
An Architecture for Automated QoS Resolution in Wireless Systems

Behzad Bordbar1 and Rachid Anane2
1School of Computer Science, University of Birmingham, UK.

B.Bordbar@cs.bham.ac.uk
2School of Mathematical and Information Sciences, Coventry University, UK.

R.Anane@coventry.ac.uk

Abstract: The pervasive nature of mobile and wireless
systems has led to increased concerns over Quality of
Service (QoS). In the prevailing models for QoS
management, QoS resolution is achieved by table look-up, a
feature that makes table access the focal point of activity.
This approach suffers from two limitations, namely, an
inability to deal with unexpected QoS requests, and a
reliance on human intervention for update of information.
This paper is concerned with the presentation of an
architecture for supporting automated QoS resolution
through verification. The architecture is modular and the
QoS resolution function is performed by a subsidiary
component, which combines knowledge base with resolution
mechanism. This separation of concerns and the support for
flexible QoS management has the advantage of
accommodating new forms of QoS requests, and of
minimising human intervention. An implementation of the
QoS resolution architecture is presented in terms of Timed
Automata. In addition, a framework is also introduced for
extending QoS architectures such as ITSUMO.

1.Introduction

The pervasive nature of mobile systems has given
rise to an increasing interest in Quality of Service. The
provision and guarantee of an acceptable level of
Quality Of Service (QoS) is seen as critical for a
successful integration of wireless systems into IP
network protocol [6][7][12].

Recent efforts to address these issues have focused
on QoS management in distributed systems. In addition
to the allocation of QoS resources, the main function
of QoS management consists in accepting a QoS
request and determining whether the request can be
satisfied. Architectural support for such a fundamental
function requires the setting up of a repository, where
information about system state, QoS commitments,
resources and their parameters can be stored and
accessed, according to a pre-defined classification.
QoS resolution is effectively achieved by table look-
up, thus making table access the focal point of activity
of QoS management. This tight coupling between QoS
management and repository is a feature of many
architectural models for QoS management. The
Wireless Quality Enhancer (WQE) [12], for example,
makes use of a pre-defined database for holding QoS
information. The database is queried when a QoS
request is made. This results in the identification of a

suitable policy that will meet the QoS requirements.
On receiving an unclassified QoS query, however,
WQE throws an exception and adopts a “best effort”
policy (see page 502 of [12]). This approach to QoS
specification and resolution, although relatively easy to
implement, presents some limitations, not least because
of the static nature of the database. It is widely
accepted that the inherent characteristics of mobiles
systems and their usage are bound to give rise to
unexpected requests, and therefore to unclassified
types of QoS statement. In addition to its inability to
accommodate new QoS parameters, the table/database
needs to be maintained and updated manually.
This paper is concerned with the presentation of an
architecture for supporting automated QoS resolution.
The task for QoS resolution is delegated to component
module, called the QoS Evaluation Module (QEM).
This architecture combines knowledge base with
resolution mechanism as a means of automating the
verification of QoS requests. This approach presents
many advantages. It is flexible and is likely to identify
various combinations of resources as potential
candidates for QoS request resolution. It is also able to
accommodate new forms of requests, through its
resolution mechanism. One major consequence of this
approach is the subsequent reduction in human
intervention in updating QoS information. As an
illustration of the proposed approach, the QoS
resolution architecture is combined with the QoS
manager of the ITSUMO QoS Architecture [6][7] as a
way of implementing a QoS management system.
The remainder of the paper is organized as follows.
Section 2 introduces QoS management in Wireless
systems and identifies the main requirements for QoS
resolution. Section 3 describes the QoS resolution
architectural components, and presents an
implementation in terms of Timed Automata. Section 4
presents an XML based implementation of a QoS
management system through an extension of the
ITSUMO architecture [6][7] with the QoS resolution
component. Section 5 gives a brief evaluation of the
work with pointers for further work, and Section 6
concludes the paper

mailto:B.Bordbar@cs.bham.ac.uk

2. QoS in wireless systems
Quality of Service (QoS) is a general term used to

differentiate between the performance aspects of a
distributed system and its functional aspects. In
general, since the function of the components of a
system may be subject to delay or error, the service
provided by the overall system is determined by the
quality of the provision of such functions. There are
various classes of QoS covered in the literature, with
attempts at reconciling them. For example, [15]
presents an attempt to standardise such views and
create a UML profile, a dialect of UML, for the
specification of QoS. Since the focus of this paper is
on Timeliness properties in multimedia systems [4][5]
such as Throughput, Latency and Jitter, it is necessary
to define these terms. Throughput is the total number
of signals per second. For example, if the signal
represents dispatch of a media frames, a throughput of
k frames means there are k frames dispatched per
second. The latency between two signals is the time
between the two signals such as the latency between
the generation and final display of a frame. Jitter, also
known as non-anchored jitter, is the variation of
nominal latency suffered by the successive occurrence
of the same signal. A formal definition of the
Timeliness QoS properties is given in [4][5].

2.1 QoS management

This section introduces a motivational scenario
involving a simple wireless system consisting of two
laptops. Consider the system in Figure 1, in which an
application running on Laptop1 dispatches video
frames to Laptop2 via Access Point AP1, the Internet
and Access Point AP2. An application running on
Laptop2 subsequently displays the frames.

The specification of the behaviour of the system
can be modelled in different levels of abstraction. For
example, the specification of the creation of the frames
in the application running on Laptop1, may involve
either stating the encoding mechanism and
multiplexing operations, or simply modelling the
application as a source that produces frames
periodically.

To demonstrate the difference between the QoS
aspects and behavioural aspects, assume that the
system outlined in Figure 1 is a part of a video
conferencing system where the provision of a suitable
video display requires the system to present frames
arriving in Laptop2 with a jitter of an upper limit of 10
ms.

Laptop1 Laptop2

PWR

OK

WI C0
ACT/CH0

ACT/ CH1

WIC0
ACT/CH0

ACT/CH1

ETH
ACT

COL PWR

OK

WIC0
ACT/CH0

ACT/CH1

WIC0
ACT/CH0

ACT/CH1

ETH
ACT

COL

AP1 AP2

Internet

Network

Figure 1: A basic networked system

A jitter above that value may result in low quality
video display. Such a constraint is purely performance
related and is independent of the behaviour of the
system. In general, the effect of QoS statement is to
impose restrictions on the behaviour of the system, by
requesting a restricted course of actions. Sometimes,
such restrictions are beyond the physical capabilities of
the system, not least because various components of
the system may be in competition for resources and for
a better QoS.

Most modern system architectures treat QoS as a
first class entity. For example, Quality Global Server
(QGS) in the ITSUMO QoS architecture [6][7] and
Wireless QoS Enhancer (WQE) in [12] are examples
of the such entity. This entity will be referred to as the
QoSManager1 of the system. Apart from deciding what
level of QoS can be allocated and assigned to each
component, a QoSManager keeps a record of the
availability of resources and their characteristics. A
QoSManager often interacts with another component,
the “Repository”, to obtain information to act upon. In
some cases, QoSManager is designed to take into
consideration various policies, which are appropriate
for the system (see page 502 of [12]).

2.2 QoS management requirements
 The implementation of the repository either by a
table or a relational database has the advantage of
speed and ease of implementation. Although querying
a database can be flexible the main constraint is that
results are returned in terms of pre-defined
classifications. This approach has also the
disadvantage of requiring constant human intervention
in the update of QoS information in the repository.
 The rapid development of new applications and the
creation of new software and hardware platforms with
higher performance, means that there is a clear need
for methods of updating automatically the repository
used by the QoS manager. The limitations of the

1 The term “QoSManager” has been widely used in the ODP, see

chapter 17 of [13].

traditional approach to QoS resolution identify two
fundamental requirements:
• The introduction of a scheme that allows a more

sophisticated approach to QoS resolution.
• A reduction in human intervention in the update

operation, by introducing schemes that can
accommodate unexpected QoS requests.

A knowledge base approach combined with a
resolution mechanism offers more scope for
interpretation in the verification of QoS requests and
can support an adaptive approach to the update of QoS
information.

3 A QoS resolution architecture

This section is concerned with the presentation of a
conceptual model of the architecture for automated
QoS resolution. It also introduces the necessary
formalisms for describing the different components
and the resolution process.

3.1 Architectural components

The core components that make up the architecture
are presented in Figure 2. Under this scheme the
QoSManager calls upon the QoS Evaluation Module
(QEM) to determine whether a QoS request can be
satisfied or not. The resolution process itself requires
three components. These are described below.

QoS Evaluation Module (QEM): On the arrival of a
new user, which requires a new QoS q, the
QoSManager interacts with a QEM to check if q is
achievable. In order to achieve this aim three aspects
of the system need to be considered:

• a model of the behaviour of the system
• a model that captures the QoS statement, and
• a mechanism that validates the QoS statement

against the behaviour of the system
•

Behavioural Model Repository (BMR): The study of
the feasibility of the system requires a behavioural
model of the system. BMR is a repository containing
various templates, representing the behaviour of parts
of a model such as communication channels, sources
and sinks. Such templates define building blocks, from
which the overall behaviour of the system can be
composed. QEM uses the templates in BMR to
instantiate different parts of a model, and creates a
behavioural model for the overall system.
QoS Model Repository (QMR): Similarly, QMR
consist of a set of templates that can be used to provide
formal models representing a QoS statement. QEM

uses the templates in the QMR to instantiate formal
representation of QoS aspects of the system.

QoSManager

QEM

BMR QMRQRE

Figure 2: An architecture for QoS resolution

QoS Resolution Engine (QRE): QRE operates on the
models generated by BMR and QMR, which represent
behaviour and QoS statement, respectively. A QRE is
a component that receives a model of the behaviour
and a QoS statement and checks the validity of the
QoS statement against the behaviour of the model. The
interaction between the different components of the
architecture is shown in Figure 3 in the following
sequence diagram [14]. Following the request to
check the validity of a QoS statement, QEM instructs
BMR and QMR to instantiate the behavioural model
(m:Model) and the QoS statement (q:QoS), which are
transferred to the QRE, represented by Input2AE(m)
and Input2AE(q). The QRE carries the check and
returns the result to QEM.

QEM BMR QMR QRE

check(q:QoS,m:Model)
Instantiate(m:Model)

Instantiate(q:QoS)

Input2AE(m)

Input2AE(q)

check

result
result

Figure 3 : QoS resolution

3.2 Implementation using Timed Automata
As the main aim of this approach is to automate the

process of QoS resolution, a formalism for describing
the behaviour of the system is required. There are
various formal languages for representing the
behaviour of the models such as various timed
extensions of Petri nets [11] and CSP [8]. The
architecture presented in the paper is independent of
such modelling languages.
Behaviour specification: The modelling of the
behaviour of the various parts of a system will be in
terms of Timed Automata [2]. Figure 4 depicts a

network of Timed Automata modelling the dispatch of
video frames from Latop1 dispatching video frames
via the Network to Laptop2 as follows:

• The application running on Laptop1 dispatches the
frames at the rate of k frames per sec.

• The latency between the dispatch from Laptop1
and arrival at Laptop2 is at most α.

Simplified behavioural models of Laptop1, Network
and Laptop2 are represented by three Timed Automata
TA_Laptop1, TA_Network and TA_Laptop2,
respectively. The start is from TA_Laptop1, which has
only one location (l1) and one transition marked with
the action called “L1Disptach!” representing the event
of the Dispatch of one signal from Laptop1. If the rest
of the information depicted in the Timed Automaton is
ignored, i.e. “X<=1/k”, “X ==1/k” and “X := 0”, then
this results in a conventional automaton (state
machine) which creates the following word,
(L1Disptach!)* = L1Disptach! L1Disptach! L1Disptach!….
which describes a periodic occurrence of the event
L1Disptach!. It is necessary to model the occurrence of
k signal in 1 sec, i.e. one occurrence of L1Disptach!
every 1/k sec. In order to achieve this, the concept of
conventional Automaton is extended by including
Clocks, which are non-negative real-valued variables.
The resulting Timed Automaton TA_Laptop1 has only
one clock X. Within each period of 1/k sec (X<=1/k),
the control location is stays in l1. At exactly “X
==1/k” an event L1Disptach! occurs and the time is
set to zero (X := 0) and a new cycle of waiting for a
period of 1/k sec starts. The Timed Automata
corresponding to Network and Laptop2 can be
explained similarly.
Concurrency and synchronization between Timed
Automata are modelled by a CCS [10] style of parallel
composition operators. For example, the event
L1Dispatch! and L1Dispatch? are two half actions of
the action marking the dispatch of a frame and must
occur at the same time. Similarly, L2Arrival! and
L2Arrival? are two halves of one action. Using half
action it is possible to compose a number of Timed
Automata to create a network of Timed Automata [9].

For example, the network of Timed Automata of
Figure 4 is said to be the parallel Composition of
TA_Laptop1, TA_Network and TA_Laptop2. This is
denoted by

TA_Laptop1 || TA_Network || TA_Laptop2.

l1 l2

l3

l4

TA_Laptop1 TA_Laptop2TA_Network

X<=1/k

X = =1/k
L1Dispatch!

X := 0

L1Dispatch?
Y := 0

Y <= alpha
L2Arrive!

Y := 0

Y <= alpha
L2Arrive?

Figure 4: A network of Timed Automata

The network of Timed Automata in Figure 4 gives
a high level view of the behaviour of the system
presented in .
QoS specification: The specification of QoS aspects
of system has received considerable attention For
example, [4] presents a method of verification of
Timeliness QoS properties such as jitter, throughput
and latency, which draws on the idea of Test Automata
[1][9]. Assume that A is a network of Timed Automata
representing the behaviour of the system. Suppose that
σ is a Timeliness properties such as jitter, throughput
and latency. Corresponding to σ, there is a network of
Timed Automata (or a single Timed Automaton) Tσ,
which has a location called failure such that, the
system modelled via A always satisfies σ if and only if
the parallel composition A || Tσ never reaches a state
with the location labelled as failure.

Consider the example in the previous section.
Suppose the application that is sending the data
dispatches video frames in the rate of 25 per sec i.e.
k=25. Moreover, assume that the network is such that
it takes α = 7 msec for the network to send each frames
from Laptop1 to Laptop2. Jitter is one of the main
factors for a good quality view of a video. Suppose
that we demand a jitter of 10 msec for the signal
arriving at Laptop2, i.e. we expect the time gap
between the two consecutive arrival of the frames to be
less than or equal to 10 msec (= 1/100 sec). The
question is whether the system is able to provide such
a QoS.

Figure 5 shows an instantiation of the QTA for
jitter. There is a clock Z that measures the time gap
between two occurrence of L2Arrive?. If the time gap
between two occurrence is more than β = 10 msec the
control location changes to failure. This signals a
violation of the jitter condition.

l1 l2

l3

l5

TA_Laptop1 QTA4JitterTA_Network

X<=1/25

X = =1/25
L1Dispatch!

X := 0

L1Dispatch?
Y := 0

Y <= 1/100
L2Arrive!

Y := 0

Y <= 1/100

L2Arrive?
Z:=0

l6

Failure

Z <= 7/1000
L2Arrive?

Z:=0
Z <= 7/1000

Z = = 7/1000

||||

Figure 5: A QTA for jitter verification

UPPAAL and QoS: The study the behaviour of the
system of Figure 5, can be performed with the help of
CASE tool such as the model checker UPPAAL [9]
Using UPPAAL it can be verified that the system
reaches a state which includes failure. This means that
with the current specification, it is possible for the
system to produce a set of frames with the jitter above
10. However, if another protocol can be used to speed
up the delivery of the signal such that the value of α
reduces to below 5 msec, it can be seen that the system
will not violate the jitter condition of 10. To do this we
must replace the value of 1/100 with 1/200 in the
Timed Automata TA-Network of Figure 5. Then, using
UPPAAL, it can be verified that failure is not
reachable.

4 A QoS management framework

The introduction of a new approach to QoS
management was motivated by the desire to automate
QoS resolution and widen its scope. Combined with a
QoS manager, the QoS resolution architecture can be
used to implement an enhanced QoS management
system. This approach can be applied to the ITSUMO
architecture by extending it.

 4.1 Extension of the ITSUMO architecture

The extension of the ITSUMO architecture
involves the incorporation a version of QEM. As
mentioned earlier, in the ITSUMO architecture the role
of QoSManager is performed by QGS. Within the
proposed architecture UPPAAL performs the role of
QoS Resolution Engine. In UPPAAL, models of the
system are stored as XML documents. Each UPPAAL
XML Model (UXM) consists of the following four
main components; Declaration, Templates,
Instantiation and System. Declaration is a part of the
(UXM), which includes various variables, constant etc.
Each UXM consists of one or more Templates. An
instantiated Timed Automaton is created from a
Template Timed Automaton by assigning values to the
parameters. The Instantiation part of a UMX includes
instantiation of one or more Timed Automata from the
templates in the Templates section of the UMX.

Finally, the System part of the UMX creates a parallel
composition of a number of instantiated Timed
Automata to create a network of Timed Automata.

4.2 An XML based implementation

The initial task for this implementation creates a
UMX with a Templates and Declaration part,
which includes templates for all possible types of
components in the system such as
• source and sink, similar to Laptop1 and Laptop2

of
• models of various types of buffer, decoder etc. [4]
• models of communication protocol [3]
• QoS Timed Automata for various types of QoS

such as Jitter, Throughput etc [4].
The above items are parametric representations and

by instantiation (assigning value to parameters) it is
possible to generate potentially an infinite number of
combinations of behavioural models. Let us refer to
this document as Main.xml.

 Figure 6 details the process of checking if a QoS
statement is achievable. The QoSManager (QGS in
ITSUMO) wants to check a QoS condition specified as
an xml file q.xml. Then QGS forwards q.xml and a
model of the system m.xml. to QEM. The model
specifies the current state of the system in terms of its
components. The rest of the process is supervised by
the QEM.

First, the QEM has to use m.xml to instantiate a
model of the system. To do so, the BMR modifies the
Instantiation and System part of the Main.xml. This is
denoted by Write_instatiation&system(m). Similarly,
the QEM uses the QMR to modify the Instantiation
and System part of the Main.xml, by first instantiating
suitable QoS Timed Automata (QTA) corresponding to
the QoS statement specified in q.xml and then
including them into the System part of the Main.xml.
After modifying the Main.xml, it can be uploaded to
UPPAAL and analyzed to check if the state failure of
the QTA is reachable. The result is returned to the
QEM. In case of Failure, the QoSManager is notified
that the QoS request is not achievable.

5. Evaluation and future work

This component-based design to QoS management
offers more flexibility than a monolithic scheme [6][7].
Components can be implemented using different
formalisms and interchanged while still providing the
core functionality of QoS resolution and QoS
allocation. This clear separation of concerns provides a
greater scope for a rapid configuration of the system, a
feature that contrasts with the use of a centralised,
static and passive repository. As the range of

applications of mobile systems and their capabilities
increases, an adaptive approach to QoS resolution
becomes imperative. The choice of an implementation
that combines knowledge base and resolution
mechanism represents a significant step towards
addressing these issues.

The implementation of the architecture is
independent of the formalism used for expressing
behaviour and QoS. QoS statements in this
implementation are expressed in terms of Timed
Automata. More specifically, the use of UPPAAL is
computationally demanding. For example, verification
of a system consisting of 7 components takes around
600 sec CPU time [4]. This is due to the state-
explosion problem. As a result, there is a clear scope
for investigating other formalisms and techniques,
such as temporal logic, in order to ensure better
performance.

QEM BMR QMR UPPAAL:QRE

check(q.xml,m.xml)
Instantiate(m.xml)

Instantiate(q.xml)

Write_instatiation&system(m)

Write_instatiation&system(q)

result

if Failure reached => False; else True

Main.xml
…
<declaration>
…
</declaration>
<template>
…
</template>
<instantiation>
…
</instantiation>
<system>
…
</system>

QGS:QOSManager

run

Figure 6: Extension of the ITSUMO architecture

The focus of the research at this stage is on a full

implementation in order to evaluate the architecture.

6. Conclusion

In this paper a generic architecture for enhanced
QoS provision was introduced as a means of
addressing the limitations of the prevailing model for
QoS management. The proposed architecture
incorporates knowledge base and resolution
mechanism, for flexible and adaptive QoS resolution,
in contrast to the limited scope of table look-up.
Closely linked to such an approach, is the introduction
of a framework that promotes the creation of enhanced
QoS management systems. This is achieved through
the extension of an existing QoS manager by a QoS
resolution architecture. Although a specification based
on Timed Automata was put forward as proof of

concept, there is, however, a need for the investigation
and evaluation of other formalisms and techniques in
the search for efficient implementations.

7. References

[1] L. Ageto, P. Bouyer, A. Burgueo and K. G. Larsen The

Power of Reachability Testing for Timed Automata, in
Theoretical Computer Science 300(1-3)411-475, 2003.

[2] R. Alur, D Dill A Theory of Timed Automata Journal of
Theoretical Computer Science. 126(2): 183-235 (1994)

[3] J Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K.
G. Larsen, F. Larsson, P. Pettersson, and Wang Yi
Automated Analysis of an Audio Control Protocol
Using Uppaal, J In Journal of Logic and Algebraic
Programming, volumes 52-53, pages 163-181, Holger
Hermanns and Joost-Pieter Katoen (eds.). July-August,
2002

[4] B. Bordbar and K. Okano, Verification of Timeliness
QoS Properties in Multimedia Systems, Proceeding of
5th International Conference on Formal Engineering
Methods, Lecture notes in Computer Science, pp 523-
540, 2003

[5] H. Bowman, G. Faconti, and M. Massink Specification
and verification of media constraints using UPPAAL, In
Proceedings of Design, Specification and Verification
of Interactive Systems '98, Markopoulos and P. Johnos,
editors, pp. 261--277 Springer, 1998.

[6] J.C. Chen, A. McAuley, A. Caro, S. Baba, Y. Ohba, P.
Ramanathan. A QoS Architecture for Future Wireless IP
Networks. In Twelfth IASTED International Conference
onParallel and Distributed Computing and Systems
(PDCS 2000), Las Vegas, NV, November 2000

[7] J. C. Chen, A. McAuley, V. Sarangan, S. Baba, and Y.
Ohba, Dynamic Service Negotiation Protocol (DSNP)
and Wireless DiffServ, ICC'02, New York city, April
2002

[8] C. A. R. Hoare Communicating Sequential Processes
Prentice Hall, 1985

[9] K. G. Larsen, Paul Pettersson and W. Yi UPPAAL in a
Nutshell Springer International Journal of Software
Tools for Technology, 1(1+2), 1997

[10] R. Milner Communication and Concurrency, Prentice
Hall, 1989

[11] J. L. Peterson, Petri net Theory and Modelling of
systems, Prentice Hall, 1981

[12] G. Pau, D. Maniezzo, S. Das, Y. Lim, J. Pyon, H. Yu,
M. Gerla, A Cross-Layer Framework for Wireless LAN
QoS Support", IEEE International Conference on
Information Technology Research and Education, ITRE
2003, Newark, New Jersey, USA, August 10-13, 2003.

[13] J. R. Putman Architecting with R-ODP Prentice Hall,
2001

[14] Unified Modelling Language: specification, available at
www.omg.com

[15] UML profile for QoS and Fault Tolerance, available at
[14] UPPAAL www.uppaal.com

http://www.omg.com/

	1.Introduction
	2. QoS in wireless systems
	2.1 QoS management
	2.2 QoS management requirements

	3 A QoS resolution architecture
	3.1 Architectural components
	3.2 Implementation using Timed Automata

	4 A QoS management framework
	4.1 Extension of the ITSUMO architecture
	4.2 An XML based implementation

	5. Evaluation and future work
	6. Conclusion
	7. References

