
D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 43–58, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model Transformation from OWL-S to BPEL Via
SiTra

Behzad Bordbar1, Gareth Howells2, Michael Evans1, and Athanasios Staikopoulos1

1 University of Birmingham, UK
{B.Bordbar,A.Staikopoulos,M.E.Evans}@cs.bham.ac.uk

2 University of Kent, UK
W.G.J.Howells@kent.ac.uk

Abstract. Although there are a large number of academic and industrial model
transformation frameworks available, allowing specification, implementation,
maintenance and documentation of model transformations which provide a rich
set of functionalities, such tools are inherently complex. In particular, for a
newcomer to the field of model transformation and for researchers who are only
interested in experimentation and creation of prototypes, the steep learning
curve is a significant hurdle. There is thus a clear scope for the creation of
model transformation frameworks that are both easy to use and able to conduct
complex transformations. Simple Transformer (SiTra) is a model transforma-
tion framework, which was originally designed to be a “way in” for the experi-
enced programmer, to start using the concepts of model transformation, and for
academic researchers to experiment with the creation of prototypes of imple-
mentation of their transformations. The underlying idea of SiTra is to put less
focus on the specification language, maintenance and documentation aspects of
transformation, by focusing on the implementation of transformations. SiTra
makes use of Java for the specification of transformations. This alleviates the
need to learn a new specification language or get to grips with a new tool and
development environment. SiTra is equipped with a strong transformation en-
gine to execute the transformation behind the scenes. This paper reports on a
case study involving transformations from Ontology Web Language-Service
(OWL-S) to Business Process Execution Language (BPEL), demonstrating that
SiTra can also be used to handle complex and large transformations.

1 Introduction

Model Driven Development (MDD) [1] is an emerging technology for software de-
velopment, promoting the role of models and automatic creation of code by prede-
fined model transformations. A variant of MDD suggested by the Object Management
Group (OMG) is the Model Driven Architecture (MDA) [2, 3]. MDA provides an
enabling infrastructure with standard specifications facilitating the definition and
implementation of model transformations between Meta Object Facility (MOF) [4]
compliant languages. The application of model transformations is expected to im-
prove the software development process in many ways, as it enhances productivity,
portability, interoperability, ease of use, maintenance and reusability [3, 5, 6].

44 B. Bordbar et al.

At the moment, there are many industrial [7-9] and academic [10, 11] model trans-
formation tools available; for a detailed list refer to [12]. These tools bring enormous
benefit to the developers. For example, they include repository of models for reuse.
They also make use of high-level languages for defining transformation. For example,
[7], [10] and [11] makes use of, scripting language JPython, ATL and Kermeta, re-
spectively. However, model transformation frameworks are complex. For a newcomer
to the field of model transformation learning a framework is a serious impediment.
Simple Transformer (SiTra) [13] is a model transformation framework, which is de-
signed to be a “way in” for experienced programmers, to start using the concepts of
model transformation, and for academic researchers to experiment with the creation
of prototypes of implementation of their transformations. SiTra, which is written in
Java, also makes use of Java for specification of transformations. This alleviates the
need to learn a new specification language or getting to grips with a new tool and
development environment.

SiTra has been successfully applied to the bench mark example of [14] and is do-
cumented in [13]. In this paper, we shall further evaluate SiTra by conducting a case
study involving transformations from Ontology Web Language for Services (OWL-S)
[15] to Business Process Execution Language (BPEL) [16]. A copy of SiTra is avail-
able for free download at [17].

The structure of the paper is as follows: Section 2 provides an overview of the Web
service and model transformation in the context of Web services. Section 3 briefly
describes SiTra and its architecture. Section 4 presents the case study of transforma-
tion from OWL-S to BPEL and discusses various outcomes of the study. Finally,
section 5 presents a conclusion and draws a summary.

2 Preliminaries

This section describes introductory notions used in this paper. Firstly, a short review
of Web Service languages such as WSDL, BPEL and OWL-S will be presented. Sec-
ondly, a brief review of existing research on model transformation for Web Services
will be given.

2.1 Web Services

Web service technology [18] promises to provide a new level of functionality on top
of the existing Web infrastructure, allowing applications to share data and to benefit
from the capabilities of other applications, independent of the platforms and lan-
guages used to build them. The technology aims to facilitate the composition of a
number of Web services in order to create a single service with richer functionality
than any of the constituent services. In order to achieve this, the creation of languages
for describing services and their interactions has received considerable attention. This
paper deals with three such languages; Web Service Description Language (WSDL),
Business Process Execution Language (BPEL) and Ontology Web Language – Ser-
vices (OWL-S).

 Model Transformation from OWL-S to BPEL Via SiTra 45

2.1.1 Web Service Description Language
The Web Service Description Language (WSDL) [19] is an XML language for de-
scribing Web services, particularly as service interfaces. The description separates the
abstracted functionality offered by a service from the concrete details of how and
where that functionality is offered. Its role and purpose can be compared to that of
IDLs in conventional middleware languages such as CORBA.

A WSDL file has an abstract part, which specifies information such as signatures
of operations offered by the service, the messages that are exchanged between pro-
viders and requestors as input, output and fault parameters of these operations. The
concrete part of a WSDL file defines the protocol bindings and location of such
services [20].

A WSDL file provides all the necessary information to assess and invoke the op-
erations of a service. However, WSDL files do not provide any additional (semantic)
information indicating, for example, “what the service does” and “how it is to be
employed”. To include such information, languages such as OWL-S are used to cap-
ture the semantics of the Web service. WSDL documents provide a mechanism for
expressing simple behaviour. However, describing complex interactions, such as
business processes, require using other languages such as BPEL or WSCI [21].

2.1.2 Business Process Execution Language
The Business Process Execution Language for Web Services (BPEL) [16] provides an
XML based-language for the formal specification of business processes and business
interaction protocols. A BPEL file makes use of the WSDL file of involving services.
Consequently, BPEL can be seen as an extension of WSDL [19] that provides basic
one-way or request-response mechanisms for the Web service inter-communication.
BPEL is designed for expressing processes in detail, allowing composition and coor-
dination of activities such as for sequential, parallel, iterative, conditional, compensa-
tional and fault execution [21]. Hence, business process expressing interaction
between services can be specified elegantly.

2.1.3 Ontology Web Language for Services
The Ontology Web Language for Services (OWL-S) [15] is also an XML based lan-
guage, which facilitates capability-driven description of Web Services. It supports
automatic Web service discovery, invocation, composition and interoperation based
on the semantic descriptions of Web services (OWL Services Coalition [15]). An
OWL-S service profile allows us to specify “who provides the service” and “what
function is computed by the service”. In addition, the profile contains an expandable
list of service parameters, allowing the characteristics of the service to be described in
detail.

OWL-S differs from other Web service languages (for example WSDL), which of-
fers descriptions of the syntax of the messages used in accessing a service, exposing
the operations and protocols it utilizes. An OWL-S service description permits the
inclusion of machine-readable information, which describes the service's capabilities
in terms of the function(s) it performs, the preconditions and effects of these functions

46 B. Bordbar et al.

and how the service relates to other Web services. These features support the repre-
sentation of Web services on the (still somewhat conceptual) Semantic Web [22]. The
computer-interpretable representation of a Web service that OWL-S enables provides
the potential to develop software that can automatically create composite web services
by selecting and composing existing services. Such software could represent savings
in the time and effort expended by Web users in searching for appropriate services
along with providing a method of selecting Web services which is much more effi-
cient and effective than searching using existing engines.

In addition, OWL-S allows the definition of composite processes [15] which can
be built from the basic atomic processes (grounded in WSDL) of a number of differ-
ent services. Composite processes can be defined dynamically by an agent or stati-
cally as part of the description of some virtual Web service. They are realised by
executing atomic processes in a structured way (in a predefined sequence, for exam-
ple, or concurrently) and by passing the results of executions as inputs to other atomic
processes.

2.2 Model Transformation in Web Services

Recently, application of model transformation techniques to the development of Web
services has received considerable attention [23-26], among others. Bézivin et al [23]
use the ATL [10] transformation language and ATLAS engine to generate Platform
Specific models from UML class and EDOC models to three different target plat-
forms namely Java, Web Services and Java Web Service Developer Pack (JWSDP).
UML Activity diagrams are well suited for platform independent modeling of busi-
ness processes. Transformation of such models to BPEL and WSCI are studied in [27]
[25] and WSCI [28], respectively. Koehler et al [29] investigates model driven trans-
formations based on graph-theoretic methods to define the mapping among models
possessing formal semantics, which in turn are used to analyze and synthesize the
business protocol specifications. Finally, [30] uses the YATL transformation language
to map and apply transformations from EDOC models to Web services.

The focus of this paper is on model transformation techniques and challenges.
However, another important focus for research is to develop tools for the transforma-
tion of OWL-S specifications to BPEL specifications; as these two languages provide
complimentary capabilities. BPEL is well supported by the software vendors as the
favorite choice for the execution of the web services. BPEL is not designed for ad-
dressing the challenges of the semantic web. On the other hand, OWL-S is not de-
signed for execution. Mandell and McIlraith [31] provide an interesting investigation
into this area, by attempting to adapt BPEL4WS for the Semantic Web. This paper
presents an alternative approach by transferring OWL-S models to BPEL, so models
of the semantics of the system are expressed in OWL-S the execution is conducted in
BPEL, which provides better tool and support.

3 Simple Transformer (SiTra)

There are many industrial and academic case tools supporting model transfor-
mation [7-11]. It poses as a question: why to attempt introducing yet another model

 Model Transformation from OWL-S to BPEL Via SiTra 47

transformation framework? To answer this, it is crucial to notice that a model trans-
formation consists of two major steps. The first step is to define and specify the model
transformation. This is often a complex task involving significant domain knowledge
and understanding of both the source and target model domains. For example, defin-
ing a model transformation from OWL-S to BPEL, not only requires understanding of
both languages, but also requires an analytic approach to discover the correct mapping
between the model elements. The second step is to execute the transformation. Cur-
rently, elegant execution of the specifications is still a research issue in many cases
and may require significant manual intervention in order to provide a correct imple-
mentation. In a large project, it is possible to divide the specification and implementa-
tion between two different groups of people who have relevant skills. In the case of
smaller groups of developers, newcomers to MDD, and budding academic research-
ers, the combined effort involved in becoming an expert in the two sets of skills de-
scribed above is overwhelming. In particular, the steep learning curve associated with
current MDD tools is an inhibitive factor in the adoption of MDD by even very ex-
perienced programmers. SiTra aims to address the above issues by proposing a simple
Java library for supporting a programming approach to writing transformations, based
on the following requirements:

Use of Java for writing transformations: This relinquishes the programmer from
learning a new language for the specification of transformations
Minimal framework: To avoid the overhead of learning a new Java library, the
presented method has a very small and simple API

3.1 Introducing SiTra

The architecture of SiTra is depicted in Fig.1. A transformation specifies how ele-
ments of the Metamodel of the source are mapped into the elements of the Metamodel
of the destination. A transformation framework, creates a destination model, which is
an instance of the destination metamodel, from a source model, which is an instance
of the source metamodel. Because, SiTra uses Java, as depicted in the picture, Meta-
models of the source/destination and the model of the source must be created in Java.
These could be provided using a Java implementation of a MOF repository, or more
usually by providing an implementation of the metamodel using Java classes. For
smaller models these can be created manually. For larger models one of numerous
existing UML to Java tools could be used.

As depicted in Fig.1, the transformation in SiTra is provided by a number of Java
classes, each of which corresponds to a model transformation rule. These classes
must implement the SiTra interface Rule. The SiTra class and corresponding interface
Transform are used to execute the defined transformation on a particular source mod-
el. The two simple interfaces for supporting the implementation of transformation
rules in Java are shown below. The Rule interfaces should be implemented for each
transformation rule written. The Transformer interface is implemented by the trans-
formation algorithm class, and is made available to the rule classes

48 B. Bordbar et al.

interface Rule<S,T> {
 boolean check(S source);
 T build(S source, Transformer t);
 void setProperties(T target, S source, Transformer t);
}
interface Transformer {
 Object transform(Object source);
 List<Object> transformAll(List<Object> sourceObjects);
 <S,T> T transform(Class<Rule<S,T>> ruleType, S source);
 <S,T> List<T> transformAll(Class<Rule<S,T>> ruleType,List<S> source);
}

3.2 Rules

A transformation problem is split up into multiple rules; the SiTra library facilitates
this, using the Rule interface. A class that implements this interface should be written
for each of the rules in the transformation. The methods of this interface are described
as follows:

1. The implementation of the check method should return a value of true if the rule is
applicable to the source object. This is particularly important if multiple rules are
applicable for objects of the same type. This method is used to distinguish which of
multiple rules should be applied by the transformer.

2. The build method should construct a target object that the source object is to be
mapped to. A recursive chain of rules must not be invoked within this method.

3. The setProperties method is used for setting properties of the target object (attrib-
utes or links to other objects). Setting the properties is split from constructing the
target so that recursive calling of rules is possible when setting properties.

Fig. 1. An outline of the SiTra framework

 Model Transformation from OWL-S to BPEL Via SiTra 49

If it is impossible to distinguish between multiple rules using the check method,
explicit rule invocation must be used to transform objects for which multiple rules
apply. Objects that are derived from properties of the source object should be con-
verted to objects for properties of the target object by calling the transform method on
the transformer. However, the power transformation algorithm of SiTra manages the
details of the transformation automatically. For example, it keeps the track of the
objects, which are already mapped.

3.3 Transformer

To instantiate a SiTra transformation, the rule classes must be added to an instance of
the SimpleTransformer class. The transformation can then be executed by calling the
transform method with the root object(s) of the source model. An abstraction of the
transformation algorithm is as follows:

FOR EACH rule
 IF rule.check(source) THEN
 IF notRecorded(source, rule) THEN
 target = rule.build(source, this)
 record(source, target, rule)

 rule.setProperties(source, this)

The algorithm runs through all rules in order to check which rule can be applied to
a source objects. We are only interested in the source object which are not trans-
formed yet, this is checked via the method notRecorded(). For such objects, the me-
thod build is applied which results in the creation of a target object. To ensure that a
source object is not transformed more than once, the method record captures the cor-
respondence between the source, target and rule. Finally, the method setProperties is
invoked to assign further properties and attributes to the source object.

4 Case Study: Transformation from OWL-S to BPEL

In this section we shall present our case study of applying SiTra to transformation of
the models from OWL-S to BPEL. We shall start by presenting metamodels of
OWL-S and BPEL in the next two sections.

4.1 Metamodel of OWL-S

Fig.2 presents a metamodel of the OWL-S following [15]. We shall explain some of
the model elements. An OWL-S process is a specification of the ways a client may
interact with a service. A process gives a detailed perspective on how to interact with
a service. Fig.2 depicts various attributes of OWL-S process. For example, a process
will not execute properly unless its preconditions are true. Preconditions are logical
statement representing Conditions. The attribute has Precondition specifies one of the
preconditions of the service and ranges over a Precondition instance defined accord-
ing to the schema in the Process ontology.

An Atomicprocess is a (process) description of a service that expects one (possibly
complex) message and returns one (possibly complex) message in response. In con-
trast, a composite process (not depicted in Fig.2, due to space limitations) is one that
maintains some state; each message the client sends advances it through the process.

50 B. Bordbar et al.

OWL-S makes use of WsdlGrounding for referring to WSDL constructs. Each
WsdlGrounding instance, in turn, contains a list of WsdlAtomicProcessGrounding
instances. A WsdlAtomicProcessGrounding instance refers to specific elements with-
in the WSDL specification, using the properties such as wsdlService, wsdlPort,
wsdlInputMessage as depicted in Fig.2. For example, wsdlService, wsdlPort present
the URI of a WSDL service (or port) that offers the given operation. For further de-
tails on OWL-S we refer the reader to [15].

Fig. 2. A portion of OWL-S metamodel

4.2 Metamodel for BPEL

The BPEL specification can be represented by an equivalent MOF compliant meta-
model, as the one depicted in Fig.3. As such, the metamodel specifies a number of

Fig. 3. A (partial) BPEL Metamodel

 Model Transformation from OWL-S to BPEL Via SiTra 51

model elements that are equivalent to XML constructs, defining various activity
types, which allow sequential, parallel, conditional or repetitive processing of actions.
In addition it defines a number of other features, such as variables, execution context
(scope) and exceptions, allowing the creation of complicated and realistic processes,
performing various invocation styles and data manipulations in an algorithmic man-
ner. For description of BPEL metamodel see [23] and [27].

4.3 Mapping of Elements

The following tables depict the correspondence between some of the model elements
of OWL-S processes. For example, AtomicProcess in OWL-S, the element represent-
ing the most basic class of Web service processes, is mapped to a BPEL Process. The
mapping also requires the creation of a number of other BPEL and WSDL elements
so that the meaning of the output model corresponds entirely to that of the input. In
addition to the main Process element, a PortType, an Operation, a PartnerLinkType,
an Invoke and a Role must be created. The properties of these model elements must
correspond to those of the source OWL-S AtomicProcess. From the collection of
inputs belonging to an AtomicProcess, a single BPEL Input can be created, along with
an associated Message and Variable. Each of the OWL-S Inputs corresponds to a
single Part in the BPEL Message. OWL-S outputs can be converted to BPEL in an
identical manner.

There are several examples in the table in which the OWL-S Process model ele-
ment does not map to anything in BPEL or WSDL. For example, OWL-S precondi-
tion and result elements are used to incorporate semantic information regarding the
change of state that occurs when the process is executed. Such notions have no
equivalent in BPEL, hence it is not possible to map them to BPEL. BPEL does not
support the representation of information of this nature, and thus no mapping exists
for these elements.

A key set of mappings from OWL-S to BPEL involves OWL-S ControlConstruct
elements. These, in general, correspond to BPEL Activity objects and are used to
describe the nature in which the components of a Web service process are executed.
Both OWL-S and BPEL provide similar constructs for this purpose. For example,
both languages contain a Sequence element, indicating that any processes contained
within should be executed strictly in order. An OWL-S Sequence maps directly to a
BPEL Sequence. Some of the other ControlConstructs map to BPEL elements in a
similar fashion. However, some of the OWL-S ControlConstructs have no corre-
sponding BPEL Activity. For example, the OWL-S AnyOrder construct indicates
that its component processes should all be executed, but in no particular order.
BPEL has no corresponding construct. It is possible, though, to model OWL-S An-
yOrder elements as BPEL Sequence elements without affecting the functionality of
the output BPEL model (this may affect the efficiency of its execution, however).
Therefore, the following table 1 shows the corresponding BPEL element for an
OWL-S AnyOrder to be a Sequence. A similar situation arises around OWL-S
Choice constructs.

52 B. Bordbar et al.

Table 1. Equivenlent mapping of OWL-S Process and BPEL elements

OWL-S Process BPEL

<Process> <Process>
<AtomicProcess> <Process> + <PortType> + <Operation> +

<PartnerLinkType> + <Role> + <invoke>
Operation + PortType names must be consis-
tent with the created WSDL file.
Note: require an <invoke> call within <Proc-
ess> tags and Operation + PortType names
must be consistent with the created WSDL
file.

[<input>]* (of Atomic Process) <input> + <message> + <variable>
<input> <part> (of the <message> created for all

inputs)
[<outputs>]* (of Atomic Process) <output> + <message> + <variable>
<output> <part> (of the <message> created for all

outputs).
<precondition> Note: This does not really map, due to com-

plicated representation of Preconditions in
OWL-S.

<result> Note: This contains semantic information
about the output of a process and does not
map usefully to any BPEL class. The <with-
Output> property will be covered by the
mappings described above.

<participant>, <SimpleProcess>,
<CompositeProcess>

<partner>

[<input>]* of Composite Process <message> + <variable>
<input> <part> (of the message created for all inputs)
[<outputs>]*of Composite Process <message> + <variable>
<output> <part> (of the message created for all out-

puts).
<ControlConstruct> <Activity> (See below)
<sequence> <sequence>
<Iterate>, <RepeatUntil>, <Re-
peatWhile>

<while>

<AnyOrder> Model as <sequence>
<Split> <flow>
<Choice> Model as <switch>
<IfThenElse> <switch>
<components> of a sequence,
split... etc.

See below...

 Model Transformation from OWL-S to BPEL Via SiTra 53

Table 1. {Continued}

<Binding> (as in <hasDataFrom>
property) toParam, valueSource,
theVar, fromProcess

<variable> (or part thereof) corresponding to
that generated for the given process and pa-
rameter.

<valueSpecifier>, <SplitJoin>,
<Perform>, <Produce>

-

The OWL-S Profile [15] of a Web service contains semantic information regarding
what functionality the service offers, who is likely to use the service and what proper-
ties it shares with other similar services. BPEL provides no means of representing
such information and therefore, there is no mapping between the OWL-S Profile and
BPEL. However, some of the elements contained in the OWL-S Profile can be con-
verted into useful human-readable information. Where possible, the transformation
between OWL-S and BPEL should support the conversion into text of such elements
along with their inclusion in the output BPEL file(s). The following table 2 shows
examples where text conversion may be useful.

Table 2. Equivenlent mapping of OWL-S Profile and BPEL elements

OWL-S Profile BPEL

<input>, <output> See Process Section
<profile>, serviceName, textDescription
contactInformation

Incorporate into process name(s).
Include as plain text.

<precondition>, <result>, <parameter>,
<ServiceParameter>, <ServiceCategory>,
<ServiceClassification>, <ServiceProduct>.

-

The Grounding section [15] of an OWL-S service model contains pointers to a
WSDL file in which details of how to access the real Web service processes that make
up an OWL-S process are given. The mapping between the OWL-S Grounding and
WSDL is, therefore, trivial, with the names of OWL-S elements corresponding di-
rectly to elements in BPEL. The following table 3 shows this mapping in full.

Table 3. Equivenlent mapping of OWL-S Grounding and WSDL/BPEL elements

OWL-S (Grounding) WSDL/BPEL

<owlsProcess> Mapping to BPEL dealt with by Process
Model.

<wsdlOperation> <wsdl:Operation>
URI: wsdlPortType <wsdl:PortType>
URI: wsdlService <wsdl:Service>
URI: wsdlPort <wsdl:Port>

54 B. Bordbar et al.

Table 3. {Continued}

URI: wsdlInputMessage <wsdl:Message>
<wsdlGrounding>, <wsdlInputMes-
sageMap>, URI:owlsParameter,
URI: xsltTransformation

-

URI: wsdlMessagePart <wsdl:Part>
URI: wsdlVersion (<wsdl version=”…”>)
URI: wsdlDocument Name of wsdl doc/target namespace.

4.4 Model Transformation

This section will describe examples of transformation from OWL-S to BPEL. For an
elaborate list, see [32]. Consider transforming the model element WsdlAtomicProcess-
Grounding (for short WAPG), described briefly in section 4.1 to Business Process (for
short BPELProcess). The WAPG correspond to an operation related to a given atomic
process. The following snippet of code depicts a QVT-like rule for the transformation:

Fig. 4. QVT like rules

It can be seen that, the above snippet (Fig.4) contains two rules: The first rule,
WAPG2BPELProcess, is implemented by calling four rules described in lines 9-12
within the when clause. It uses two variables v1 and v2 that correspond to InputVari-
able and OutputVariable accordingly of the Invoke operation of the atomic process,
triggered by the PartnerLink p1. The snippet also describes the rule
WAPG2InputVariable, which maps and modifies the variable’s name and mes-
sageType. The equivalent SiTra code written in Java is depicted in Fig.5.

The QVT-like specification of the transformation rules map quite cleanly into Java
Classes that implements the SiTra Rule interface. The build method for each rule can be
seen to construct a new object of the appropriate target class. The check method in these
examples simply returns a value of true as we do not need to perform any specific
checks. The main work in these classes is performed within the setProperties method.
This method sets the properties of the newly constructed target object according to

 Model Transformation from OWL-S to BPEL Via SiTra 55

Fig. 5. SiTra Code

either: properties of the source object as can be seen in the WAPG2InputVariable rule;
or according to transformations of properties of the source object as illustrated by the
WAPG2BPELProcess rule.

5 Discussion and Related Work

One of the important lessons learned from this case study is that the difficulty of writ-
ing transformation is independent of the choice of transformation framework. As
explained in section 4.3, identifying correct mappings between elements is a challeng-
ing task, as it requires an understanding of the semantics of elements between two
different domains. In this paper, as the main focus is on exploring the limitations and
capabilities of SiTra, finding precise mapping of elements was of secondary impor-
tance. For example, we have decided to map the <AnyOrder> to <sequence>, forcing
an order on a set of events. However, after making this decision, SiTra has helped us
to write and implement the transformation in simple way. As result, the “difficulties
of identifying correct transformations (whatever the language) and difficulties of
writing transformation in SiTra (or other transformation frameworks) are different
things”. SiTra does not make the design part of creating a good set of transformation
simple, it just provide and easier route to the implementation. The primary purpose of
SiTra is to be simple. We strongly resisted the temptation of extending the trans-
former interface to overcome some limitations. We feel that this would violate our
primary objective of a “simple” transformation approach. This of course has a cost,
specifically that there are limitations in that we cannot tackle some of the more com-
plex transformation problems easily. For example, a general limitations regards a
situation in which there is more than one rule that should map to the same target ob-
ject. There is no way to determine, using SiTra, which of the rules should construct
the target object. It is necessary for the designer of the transformation to decide which
rule should construct the object, to avoid such non-determinisms.

Another limitation discovered as the result of conducting the case study is regarding
the recursive invocation of rules. We facilitate this by splitting the construction and set-
ting properties of a target object. However, there is no means to enforce this, and there
are potential design issues regarding situations in which some properties may need to be

56 B. Bordbar et al.

set in the build() method and some not (handled via setProperties() method). Identifying
advantages and disadvantages of each of the two is a subject for future studies.

The graph transformation approaches [33, 34] have many merits with respect to
formalism and a long history of use. However, they require a significant amount of
new material to be learnt for novice users and also require significant libraries and
development environments in terms of supporting framework. The source and target
models are expressed using the notion of graphs, where as with SiTra, the source and
target models are simple Java objects. The transformation specifications use similar
concepts of rules but require a new language to be learnt for writing them, rather than
the SiTra approach of using a programming language directly.

The declarative rule based approaches [35-37] suffer many of the same problems.
They all require a specific model transformation specification language to be leant. Te-
fkat [37] and ATL [36] are both supported by a transformation engine and environment
similar in concept to our Transformer implementation class (as the engine) and a Java
IDE (as the environment), although in a much more heavyweight manner than SiTra.

Our Java based environment does not of course provide any specific support for
debugging transformations; debugging has to be done via Java debugging tools,
which are sufficient, however do make debugging a little more complex as one has to
debug the rules via the internal workings of the Transformer class.

The imperative approaches such as [38] are perhaps the most similar to SiTra in
terms of the style of writing a transformation rule. However, they too, all expect the
transformation writer to learn a new language, and require use of a bespoke environ-
ment in which to execute the transformations.

As stated in the introduction, the SiTra library described in this paper is not in-
tended as a replacement for a full Model Transformation Framework or as a model
transformation specification language, rather it is intended as a “way in” for experi-
enced programmers to start using the concepts of transformations rules, without the
need to learn a new language, or get to grips with a new framework of tools and de-
velopment environments.

Given this purpose it can be argued that a comparison between SiTra and the exist-
ing transformation languages and frameworks is not really appropriate. However, it is
interesting to note what can and can’t be achieved with SiTra in relation to these other
approaches.

6 Conclusions

In Model Driven Development, a fundamental idea is to automatically transform models
from one modelling domain to another. Consequently, providing suitable model trans-
formation frameworks to support such transformations is of paramount importance. This
paper has reported on a case study involving transformation of models in OWL-S to
BPEL, via our lightweight modelling transformation framework called SiTra. SiTra uses
Java for the specification of the transformation rules, significantly eliminating the need
to learn any new model transformation languages or to master complex model transfor-
mation frameworks. SiTra masks the details of the execution from the user by providing
a powerful execution engine to implement the transformations. The paper has presented
a mapping of important model elements from OWL-S to BPEL and describes samples
of transformation rules written in QVT-like language and their equivalent in SiTra. The

 Model Transformation from OWL-S to BPEL Via SiTra 57

case study demonstrates that the method adopted by SiTra is powerful enough to handle
even large and complex transformations.

Some of the concepts in OWL-S have no corresponding concepts in BPEL. As a
result, elements modelling such concepts cannot be mapped to BPEL. Identifying
correct transformation between two modelling domain is a challenging task. Indeed,
we have come to the conclusion that model transformation frameworks, including
SiTra, do not make the design part of creating a good set of transformations simple.
However, SiTra provides an easier route to the implementation. This is crucial, as
easier routes to implementation open opportunities for better adoption of the MDD.

Acknowledgement

The authors wish to express their gratitude to David Akehurst for his assistance with
this project.

References

1. Stahl, T., Volter, M.: Model Driven Software Development; technology engineering man-
agement. Wiley, Chichester (2006)

2. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing.
OMG Press (2003)

3. MDA: Model Driven Architecture, Object Management Group (2005), www.omg.org/mda/
4. MOF: Meta Object Facility (MOF) 2.0 Core Spec.: Available (2004), at http://www.omg.org
5. Kleppe, A.W., Jos & Bast, W.: MDA Explained: The Model Driven Architecture–Practice

and Promise. Addison-Wesley, London, UK (2003)
6. Denno, P., Steves, M.P., Libes, D., Barkmeyer, E.J.: Model-Driven Integration Using Ex-

isting Models. In: IEEE Software, vol. 20, pp. 59–63. IEEE computer Society, Los Alami-
tos, CA (2003)

7. Arcstyler: Arcstyler 5.0- Interactive Objects (2005)
8. OptimalJ: Compuware Software coporation (2005)
9. XMF-Mosaic: xactium (2005), http://www.xactium.com/

10. ATLAS: ATLAS, Université de Nantes (2005)
11. kermeta: Triskell Metamodelling Kernel (2005)
12. Planetmde: Planet MDE (2005), http://www.planetmde.org
13. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier, K.D.: Si-

Tra: Simple Transformations in Java. ACM/IEEE 9TH International Conference on Model
Driven Engineering Languages and Systems, Vol. 4199, pp. 351–364 (2006)

14. Bezivin, J., Rumpe, B., Schurr, A., Tratt, L.: A bench mark for model tranformation, see
the Call for Papers at sosym.dcs.kcl.ac.uk/events/mtip05/long_cfp.pdf. Model Transforma-
tions in Practice Workshop, part of MoDELS 2005 (2005)

15. OWL-S: OWL Services Coalition (2004), OWL-S: Semantic Markup for Web Services.
(2004), http://www.daml.org/services/owl-s/1.1

16. BEA, IBM, Microsoft, SAP, A., Systems, S.: Business Process Execution Language for
Web Services. Version 1.1. (2003)

17. SiTra: Simple Transformer (SiTra): an MDE tool http://www.cs.bham.ac.uk/b̃xb/SiTra.html
18. W3C: Web Services Architecture (2004)
19. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services Description Lan-

guage (WSDL) Version 2.0, W3C (2006), http://www.w3.org/TR/wsdl20/

58 B. Bordbar et al.

20. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, Berlin (2004)
21. W3C: Web Service Choreography Interface (WSCI) 1.0, W3C Note (2002)
22. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new form of web content

that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American (2001)

23. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping Web Ser-
vices to Implementation Platforms. Technical report: 04.01. LINA, University of Nantes,
Nantes, France (2004)

24. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services.
In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F.,
Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) Conceptual Modeling for Advanced Appli-
cation Domains. LNCS, vol. 3289, Springer, Heidelberg (2004)

25. Gardner, T.: UML modelling of automated business processes with a mapping to BPEL4WS.
In: 17th European Conference on Object Oriented Programming (ECOOP) (2005)

26. Bordbar, B., Staikopoulos, A.: Modelling and Transfomation of Behavioural aspects of
Web Services. In: 3rd Workshop in Software Model Engineering - WiSME2004, UML
2004, Lisbon, Portugal (2004)

27. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services. Con-
ceptual Modelling for Advanced Application Domain (eCOMO), China, pp. 667–678 (2004)

28. Bordbar, B., Staikopoulos, A.: Modelling and transforming the behavioural aspects of web
services Third Workshop in Software Model Engineering (WiSME) at UML, Portugal (2004)

29. Koehler, J., Hauser, R., Kapoor, S., Wu, F.Y., Kumaran, S.: A model-driven transforma-
tion method. In: Seventh IEEE International Enterprise Distributed Object Computing
Conference, Brisbane, Australia, pp. 186–197 (2003)

30. Patrascoiu, O.: Mapping edoc to web services using yatl. Eighth IEEE International Enter-
prise Distributed Object Computing, pp. 289–297 (2004)

31. Mandell, D.J., McIlraith, S.A.: Adapting BPEL4WS for the semantic web: The bottom-up
approach to web service interoperation. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, Springer, Heidelberg (2003)

32. SiTra: Simple Transformer (SiTra): an MDE tool (2006)
33. Konigs, A.: Model Transformations with Tripple Graph Grammars. Model Transforma-

tions in Practice Workshop at MoDELS 2005. In: Briand, L.C., Williams, C. (eds.) MoD-
ELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

34. Taentzer, G., Ehrig, K., Guerra, E., Lara, J., Lengyel, L., Levendovszky, T., Prange, U.,
Varro, D., Varro-Gyapay, S.: Model Transformations by Graph Transformations: A Com-
parative Study. Model Transformations in Practice Workshop at MoDELS 2005. In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

35. Akehurst, D.H., Howells, W.G., McDonald-Maier, K.D.: Kent Model Transformation Lan-
guage. Model Transformations in Practice Workshop, part of MoDELS 2005. In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

36. Jouault, F., Kurtev, I.: Transforming Models with ATL Model Transformations in Practice
Workshop at MoDELS. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, Springer, Heidelberg (2005)

37. Lawley, M., Steel, J.: Practical Declarative Model Transformation With Tefkat. Model
Transformations in Practice Workshop at MoDELS 2005. In: Briand, L.C., Williams, C.
(eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

38. Kalnins, A., Celms, E., Sostaks, A.: Model Transformation Approach Based on MOLA.
Model Transformations in Practice Workshop at MoDELS 2005. In: Briand, L.C., Wil-
liams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

