”. As a result, there is a visible gap between the two Technical 
Spaces.  



4   A Method for Bridging Technical Spaces 

In order to map two different Technical Spaces represented by metamodels, one 
needs to identify and match their corresponding metamodel elements and supported 
characteristics. However, identifying corresponding meta-elements is not an easy 
task.  In this case the BPEL metamodel is very complex when compared to PNs, 
comprising complicated structures, whereas the PN metamodel defines just few 
model elements.  

To bridge the discrepant Technical Spaces, we propose a method that is based 
upon the successive refinement of the destination metamodel. The method is depicted 
in Fig. 4 and is described as follows: 

Refinement of the destination: Assuming that the aim is to define a model trans-
formation from a Technical Space modelled via a metamodel N (in this example a 
BPEL) into a Technical Space modelled via a metamodel M (a simple PN).  In this 
paper, the emphasis is placed upon one-way mappings from N to M, where the meta-
model of the source N is more expressive or richer than the metamodel M, in the 
sense that there is a considerable number of metamodel elements of N, which cannot 
be directly mapped into metamodel elements of M. 

In some cases, it might be possible to map some of the model elements of N into M 
as depicted by the ψ0 mapping. Now, consider a model element β1 of N that cannot be 
directly mapped into any model elements of M. However, suppose that it is possible 
to construct β1 via model elements of M:=M0. This lead to one step refinement M1:= 
M0 ⊕ α1 such that β1 can be mapped to α1. The process can be repeated until an exten-
sion Mκ (after κ stages) is created, such that all model elements of N can be mapped 
successfully and meaningfully into model elements of Mκ.  

 

 
Fig. 4. Refinement of the Destination Metamodel 

In this case, the technical space Mκ and N are near enough to be mapped. Now, if all 
step refinements from M to Mκ are decomposable (see Definition1), then it is possible 



to define model transformations ψ1 from Mι to Mι-1 (1≤ι≤ κ) such that the mapping ϕ = 
ψ0°ψ1°ψ2° … ψκ°ψ maps N to M. 

Definition1: Assuming that M is a metamodel and M ⊕ α is a One Step Refinement of 
M by adding a. Then, we say M ⊕ α is decomposable, if we can define a model trans-
formation from M ⊕ α to M. 

Consequently, a metamodel extension M ⊕ α may be decomposable, when the newly 
introduced concept α can be represented with the original metamodel elements of M, 
without losing any essential information during the decomposition. 

The successive refinement of the destination metamodel can be implemented either 
by profiles (referred as light-way extensions) or more conservative metamodel  
extensions (based upon heavy-weight extensions) [13]. 

5   Applying the Method Adopted – Case Study 

Let us consider the Technical Spaces N and M described by the BPEL and PN meta-
models respectively. The aim is to establish a bridge among these Spaces by  
successively refining the destination M (PN) metamodel. To demonstrate the method 
and raise a number of related issues, the BPEL “Invoke” activity to an equivalent 
Petri net representation will be mapped. 

The BPEL “Invoke” activity provides a two-way operation (request/reply) be-
tween a business process and a Web service participant. Its operational semantics will 
block the process till the participant replies back with an answer [5]. The BPEL meta-
model of Fig. 2(b) describes “Invoke” and its associated elements, as input and out-
put variables used by operations provided by participants.  

Within the destination metamodel (PN) “Invoke” does not have a clear counter-
part. The PN metamodel as previously discussed (please refer to preliminary section),  
consists of just few elements.  

Assuming that we want to extend the Technical Space M of a simple PN with the 
notion or concept α of “Invoke” operation. In order to satisfy the previously  
described characteristics, the extension metamodel M ⊕ α will be refined as the one 
depicted in Fig. 5(a) and its equivalent PN instance representation as the one depicted 
in Fig. 5(b).  

The introduced “Invoke” element represents a new concept, created as a self con-
tained element, allowing to be reused from other language constructs, such as struc-
tured activities to make full compact models. The “Invoke” element can be described 
as a specialised type of transition and can be treated as such [6]. It extends “BasicAc-
tivity” that is the common classifier with other similar activities such as “Receive”. 
More specifically, “Invoke” directly defines and contains two simple Transitions, 
three specialised places identified as “Wait”, “InputData” and “OutputData”, as 
well as two external arcs linking to another PN model, which represents the activity 
of a participant. In that respect, “Invoke” is a composite transition having internal  
transitions and states, represented by the three place types. The “Wait” place  
represents the situation (state), where the process waits for the participant’s answer, 



by remaining blocked. The “InputData” and “OutputData” places, together with 
their tokens, represent respectively the input and output variables used at actual “in” 
and “out” parameters of the operation. The operation call is actually represented by 
the first internal transition and its completion by the second one. The action can be  
considered as atomic, in the respect that it cannot be externally interfered and repre-
sents one unit of action. Finally, the two arcs, one outgoing and one incoming, repre-
sent the interaction of our process with its external participant. 

The PN model of Fig. 5(b) depicts an instantiation of its metamodel for performing 
the “Invoke” operation as previously described. 
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Fig. 5. A PN metamodel extension (a) and instance representation (b) for “invoke” 

The M ⊕ α metamodel extension is now a M refinement defining an “Invoke” ele-
ment and making the resulting PN metamodel to be mapped effectively with its corre-
sponding BPEL “Invoke” elements. For example, Fig. 2 depicts the BPEL relevant 
metamodel elements. The BPEL metamodel similar to PNs, has an “Invoke” element 
that is associated with “InputVariable” and “OutputVariable”, a WSDL “Opera-
tion” provided by a “PartnerLink” and representing the actual participant. In that 
way mappings across the two metamodels can be provided easily, defining the notion 
of “Invoke” and establishing a bridge of collaboration and mapping. 

Additionally, the PN metamodel extension, representing the BPEL “Invoke” op-
eration, is capable of modelling its dynamic and operational capabilities. So, it justi-
fies our initial aim to use it for analysis and simulation purposes. For example, the 
internal states and transitions of “Invoke” (see Fig. 5) can be mapped to important 
(run time) aspects, such as reading the operation’s parameter variables and writing the 
returned results to internal variables. Thus, they allow the simulation and analysis of 
our BPEL models by specialised tools, within the PN Space. 

To decompose the “Invoke” notion, we have to represent its context with the  
original PN metamodel elements such as PN, T, P, TPArc and PTArc (refer to pre-
liminary section). In that case we have to rewrite the metamodel and assist the seman-
tic interpretation of its decomposed elements: 

Metamodel Decomposition:  If the “Invoke” transition is removed, then we have 
to deal with its internal content, which in this case is defined by two simple transi-
tions, three specialised places and two arcs. An element may also have internal de-
fined OCL statements, which need to be transferred equivalently as well. As “In-



voke” is of a type of transition the closer element is a “Transition”. However, the 
notion of “Transition” cannot contain “Places” or other “Transitions” of any kind. 
Thus, if we preserve such relations we will have a significant violation of its funda-
mental semantics. As the “composition relation” serves the purpose to depict the 
constitute elements of an “Invoke” structure, which actually no longer exists (“In-
voke” is decomposed), then there is no reason to be retained.  

There are cases, where the appearance of “Invoke” can be identified as a pattern of 
loosely combined elements similar to grammars, which identify the tokens of a lan-
guage. Similarly, the specialised “Places” should also be decomposed. In this case 
the most relevant type or element is that of a “Place”. As a “Transition” is allowed 
to have associations with “Places” via “Arcs”, there is no problem for these relation-
ships to be preserved and modelled analogously, however this time they belong to the 
PN context and not to the “Invoke”.  

Semantic Interpretation: As the specialised elements such as “Wait” do not exist 
any longer, identifying and distinguishing them may not be an easy task, as now all 
are of the same type “Place”. However, we may address at some extent such prob-
lems, if we annotate the association ends with their type names or use the attribute 
“Label” (see Fig. 3) to mark their types. In this case, “Labels” are used as “classifi-
ers” to reveal the intention of being of a specific type. Analogously, OCL statements 
can be used to distinguish them, if the Space or Domain allows them. Alternatively, 
we may mark the modelling element with stereotypes, which effectively is similar to 
trying to make the metamodels profile-able. 
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Fig. 6. Decomposing Invoke PN metamodel elements regarding the original 

Finally, the mapping of a BPEL “Invoke” element to a decomposed PN extension 
depends largely on to how successively one has managed to decompose the context of 
the notion introduced and how easily this can be identified. If the previous require-
ments are met, then it is possible to establish a meaningful mapping. However, this 
time would be much more difficult to define and more complicated to distinguish 
than before.  



6   Discussion 

There are two major prerequisites to the success of our method. The first point is that, 
as depicted in Fig. 4, we must identify and map the primary and fundamental ele-
ments of our Technical Space N and then gradually build the more complicated ele-
ments on top of the already refined metamodels at the source. This is a “bottom up”  
modelling practice. In particular, there are different ways of refining a source meta-
model. For example the authors can model invoke in three different ways utilising 
suitable OCL statement. It seems possible to come up with scenarios that a model 
element of the source “can not” be added to destination to create further refinement, 
which can be interpreted as, two Technical Spaces are too far from each other. Fur-
ther research and case studies on the matter are required.  

The second major prerequisite is the ability to decompose, see Definition 1, a  
refined metamodel. Currently, it is not very clear to authors under what circumstances 
it is possible to decompose successively a metamodel. However, it seems crucial that 
the refinement does not change the semantics of the metamodel, i.e. the semantics of 
M, as a part of M ⊕ α must remain unchanged. For example, in PNs, constructs such 
as “Place” may have different semantic interpretations regarding the context which is 
used. For example, within an “Invoke” activity “Place” represent the “InputData” 
and “OutputData” for an operation, where in “Switch” activity they can represent 
the “PreCondition” and “PostCondition”. Therefore, when it is to decompose them 
we may loose semantic information, so the model elements may be misinterpreted 
during instantiation and mapping from tools. For that reason we have to device ways 
in order to incorporate such information to our original metamodels. This can take 
various forms from using OCL statements into labelling association ends or stereo-
typing.  Further research on the matter is required. 

7   Conclusion 

This paper presents a method of bridging two Technical Spaces, which can be ex-
pressed via metamodels. The presented method is based on the MDA and aims to 
address the scenarios that the metamodel of the destination Technical Space has less 
complex structure than the metamodel of the source Technical Space. To bridge the 
conceptual gap, the metamodel of the destination is refined by adding model elements 
corresponding to model elements of the source Technical Space. We have presented 
samples of application of the approach to bridge the gap between the Technical Space 
of BPEL and PN. 
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