
A Comparative Study of Metamodel Integration and
Interoperability in UML and Web Services

A. Staikopoulos and B. Bordbar

School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
{B.Bordbar, A.Staikopoulos}@cs.bham.ac.uk

Abstract. The application of MDA to Web services has recently received
considerable attention. Similar to UML diagrams, Web services are specialised
languages each one targeting a specific aspect and functionality of the system.
By using multiple languages, it is possible to specify complete integrated
models of the system, having structure, behaviour, communication and
coordination mechanisms. To benefit from MDA, Web service languages have
to be represented as UML metamodels. In order to provide an overall view of
the design and inter-operations of the system with models, it is crucial to
integrate their UML metamodels. In this paper, we shall conduct a comparative
study of the metamodel integration in Web services and UML. Drawing on the
lesson learnt from the integration of Web services, a method of integration of
UML metamodels will be presented, which facilitates model transformations
and supports interoperability, inter-navigability and consistency across the
integrated domains.

1 Introduction

The Model Driven Architecture (MDA) [9] is an emergent technology for software
development promoting the automatic creation of models and code, by model
transformations. The MDA aims to promote the role of models [7, 15], which are
abstractions of the physical system emphasizing particular qualities for a certain
purpose and are designed in a UML language or dialect. The model driven approach is
based on the metamodel foundation to: a) specify the syntax and semantics of models
and b) define the MDA mappings between source and target metamodels [12, 13].

Web services are self-contained, modular software applications that have open,
standard based, Internet-oriented interfaces [1]. In a bigger scale, they can be
considered as a set of interoperable technologies and standards, designed to support
the integration of several autonomous and heterogeneous systems. Web services are
particularly geared towards the Service Oriented Architecture (SOA) and paradigm [1,
16], which can be considered as a collection of services, coordinating and communi-
cating with each other to support a specific functionality or concept of a system. A
minimalist Web service architecture will contain the SOAP as the communication
protocol, the WSDL to describe service interfaces, the UDDI as a service registry and
the BPEL to specify executable processes for composite services [5]. If we consider

them within an overall architecture, for example SOA, they can specify service-
integrated systems, having structure, behaviour, communication and coordination
mechanisms.

The application of MDA to Web services is of major importance facilitating their
design and development via automation. Recently, designing and developing Web
services by MDA have received considerable attention [2, 3, 4, 11]. Despite the fact
that Web service models are inherently integrated and created from multiple standards
(languages represented as metamodels), their transformations are still considered in
isolation and not as part of a whole mechanism. To explain, a business process
expressed as a BPEL model has certain dependencies upon service interfaces
modelled as WSDL models. This issue should be taken into consideration in the de-
sign and transformation of the process. Similar or even more complicated is the case
when two processes communicate and exchange data, based on different formalisms
such as BPEL and WSCI [1, 5]. Currently, such Web service languages when repre-
sented by metamodels appear to be unrelated from each other. In order to obtain a
thorough view of the design and the inter-operations of our Web service models, we
need to integrate their metamodels.

In this paper, we are examining modelling interoperable Web service systems and
architectures, based on different but integrated metamodels. Specifying and formalis-
ing their model inter-relations and communication mechanisms is a very important
issue for Web services, as they need to collaborate with each other to achieve their
common targets. Thus, their capabilities are the result of integration and inter-
operability. As a result, the integrated metamodelling reflects their real accumulating
characteristics and capabilities.

In order, to aid understanding, we need to clarify the terms of metamodel integra-
tion and interoperability, used throughout the paper. The descriptions given below are
based upon well-established concepts in the field of computing.

• Integration: The creation of links between previously separated computer systems,

applications, services or processes.
• Interoperability: The ability to exchange. We need both to a) establish the mecha-

nism to exchange (such as flow of information) and b) define how to extract or un-
derstand the information in order to process them.

Finally, the study is broken down into the following sections: Section 2 elucidates

the shortcomings of creating isolated metamodels and highlights the advantages of
providing integration and interoperability among the UML metamodels. Section 3
investigates the UML and Web service mechanisms, supporting integration, composi-
tion and interoperability for their models and schemas respectively. Section 4
compares and analyses them in order to assess their capabilities. Drawing on the les-
sons learnt, Section 5 presents a method of integrating Web service metamodels, with
examples inspired from the Web service domain and their binding mechanism. Section
6 provides an overview of other approaches and various discussion points. Finally,
Section 7 presents the conclusions made and summarises the benefits of the approach
adopted by the authors.

2 Importance and Benefits

There are cases, where a domain (a subject area, having peculiar set of problems and
concepts) [6] such as the Web service domain, may be composed from a number of
other sub-domains for example BPEL (process-A), WSCI (process-B), WSDL (de-
scription) and SOAP (messaging) sub-domains. As a result, the Web service domain
provides the composite or integrated metamodel, describing the overall domain and
architecture of a potential system. Obtaining a thorough view of a system, by relating
its inter-components is one reason for integrating the metamodels.

Moreover, the (sub) domains have to be interoperable, both horizontally such as
processes with processes and vertically such as processes with descriptions and
messaging, in order to function and interoperate correctly. Thus, in the first case we
have to ensure the definition of meaningful sequence of actions and in the latter to use
comprehensive communicative, messaging and transport mechanisms. This is the
second reason to equip our metamodels with interoperability mechanisms.

In terms of development, integration and interoperability allows MDA to perform
upon a combination of models, with well-established inter-relations and defined inter-
actions. As a result the transformations are equipped with more detailed rules and
mappings and generate better-linked artefacts both in terms of specific models and
code.

In general, integration allows obtaining a thorough view of the system and its inter-
operations (assist design) and relating its internal components with established links
(provide consistency and formalisation), while interoperability makes our integrated
models more operational.

3 Integration and Interoperability Mechanisms in UML and Web
Services

Web services have specific mechanisms for supporting the integration and interopera-
bility of their XML artefacts. Similarly, UML has its own specified mechanisms for
UML models. As our aim is to apply integration and interoperability among Web
service metamodels as precisely as possible and closer to their physical implementa-
tion, we have to investigate and compare their mechanisms. In that way, we can apply
their original XML integration mechanism to UML Web service metamodels. That
will allow us to generate models semantically close to their original characteristics, as
the domain metamodels will be equipped with their equivalent XML concepts.

The Object Management Group (OMG) and the World Wide Web Consortium
(W3C) are two distinct organisations operating in two different domains, the model-
ling and specification of software systems and the Web standardisation and inter-
operability respectively. The OMG uses the UML family of languages and standards
for software design and development, which are based on graphical models. UML
languages are specified and defined upon a common core language, the Meta Object
Facility (MOF) [12] providing the fundamental building blocks to construct and store
metamodels. From the other side, the W3C uses the XML family of languages that are

textual specifications to specify Web services and standards. The XML languages are
defined upon the XML Schema Definition (XSD) [19] to describe and constraint the
structure and content of XML documents.

Both specification mechanisms (MOF in UML and XSD in XML) are comparable
and can been seen as meta-languages, languages to define and create other languages.
Thus, XSD is used to define WSDL and BPEL, and MOF to define UML and CWM
[12]. As they are created from a common metamodel (XSD), the service languages
conform to and share common semantics, so it is much easier to be integrated and be
interoperable. Meta-languages play a very important role, as they define core domain
characteristics that can be reused to define and create a variety of other metamodels,
belonging to the same family of languages [13].

The UML specification is defined using the metamodelling approach and mecha-
nism. The typical role of metamodelling is to define the semantics of how the model
elements in a model get defined and instantiated. Web services on the other hand are
defined by using a very flexible mechanism, the XML Schema, providing a way to
specify the structure of XML documents.

Finally, the UML specification is organised into Infrastructure and Superstructure
architectures. As a result, the various constructs defined are highly reused and coupled
within the overall UML architecture. On the other hand, Web services can be seen as
more independent entities that are part of more flexible or less coupled architectures.
They can be integrated and combined in various ways with the flexibility of a compo-
nent. An example of such architecture is the SOA [16], which is organised in separate
layers regarding the functionality and concepts provided. In that sense the architecture
can be seen as an accumulation of aspects.

Following, we identify, describe and compare the mechanisms defined within the
UML and Web Service specifications supporting the fundamental ideas of composi-
tion, inter-relation, communication and extensibility of meta- elements.

3.1 Mechanisms for the Integration of UML Metamodels

The UML specification is defined in a number of metamodels and organised within
hierarchical packages. The metamodels are gradually built upon more abstract model-
ling concepts, defined within fundamental reusable packages, such as the Infrastruc-
ture Library [13] and the Superstructure Kernel [14]. The UML language is organised
in a four-layer metamodel architecture, separating the instantiation concerns across
different layers, for example MOF from UML. According to that principle, the instan-
tiation of meta-classes is carried out through MOF. The UML architecture has been
designed to satisfy the following criteria [13].

1. Modularity: Group constructs into packages by providing strong cohesion and

loose coupling.
2. Layering: Support a package structure to separate meta-language constructs and

separate concerns (regarding instantiation).
3. Partitioning: Organise conceptual areas within the same layer.
4. Extensibility: Can be extended in various ways.

5. Reuse: UML metamodel elements are based upon a flexible metamodel library that
is been reused.

To realise the above qualities, the UML specification is organised into two parts:

Firstly, the UML Infrastructure defining the foundation language constructs where
both M2 (UML) and M3 (MOF) meta-levels of the four-layer metamodel architecture
are being reused. Secondly, the UML Superstructure extends and customises the Infra-
structure to define additional and more specialised elements making up the modelling
notions of UML.

The entire UML specification can provide an example of how metamodels repre-
senting different concepts, such as structure by a class or a component diagram and
behaviour by an activity or an interaction diagram are integrated and connected to-
gether. In that case, even if they are defined within different packages they are interre-
lated and share common basic elements with other metamodels.

3.1.1 The UML Infrastructure

The Infrastructure Library [13] provides the basic concepts for organising and reusing
metamodel elements. In the case of metamodel relation and composition, these are as
follows:

Model elements to group elements together such as a) Visibilities, provide basic
constructs for visibility semantics b) Namespace, provides concepts for defining and
identifying a model element within a namespace c) Package, groups elements and
provides a namespace for the grouped elements.

Model elements to specify some kind of relationship between elements such as a)
Generalisation, specifies a taxonomic relationship between a more general and a more
specific classifier b) Redefinition, specifies a general capability of redefining a model
element c) Association, both a relationship and a classifier. Specifies a semantic rela-
tionship between typed instances d) Element Import, a relationship that identifies an
element in another package, allowing the element to be referenced using its name
without a qualifier.

Model elements defining basic mechanisms for merging their content such as a)
Package Merge, specifies how one package extends another package, by merging
their contents through specialisation and redefinition and b) PackageImport, a rela-
tionship that allows the use of unqualified names to refer to package members from
other namespaces.

3.1.2 The UML Superstructure

The UML Superstructure [14] relies on the essential concepts defined in the Infra-
structure to build the UML 2.0 diagrams. It provides a clear example of metamodel
integration, as it brings together different packages from the Infrastructure library, by
using package imports and merges. It redefines some of the concepts and further
extends their capabilities [13].

The Superstructure in order to support the concepts of integration and interopera-
bility among metamodels provides additional relationships [14] and links among
elements. Examples of such links and relationships are a) Dependency, a relationship
that signifies that a model element requires other model elements for their specifica-
tion or implementation b) Abstraction, a relationship that relates two elements or sets
of elements, representing the same concept at different levels of abstraction c) Usage,
when one element requires another element (or a set) for its full implementation or
operation d) Permission, signifies granting of access rights from the supplier to a
client model element e) Realisation, a specialised relationship between two sets of
model elements, one specifies the source (supplier) and the other implements the tar-
get (client) f) Substitution, a relationship between two classifiers, implying that in-
stances can be at runtime substitutable, where instances of the contract classifier are
expected g) Implementation, a relationship between a classifier and an interface signi-
fying that the realising classifier conforms to the contract specified by the interface.

In addition, it defines a number of composite structures [14], providing more com-
plicated elements with advanced capabilities. Examples of such elements are a) Com-
ponents, representing a modular part of a system, which is replaceable within its envi-
ronment b) Connector, a link enabling communication between instances. It can be
something as simple as a pointer or something as complex as a network connection c)
Composite Structures, a composition of interconnected elements, representing run-
time instances collaborating over communications links to achieve some common
objectives d) Ports, a structural feature of a classifier specifying a distinct interaction
point between that classifier and its environment e) InvocationAction, invoke behav-
ioural features on ports from where the invocation requests are routed onwards on
links, deriving from attached connectors f) Collaborations, a kind of classifier defin-
ing a set of cooperating entities to be played by instances (its roles) and a set of con-
nectors defining communication paths between the participating instances g) Commu-
nicationPath, an association between two nodes, enabling them to exchange signals
and messages.

3.1.3 Extensibility - Provide User Defined Elements

The UML specification is flexible supporting two types of extensions [7, 9, 12]. The
first one is based on profiles and is referred to as a lightweight built-in mechanism. It
does not allow the modification of existing metamodels but rather their adaptation
with constructs that are specific to a particular domain, platform, or method. The sec-
ond approach uses metamodelling techniques by explicitly defining new metamodel
elements from pre-existing metamodels like the ones defined in MOF or the UML
Infrastructure. This approach allows ultimate extensibility as it enables the definition
of new concepts with new capabilities that can be tailored to represent precisely a
particular domain of interest. There are various examples of extending UML, either
with metamodels or profiles such as EDOC and the EJB Profile respectively.

3.2 Mechanisms for the Integration of Web service Standards

The Web service standards are built-upon the XML and XML Schema. As a result
many of their characteristics and capabilities, such as extensibility and referencing, are
based upon their defined concepts. By design, almost all Web service standards (as
loosely coupled) [1] are designed to accommodate their integration and interoperabil-
ity aspects flexibly. So, they define various points of extensibility, allowing them to
interoperate with other standards and usually are separated into abstract and concrete
parts.

The Web service implementations rely on the collaboration of various specifica-
tions to make them really functional and interoperable. For example, the SOA [16] is
based on a collaboration of various Web service specifications, such as service de-
scription, discovery and messaging. Each one can represent either a particular layer
(regarding the SOA architecture) or a particular functionality or concept. In this sense,
they can be compared with UML modelling that is based on a combination of various
metamodels, belonging to different packages, to make up a complete system specifica-
tion.

An example of how Web service specifications can be combined and interoperated
to fulfil an objective is a business process request defined as a BPEL Invoke operation
[5]. The process defines the implementation logic of a service, accessed from specific
interaction points via a set of Web interfaces defined in WSDL and sending a SOAP
message representing a particular request to a business participant [1]. The participant
replies back by triggering an equivalent mechanism, with an appropriate formatted
XML message.

In this paper, we are interested in investigating these inter-relationships and de-
pendencies among fundamental Web service standards such as BPEL, WSDL and
SOAP and examine how they are combined to support service interoperability at dif-
ferent levels of abstraction and implementation, by realistic examples and cases. The
following are defined elements and technologies used for the integration, extensibility,
collaboration and communication of schemas and Web service specifications.

3.2.1 Common - Core Characteristics

The XSD mechanism [19] provides the core/fundamental characteristics of Web ser-
vices, utilised by almost all Web service standards, allowing mechanisms for group-
ing, extensions and referencing. The XSD also provides the foundation mechanism for
constructing messages and datatypes that are the means of interoperability and com-
munication for services.

The elements supporting such mechanism are a) Schema, is associated with a name-
space and provides a grouping for defined XML elements b) Namespace, provides
identification and access rights for its elements c) Import, allows to use schema com-
ponents across different namespaces with references d) Include, assembles schema
components to a single target namespace from multiple schema definitions e) Rede-
fine, allows the redefinition of one or more components f) Redefinable, specifies an
element so that it can be redefined g) SubstitutionGroup, supports the substitution of

one named element for another h) Extension, provides the mechanism to extend the
element content i) Restriction, provides the mechanism to restrict the element content
j) References, provides pointers to already defined elements such as GroupRef, Attrib-
uteGroupRef and ElementRef. Finally, k) AnyURI, AnyType and AnyAttribute can
point to any location, any type and extend an element with attributes not specified by
the schema respectively.

3.2.2 Specialised Characteristics

More specialised characteristics and concepts are usually defined within each service
specification. For example, the WSDL defines how Web service interfaces can be
defined in terms of protocol bindings, port-types, operations and messages. Analo-
gously, other specific application constructs have been defined for BPEL and SOAP
[1, 11]. Those standards can be combined and integrated together by specifying a
binding mechanism that actually provides the links among the involved service speci-
fications. So, tools and engines can realise those implementations and execute the
actual Web service collaborations across different standards and protocols.

Almost all Web service standards are designed to accommodate interoperability
and be extensible. As a result, their specifications at certain points, particularly their
concrete parts are defined in a way that leaves space for different implementations. It
is very similar to UML or Java when a Classifier or an Object can be of any type,
therefore the model or application can support different implementations or behav-
iours.

3.2.3 Auxiliary Characteristics

There are also various auxiliary technologies and standards that are used to provide
more sophisticated mechanisms, such as for relating elements across multi-documents.
Those can be easily used and embedded within specifications to create more elaborate
structures and complicated functionalities. Such a mechanism is the XPath [18] lan-
guage for addressing various parts of an XML document. It provides the means of
linking elements together; therefore it can be represented by a relationship in UML
modelling.

4 Analysis & Classification of Mechanisms

At this point, we should analyse and classify the integration and interoperability
mechanisms supported by UML and Web services, upon the following fundamental
criteria:

Structures: Provide the ability to implement a) Containers, group and identify
model elements within collections and b) Composite Structures, provide the means
and concepts to integrate/combine together different model elements into new or cou-
pled entities.

Dynamics: Messaging, establish the concepts and mechanisms to specify dynamics
for example perform invocations, interactions, messaging upon established connec-
tions.

Links: Provide Relationships/Addressing mechanisms to establish semantic rela-
tionships among model elements that may belong to different groups.

Mechanisms: Define Mechanisms upon containers, operate upon elements or
collections of elements. New groups of elements may be generated as a result of inter-
section and union operations.

According to these criteria, the UML and Web service capabilities are compared,
assessed and described as in the following tables:

Table 1. The UML mechanism supports criteria by specifying the following UML modelling
elements

 UML support
Containers Initially provided by the Infrastructure library and special-

ised from the Superstructure kernel. Examples are Name-
space, Visibility and Package model elements

Comp. Structures Various metamodel elements are defined such as compo-
nents, composite structures, collaborations

Messaging A number of actions are specified for messaging, invocations
and their supporting concepts like input and output pins

Links There are various types of semantic relationships such as
permissions, substitution, generalisation, usage etc

Mechanisms Package mechanisms, like package import and merge

Table 2. The Web service mechanism supports criteria by specifying the following XML
elements

 Web service support
Containers Schema, Namespace

Comp. Structures ComplexType, Group, Sequence etc
Messaging XML Datatypes, SOAP messages

Links Element, Attribute and Group references, Ids
Mechanisms Import, Include, Redefine

4.1 Compare & Contrast Mechanisms

It is clear that both XSD and MOF or the UML Infrastructure are meta-languages for
the modelling and Web service domain respectively. As such, they provide the funda-
mental concepts and building blocks to define and create other languages such as the
WSDL, the BPEL or the UML and the CWM. Regarding the four-layered metamodel
architecture they both belong to M3 level [12]. In addition, they are both self describ-
ing and reflective as they have been specified by their own means and concepts.

The UML and Web service specifications, as seen in section 4, both define integra-
tion mechanisms, however they are designed in such a way to support and reflect the

characteristics of their domains. Therefore, UML is designed to create more compact
models through meta-models. UML also seems more integrated as it is designed from
one organisation all-over. Metamodels via diagrams can provide different views of the
same system. In that case, their integration points are well defined and bound, as
effectively they belong to the same specification. On the other hand, Web service
standards are more loosely coupled and are developed rather independently from each
other. They are integrated and combined later on into functional units, using previ-
ously defined, abstract integration points. In addition, their specifications are defined
in textual XML Schemas.

To conclude, we can say that the UML specification is focused on separating the
different views of a system by providing different diagrams that are somehow related
together by their metamodels, while Web service specifications are concerned with
logically separating the abstract from the concrete parts [1, 19].

The result of the comparison will justify and influence the approach adapted, of
how to implement the integration and interoperability mechanism with its domain
metamodel, in a way to reflect as accurately as possible their actual characteristics.

5 A Method to Support Metamodel Integration & Interoperability

Currently, the Web service domain is scattered into several different metamodels such
as BPEL, WSDL and SOAP [1]. Our approach on supporting the integration and
interoperability of metamodels is based on the concept of relating all these uncon-
nected metamodels in a cooperating fashion, through specified and formalised links.
As a result, we introduce the binding mechanism (please refer to Fig. 1) as a meta-
model. The method is influenced from the Web service domain. However, we believe
that the approach is similarly applicable to other domains, as it can be considered
neutral and generic enough. The binding metamodel integrates the metamodels to-
gether in a formalised way, by specifying both their static aspects (by defining inter-
relationships) in order to provide integration and dynamic aspects such as communica-
tion, interactions and conformance to provide interoperability among the metamodels.

The steps to apply our approach can be described as follows:

Firstly, we need to identify the metamodels composing our system or domain of inter-
est. One can either create these metamodels or reuse predefined ones. Secondly, the
relationships, dependencies or interaction points among these metamodels have to be
identified. Thirdly, the mechanisms supporting integration and interoperability be-
tween the actual “real” domain (in the case of Web services, by XML and XSD) and
modelling domain (by metamodels) are compared and checked whether they are har-
monised. This should allow to design their actual supported mechanisms (originally
expressed in XSD) in another formalism (metamodel) as precisely as possible, provid-
ing clear domain models and encapsulating their original domain capabilities accu-
rately. Having identified the supported mechanisms (for example how to relate to
elements), the binding metamodel is introduced, where the relationships, properties
and rules are applied accordingly. At this stage the integration points among the

metamodels are being defined. Following, upon the integration points (providing rela-
tionships and links) and within the binding metamodel, we further specify the commu-
nication mechanism in terms of interactions, messages and data-types exchanged,
making our models functional and interoperable. Lastly, we may have to model the
binding mechanism with equivalent UML models as precisely as possible in order to
respect its internal semantics for example establish object roles within collaboration
diagrams.

5.1 Applying the Binding Mechanism – Web Service Examples

Following, a number of examples from the domain of Web services are provided to
illustrate how the binding metamodel can be applied among Web service metamodels.
As already mentioned, the Web service domain can be represented by various meta-
models. In these examples, we are going to consider two metamodels: the BPEL and
WSDL, representing a partial view of the Web service domain. The metamodels can
either be created from their original XSD specifications or reuse pre-existing ones [2,
3, 4].

Fig. 1 illustrates how the Web service domain is represented by the BPEL and
WSDL metamodels and how these are mapped to equivalent UML modelling con-
cepts, providing their platform independent representations, as UML activity and
component diagrams respectively. Regarding these mappings, there are already some
research activities defining their MDA transformations [2, 4]. On the right side, one
can see how a metamodel binding between the BPEL and the WSDL metamodels is
applied and how this is reflected as a UML representation (in this case a collaboration
element). The UML model that would be selected needs to encapsulate the binding
mechanism as semantically precise as possible and provide all the necessary concepts
and capabilities for representing integrations and collaborations of its participating
parts.

Fig. 1. The UML & Web service domains with equivalent mappings (on the left) and required
bindings (on the right)

The binding metamodel in Fig. 2, represents the BPEL and WSDL integration. It
defines two additional model elements, the PartnerLinkType and Role together with
their inter-relationships with the other model elements from BPEL and WSDL. In this
case, the binding metamodel is attached to the actual WSDL metamodel as an exten-
sion, meaning that both WSDL and binding model elements share the same name-
space.

The services with which a business process interacts are modelled as PartnerLinks
and are performed upon Web service interfaces. Each PartnerLink is characterised by
a PartnerLinkType maintaining the conversational relationship between two services
by defining Roles played by each of the services in the conversation 19. Each Role
specifies exactly one WSDL port type. The relationship among partners is typically
peer-to-peer (such as BPEL to BPEL) and can be modelled by a two-way dependency.
The PartnerLink declaration specifies the static shape of the relationship that the
process will employ in its behaviour.

Fig. 2. A metamodel binding example between BPEL & WSDL supporting integration

Afterwards, the interaction mechanism of the binding metamodel is being specified,
by identifying its dynamics in terms of establishing interactions, message exchanges in
various patterns and use comprehensive data-types as illustrated in Fig. 3. That will
permit our models to be interoperable across their integrated points, meaning that their
instances can be really executable [17]. The integrated points defined as relationships
among model elements specify the links where messages or signals can travel. Such
formalisation provides consistence, as interactions can be performed only through
these established points following a specific interaction pattern.

Fig. 3. How the metamodel binding supports interoperability

In particular, Web services by design support interoperability, as they are based on
XSD for specifying datatypes, SOAP for messaging and communications and WSDL
for describing interactions as exposed operations. Thus, a Web service example as in
this case would not encounter severe inconsistency problems of that kind, as the inter-
actions would be performed upon common standards. For example, in order to per-
form a simple invocation call across collaboration processes, the following sequence

will occur among involved metamodel elements to transmit a message across the inte-
grated points and according to a specific interaction pattern (in this case without a
reply):

BPEL1�binding1�WSDL1�SOAP�WSDL2�binding2�BPEL2 (1)

Following, Fig. 4 illustrates how the metamodel mechanism can be realised by a set
of instances, participating in an invocation operation Invoke from a shippingSer-
viceCustomer to another shippingService participant in order to handle the shipment
of orders. The actual example is derived from the BPEL specification [5].

Fig. 4. Instance Examples upon binding

Finally, we examine how to represent the binding mechanism in a platform inde-
pendent manner with an equivalent UML model. For that reason, one needs to utilise
the UML 2.0 composite structures, such as Collaboration and StructuredClasses that
can support the composition of interconnected elements, representing run time in-
stances, collaborating over communication links to achieve common objectives [14].
In particular, Collaborations provide the means to define common interactions be-
tween objects and other classifiers and assign responsibilities in terms of roles. The
interaction is similar to providing a pattern of communication between parts and is
specified as a set of messages passed between objects playing predefined roles.

In this case, the UML 2.0 Collaboration modelling element is used to encapsulate
the PartnerLinks playing various Roles by each of the services participating in the
conversation and providing a semantically mapping to our domain binding meta-
model.

Following, Fig. 5 depicts the binding mechanism as an independent model, explain-
ing how the binding mechanism works, by describing the structure of collaborating
elements (roles), performing specialised functions upon defined communication paths
of participating instances. In that case the binding metamodel and mechanism are
rather simple and can be represented by a UML AssociationClass [13]. That is to say
a class that defines specific properties upon an established semantic relationship be-
tween classifiers, in this case the metamodel elements from BPEL and WSDL.

optseq
shippingServiceCustomer shippingService

1: shippingNotice (shippingNoticeMsg)

2: shippingRequest (shippingRequestMsg)

ShippingLT

shippingServicePT : WSDL :: PortType

shippingServiceCustomerPT : WSDL :: PortType

sh
ip

pi
ng

Se
rv

ic
e

sh
ip

pi
ng

Se
rv

ic
eC

us
to

m
er

<< collaboration >>
customer

Fig. 5. UML collaboration, modelling bindings in UML

6 Related Work & Discussion

There are several approaches on metamodel composition and interaction [8, 10, 15].
More specifically, in [10] the key feature of this approach is the combination of new
metamodels from existing metamodels, through the use of newly defined operators
such as equivalence, implementation and interface inheritance. The approach empha-
sises the compositional operations for creating new concrete metamodels and not
actually relating them as cooperating entities, as in our case. Next, the approach in
[15] suggests the integration of metamodels by a joint action model. The approach is
based on message interactions, thus supporting more dynamically and interoperable
models. In that respect, the approach is comparable to our method on establishing
interaction points across the metamodels. Finally, the approach in [8] is based on
extending the UML language for the composition of domain metamodels by proposing
a UML profile.

In our study our effort is to establish both connections upon the metamodel ele-
ments to support integrations in a cooperating way and communication mechanisms to
support their interaction characteristics. In that way we can provide consistency and
formalisation upon the interconnected metamodels, properties that are necessary for
performing model transformations.

7 Conclusion

Integration and interoperability are very important issues for composite domains as in
the case of Web services, as they need to collaborate with each other to achieve their
common targets. Their emerged capabilities can be seen as the product of integration
and interoperability. In modelling, Web service languages need to be represented by
equivalent metamodels. By defining their metamodel relationships and interaction
mechanisms, we support the integration and interoperability of their models. In that
way we can design complete system models having formalised interaction points and
perform model transformations across multiple connected metamodels.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V., Web Services Concepts, Architectures
and Applications, Data-Centric Systems and Applications, ISBN: 3-540-44008-9, (2004)

2. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping Web Ser-
vices to Implementation Platforms. Technical report: 04.01, LINA, University of Nantes,
Nantes, France (2004).

3. Bordbad, B., Staikopoulos, A.: Modeling and Transforming the Behavioural Aspects of
Web Services. In: Proc. 3rd Workshop in Software Model Engineering - WiSME2004,
UML (2004)

4. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services.
In: Proc. Conceptual Modelling for Advanced Application Domain (eCOMO), Shanghai,
China (2004), p. 667-678

5. BPEL: BEA, Microsoft, IBM, SAP, Siebel, Business Process Execution Language for
Web Services, Version 1.1. (2003)

6. Greenfield, J, Keith Short: Software Factories, Wiley, ISBN: 0471202843, 2004
7. J. Siegel, Developing in OMG’s Model Driven Architecture, Object Management Group,

November (2002)
8. Jacky Estublier, A.D.I. Extending UML for Model Composition. in Australian Software

Engineering Conference (ASWEC). 29 March, 1 April (2005). Brisbane, Australia.
9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture-

Practice and Promise. (2003)
10. Ledeczi A., G.N., G. Karsai, P. Volgyesi, M. Maroti. On Metamodel Composition. in

IEEE CCA 2001. September 5, (2001). Mexico City, Mexico.
11. Lopes, D., Hammoudi, S.: Web Services in the Context of MDA. In: Proc. 2003 Interna-

tional Conference on Web Services (ICWS'03) (2003)
12. OMG: Meta Object Facility 2.0 Core Specification. (2003). Document id: ptc/03-10-04
13. OMG: UML 2.0 Infrastructure Specification. Document id: ptc/03-09-15 (2003)
14. OMG: UML 2.0 Superstructure Specification. Document id: ptc/03-08-02 (2003)
15. P. Denno, M.P.S., D. Libes, E.J. Barkmeyer, Model-Driven Integration Using Existing

Models. IEEE Software, Sept./Oct. (2003): p. 59-63.
16. Rakesh Radhakrishnan, Mike Wookey, Model Driven Architecture Enabling Service

Oriented Architectures, Sun Micro Systems, March (2004)
17. Stephen J. Mellor and Marc J. Balcer: Executable UML a Foundation for Model Driven

Architecture. Addison Wesley. ISBN 0-201-74804-5, 2002
18. W3C, XML Path Language (XPath) 2.0, W3C Working Draft. July (2004)
19. XML Schema W3C, XML Schema Part 0: Primer, W3C Recommendation, May (2001)

