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Abstract 

 
Model Driven Development (MDD) aims to 

promote the role of modeling in Software Engineering.  
Enterprise systems and architectures are often 
modeled via multiple representations. For example 
UML models are widely used by the designers to 
capture various viewpoint of the system; while formal 
models using languages such as CSP, Z and Petri Nets 
are suitable for the analysis. Model transformation 
techniques developed as a part of MDD can be applied 
to generate one model from another model 
automatically. This allows benefiting from the tools 
and techniques developed and used in multiple 
languages. This paper presents a method of applying 
MDD model transformation from UML 2.0 Sequence 
Diagrams to Petri Nets. The paper shows that the 
model transformation results in Free Choice Petri 
Nets. As a result, the low complexity of analysis and 
the synthesis techniques can be applied to the models 
of enterprise systems which are captured in UML 
Sequence Diagrams.   
 
1. Introduction 
 

In order to reduce the complexity, Enterprise 
application architectures and methodologies often 
make use of multiple models for expressing various 
viewpoints and perspectives of the system. Often 
multiple software tools are used to handle such 
modeling languages. For example, to allow analysis of 
enterprise systems various tools are developed which 
transform design models to the models which are 
suitable for the analysis [1-3].   Model Driven 
Development (MDD) [4] provides the techniques for 
creating software tools and infrastructure for 
automated model transformation. In this regard, MDD 
bridges the gap between two Technical Domains [5] by 
automated transformation. However, model 
transformation is a challenging task i.e. UML2Alloy 

[3]. In particular, it is crucial to identify suitable 
modeling frameworks. Our research is motivated by 
the challenges of analysis and integration of models 
used in the design of complex Enterprise systems. 

Petri Nets are one of the most established 
formalisms for modeling complex behavior. They are 
widely used in various application domains for 
analysis and synthesis [6, 7]. In particular, a subset of 
Petri Nets known as Free Choice Petri Nets [8], in 
which conflicts and concurrencies does not occur 
simultaneously, have proven to be a highly suitable 
choice for the analysis and synthesis.  

This paper makes two contributions. Firstly, it 
presents an MDD Model Transformation, from 
UML2.0 Sequence Diagram to Petri Nets (SD2PN). 
This allows converting Sequence Diagrams to Petri 
Nets automatically.  Secondly, the paper proves that 
Petri Nets generated from SD2PN are Free Choice 
Petri Nets. This allows benefiting from the low 
complexity mechanism [8] for the analysis of Free 
Choice Petri Nets to analyze Sequence Diagrams. 
Moreover, well developed techniques in synthesis of 
FCPNs can be applied for the integration of  Sequence 
Diagrams. This is particularly important as Sequence 
Diagrams are often used to express partial behavior 
and scenarios; synthesis of Sequence Diagram will 
allow expressing of overall behavior of the system. 
Although UML 2.0 [9] explains that Sequence 
Diagrams do not have simultaneous conflict and 
concurrencies, the equivalence of Sequence Diagrams 
and Free Choice Petri Nets seems intuitive. However, 
to the best of our knowledge, this has not been 
published before. 

This paper is organized as follows. Section 2 will 
discuss preliminary information on MDD, Sequence 
Diagrams and Petri Nets. Section 3 will describe the 
steps involved in SD2PN model transformation, 
including an example of applying SD2PN to a 
Sequence Diagram based on the Man-in-the-Middle 
security attack model. Section 4 will feature the proof 



that shows all Petri Nets generated via SD2PN are Free 
Choice Petri Nets. 
 
2. Preliminaries 
 

This section reviews the preliminary material 
related to Model Driven Development, Sequence 
Diagrams and Petri Nets used in the subsequent 
chapters.  

 
2.1. Model Driven Development 
 

Model Driven Development [4] aims to promote the 
role of modeling in software development. Models in 
the context of MDD are captured in machine-readable 
representations, using languages which are widely 
adopted by software industry [10]. Hence it is possible 
to communicate such models to various parties and 
reuse them. This results in lower software production 
cost and shorter development cycles. In this paper, 
MDD is further used to develop a method to benefit 
from advantages of using two representations of a 
system, Sequence Diagrams and Petri Nets. 

To allow integration of the presented approach to 
existing modeling software tools,  the standards set by 
Model Driven Architecture (MDA) [11], a flavor of 
MDD which is initiated by the Object Management 
Group (OMG), will be used. Meta Object Facility 
(MOF) [12] is one of such standards for describing 
metamodels. Metamodels are themselves models, from 
which models of the system are instantiated. MOF can 
be compared to EBNF, which is used for defining 
programming languages grammars. As a result, MOF 
is a blueprint from which MOF Compliant metamodels 
are created. 

Fig. 1 depicts an outline of MDA and the process of 
Model Transformation. A number of Transformation 
Rules are used to define how various elements of one 
metamodel (source metamodel) are mapped into the 
elements of another metamodel (destination 
metamodel). The process of Model Transformation is 
carried out automatically via the software tools which 
are commonly referred to as Model Transformation 
Frameworks [13-15]. A typical Model Transformation 
Framework requires three inputs: source metamodel, 
destination metamodel and Transformation Rules. For 
any instance of the source metamodel, a 
transformation engine executes the rules to create an 
instance of the destination metamodel. 

 
Figure 1: Model Driven Development 

 
2.2. Sequence Diagram 
 

Sequence Diagrams is UML 2.0 version of Message 
Sequence Charts [9] and are widely used in Software 
Engineering [16]. Sequence Diagrams can be used in 
modeling complex Enterprise Systems as they provide 
a sequential listing of events and are also able to model 
parallelism and alternatives. They are also effective in 
modeling behaviour and concurrency.  
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Figure 2: Metamodel of Sequence Diagram 

 
Figure 2 represents a subset of UML 2.0 Sequence 

Diagrams metamodel used in this paper, comprising of 
important constructs used for depicting models with 
complex behavior. The main fragments of the 
Sequence Diagram are represented by model elements 
Message and CombinedFragments. The model element 
Message represents the interaction between the 
instances of objects in the system while 
CombinedFragments are high level addition to 
Sequence Diagrams and consist of Interaction 
Operators alternative, option, break and parallel. 
These model elements will be referred to as fragments 
of Sequence Diagrams throughout this paper. 

The model element EventOccurrence and 
GeneralOrdering denotes the sequencing of events in 
the diagram. EventOccurrence is a specialization of 
MessageEnd where each message is given a specific 



order in reference to the previous and subsequent 
messages. 

This paper focuses on the flow of events, therefore 
the constraints are not considered. However, the 
constraints could be directly mapped into the 
transformation resulting in Coloured Petri Nets [17] 
without changing the rest of our results. Further 
information on Sequence Diagram could be obtained 
from the UML Super Specification document [9]. 
 
2.3. Petri Nets 

 
Petri Nets are a graphical and mathematical 

modelling language applicable to Enterprise Systems. 
Petri Nets can be parallel, asynchronous, concurrent, 
distributed and stochastic as well as being dynamic [6]. 
Similar to flow-charts, a Petri Net can model the flow 
of events in a system graphically [18]. 

Petri nets can be formalized as follows: 
 

Definition 1: A Petri Net is a triple N = (S, T, F) where 
S is a finite set of places and T is a set of transitions 
where S ∩ T = ∅. F is a relations on S ∪ T where F 
∩ (S x S) = F ∩ (T x T)  = ∅. A marking of N is a 
function m:S →{0,1,2,3, …}, where each place s ∈ S 
is assigned the number of tokens. M0 is used to show 
the initial marking, the number of tokens in each place 
at the beginning of execution. 
 

Graphical representations of Petri nets depict each 
place as a circles and each transition as a square. 
Transitions represent actions and places often model 
pre-set and post-set for the actions. Suppose two places 
s1 and s2 with a transition t such that s1 is before t and 
s2 is after t. This means that s1 is in the pre-set of t and 
s2 is in the post-set of t; which can be written as s1 ∈ •t 
and s2 ∈ t•. Similarly, the set of input and output 
transitions for s1 can be written as •s1 and s1

• 
respectively. The execution of the transition t will 
remove a token from each place in •t and add a token 
in each place in t•

. The execution of a Petri Net is non-
deterministic, which means multiple transitions can be 
enabled simultaneously and the any of the transitions 
could fire. 

Figure 3 depicts the metamodel of Petri Net used in 
this paper. Referring to Definition 1, S and T are 
represented by the instances Place and Transition 
while InputArc and OutputArc represents the 
relationship F. The instance Marking refers to the 
function m:S. Every place may have a Mark which 
represents the number of tokens that belongs to a 
place. This instance is represented by an integer, i.e. 0, 
1, 2 and so on.  

A well-studied subclass of Petri net is called Free 
Choice Petri Nets [8] in which conflicts and 
concurrencies cannot occur at the same time. This 
subclass of Petri Net is predominantly used for 
effective and efficient analysis in enterprise systems 
[1]. Moreover, the theory of synthesis of Free Choice 
Petri Nets is well developed [ ].  
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Figure 3: Metamodel of Petri Net 

Definition 2: Baccelli [19] defines Free Choice Petri 
Nets, as whenever two transitions in the net share an 
input place, they must not have any other input places. 
This can also be written as when ⏐p•⏐ > 1, for every t 
∈ p•, ⏐•t ⏐= 1.  
 

The above definition ensures that in the Petri Net 
conflict (a place has more than output) and 
concurrency (a transition has more than one input) are 
not occurring at the same part of the net. Therefore, it 
is possible to have both conflict and concurrency 
within the net, just not simultaneously.   

There is another definition of FCPN presented in 
[8] which is slightly weaker than the definition 
presented above, i.e. if a Petri net satisfied Definition 2 
will satisfy definition in [8]. For further information on 
Free Choice Petri Nets see [8, 19]. 
 
3. SD2PN Model Transformation 
 

This section describes the process of model 
transformation from Sequence Diagrams to Petri Nets 
(SD2PN).  This transformation is broken down to three 
steps to illustrate the stages involved in the process. 
The steps involved are: 

 
Step 1: Decomposing the Sequence Diagrams into 
fragments. 
Step 2: Transforming each fragment with its 
equivalent block of Petri Nets.  
Step 3: Morphing and Substituting the blocks of Petri 
Nets to create a Petri Net representation of the original 
Sequence Diagram.   
 



The steps above are described in the sections 3.1 to 
3.3. To illustrate the transformation, an example of 
applying SD2PN is included in section 3.4.  

 
3.1. Decomposition of Sequence Diagrams into 
Fragments 
 

The process of decomposition of a Sequence 
Diagram is carried out on the concrete syntax 
representation and involves identification of various 
model elements and their relationships. The metamodel 
of Figure 2 depicts model elements used in a Sequence 
Diagram. The term Fragments in this paper refers to 
messages and CombinedFragments  consisting of 
alternatives, options, breaks and parallels. The 
GeneralOrdering can be used to identify the causality 
between the EventOccurrences. In Sequence 
Diagrams, this ordering is the same as top-down visual 
ordering. The model transformation SD2PN must not 
only transform the Fragments into their equivalent 
Petri net, but also must ensure correct ordering 
between the EventOccurrence so that the blocks of 
Petri Nets that are generated conform to same the order 
as the Sequence Diagram fragments. 
      As is depicted in Figure 2, CombinedFragment 
may include multiple InteractionFragments or even 
other CombinedFragments. Consequently, each 
CombinedFragments  has a hierarchical structure. To 
transfer each CombinedFragment, internal Fragments 
must be transformed and then integrated into the 
transformation of the high-level Fragment in the 
hierarchy.  
 
3.2. SD2PN Model Transformation Rules 
 

This section will describe in Step 2 of the model 
transformation process, which transforms each 
fragments of Sequence Diagram (from Step 1) with a 
corresponding block of Petri Net. 
 
Message: Page 491 of [9] describes a message as 
either a call for the execution of an operation or 
depicting sending and receiving of a signal. The 
execution of a message, m in a Sequence Diagram is 
depicted as the firing of a transition, t in the 
corresponding Petri Net. As depicted in Figure 4, 
places s1 and s2 model precondition and postconditions 
for the firing of the transition. These places will be 
used to create correct causality of events within the 
sequence diagram.  As a further condition to this rule, 
if m is the first message in the Sequence Diagram, then 
s1 in the corresponding block of Petri Net must be 
given a token to ensure firing of t. For other messages, 

the model transformation ensures correct wiring of the 
blocks of Petri net to ensure firing of the transition.  
 

m t
SD2PN
Rule 1

s1

s2  
Figure 4: Applying SD2PN to a Message fragment 

Alternative: The Interaction Operator alternative 
specifies that a set of event may occur if a condition is 
satisfied and another set of event will occur otherwise 
as shown in page 468 of [9]. To preserve this 
semantics, this fragment is represented as a block of 
Petri Net that starts with a place s1 that breaks into two 
transitions t1 and t2. These two transitions denote the 
different alternative scenarios in the Sequence 
Diagrams and will each map into a placeholder block 
ph1 and ph2 respectively, which represent 
alt_fragment1 and alt_fragment2. These placeholders 
will later be substituted with the actual events inside 
the fragment. They will then map into transitions t1 and 
t2 to signal the end of the alternative fragments and 
will terminate at place p2 as shown in Figure 5. This 
paper is dealing with the flow of events within the 
sequence diagrams. Hence, data related issues such as 
the transformation of logical constraints, which can be 
used on the sequence diagram, are not considered.  
However, transformation of such constraints would be 
straightforward, by adding the constraints as 
preconditions to the firing of transitions t1 and t2 to 
obtain a Coloured Petri net. In this paper, it is assumed 
that the firing of  t1 and t2 occurs non-deterministically.  
Alternative with more than two alt_fragments can be 
explained similarly. 
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Figure 5: Applying SD2PN to an Alternative 

fragment 

Option: Interaction Operator option can be treated 
similar to the alternative fragment. Therefore, the same 
block of Petri Net as in Figure 5 is used, with 



exception of ph1 and ph2 representing opt_fragment1 
and opt_fragment2 instead. 
 
Break: Break as described in page 468 of [9] consists 
of a guard (condition) such that when it is satisfied, the 
operation breaks (i.e. terminates). This is modeled with 
the help of two transitions:  t  for the case that the 
guard fails and t  for when the guard is satisfied. 

1

2
Transition t1 connects to ph1 that represents 
break_fragment1, which is the set of event that 
happens if the break condition is not satisfied while t2 
leads to place x which is the terminal node. The 
placeholder ph1 is then connected to a transition t3 as 
shown in Figure 6 to mark the termination of the block 
at s2.  
 

s1

Break_fragment1

break

ph1

s2

t1 t2

t3

XSD2PN
Rule 4

 
Figure 6: Applying SD2PN to a Break fragment 

Parallel: A parallel operator specifies that two or 
more sets of event should occur concurrently without 
any pre-defined set of conditions, see page 468 of [9]. 
As depicted in Figure 7, the corresponding block of 
Petri Nets must ensure parallel execution of 
par_fragment1 and par_fragment2. The fragment start 
with a place and a transition to ensure correct merging 
with other fragments. 
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Figure 7: Applying SD2PN to a Parallel fragment 

After each fragments of the Sequence Diagram are 
transformed into a corresponding block of Petri Net, it 
has to be put together to generate a complete Petri Net. 
This is shown in the next step. 
 
 
 

3.3. Morph and Substitute 
 
This section will describe Step 3, where every block 

of Petri Net is put together in the order outlined in the 
original Sequence Diagram to create a complete Petri 
Net. There are two techniques that will be used in this 
section: morph and substitute. These techniques are 
described in the paragraphs below. 

Morph is used to join two blocks of Petri Net 
together. As can be observed from Step 2, every block 
of Petri Net starts and ends with a single place (even 
break, where x is a terminal node and does not interact 
with the rest of the Petri Net). To join two of these 
blocks together, the end node of the first block is 
morphed into the start of the second block. An 
example of this operation could be found in Section 
3.4. 

Substitution is used in cases where there are 
placeholders. The events that are in the actual 
fragment will be substituted into the placeholders. This 
will not offer any problems since immaterial of the 
number of events in a specific fragment, it always 
starts and end with a place, therefore a substitution can 
take place. An example of this scenario can be 
obtained from Section 3.4. The morph and substitute 
technique is used until all the blocks of Petri Nets are 
joined together in the order of the original Sequence 
Diagram. 
 
3.4. An example of SD2PN application 
 

In this section, the SD2PN Model Transformation is 
explained with the help of an example. As defined in 
the previous sections, the transformation goes through 
three steps, and it will all be explained using the 
example in Figure 8 below. 

The example in Figure 8(a) is a generic man-in-the-
middle attack model adapted from [20, 21]. This is a 
model of a security breach scenario where an Attacker 
listens in to the communication between the Requester 
and the Authenticator. During the transmission of a 
message from the Requester, the Attacker poses as the 
Authenticator. This enables the Attacker to duplicate 
all the ‘secret information’ from the Requester, as can 
be seen in Figure 8 (a). The Attacker then 
communicates with the Authenticator, posing as the 
Requester, and sends the ‘secret information’. The 
Authenticator validates the ‘secret information’ from 
the Attacker and provides the ‘session key’ to the 
Attacker. This creates a security breach and grants 
unauthorized session access to the Attacker. 

In this diagram, there are 12 messages and one 
Interaction Operator of type alternative. This means, 



Step 1 of the transformation involves the 
decomposition of the Sequence Diagram into 13 
fragments. These fragments are noted in the diagram 
using the numbered elliptical figures. 
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Figure 8: Example of applying SD2PN to a generic 

man-in-the-middle attack model 

 
Step 2 in SD2PN is to transform each of the 13 

fragments into its corresponding block of Petri Nets 
using the transformation rules outlined in Section 3.2. 
These blocks of Petri Nets then needs to be joined 
together to generate a complete Petri Net as shown in 
Figure 8(b). The numbered elliptical figures refer to 
the original fragments of Sequence Diagram that they 
were transferred from. This leads to Step 3, using 
morph and substitution to join the blocks of Petri Net. 

Every causal block of Petri Net are joined together 
using morph as explained in Section 3.3. An example 
of morph is joining the block of Petri Net representing 

the first message with the block that represents the 
second message as shown in Figure 9 below. The end 
place from the first block morphs into the beginning of 
the second block, thus joining the two blocks together. 
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Figure 9: Example of morph technique in SD2PN 

An example of using substitution as shown in 
Figure 10 below is the block of Petri net representing 
the alternative fragment and the messages in each 
alt_fragment represented by the placeholders.  
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Figure 10: Example of substitution in SD2PN 

 
Morph and substitution are used repeatedly until all 

the causal fragments are joined, preserving the order 
from the original Sequence Diagram, generating the 
Petri net in Figure 8(b).  

It could be seen that the Petri Net generated in 
Figure 8 (b) is a Free Choice Petri Net as.  There is 
only one place p with ⏐p•⏐ > 1 in alternative block, in 
which for every t ∈ p•, ⏐•t ⏐= 1. In the next section, 
we will establish that every Petri Net generated 
through SD2PN is a Free Choice Petri Nets. 
 
4. SD2PN Model Transformation 
Generates Free Choice Petri Nets  
 

To prove that SD2PN results in only Free Choice 
Petri Nets, we need to formalize the definition of the 
Petri Net Blocks generated by the transformation. 
These Petri Net Blocks include a new type of node 
called placeholders, which are depicted by the dotted 
squares in Figures 5, 6 and 7. Moreover, it can be seen 
that every Petri Net Block has a unique input place and 
output place. 
 
Definition 3: A Petri Net Block is a four tuple B = (S, 
T, P, F) where S is a finite set of places, T is a finite 
set of transitions, and P is a finite set of placeholders. 



F ⊆ ((S ∪ P) × T) ∪ (T × (S ∪ P)) is a set of arcs. 
In(B), Out(B) ∈ S are unique places such that In(B) 
has no incoming arcs and Out(B) has no outgoing arcs. 
They represent the start and end places in the Petri Net 
Blocks respectively.  

Petri Net Blocks clearly extends the definition of 
conventional Petri Nets, since a Petri Net Block where 
P = ∅ is a Petri Net. 

The formal definition of morph and substitution as 
used in the previous sections will be presented in 
Definitions 4 and 5 below. 
 
Definition 4: Suppose B1 = (S1, T1, P1, F1) and B2 = 
(S2, T2, P2, F2) are two Petri Net Blocks. The morphing 
of B1 and B2, denoted by B1 ⊗ B2 results in a Petri Net 
Block B = (S, T, P, F) such that T = T1 ∪ T2, P = P1 ∪ 
P2, S = (S1 ∪ S2) \ {Out(B1)}, In(B) = In(B1) and 
Out(B) = Out(B2).  
 
F = ((F1 ∪ F2) \ {(x, y) ⏐ y = Out(B1)} ∪ {(x, In(B2) ⏐ 
(x, Out(B1) ∈ F1} ….. (∗). 
 

To explain (∗), notice that the arcs in B are obtained 
by including all the arcs in F1 ∪ F2 except the arcs 
leading to output places of BB1, Out(B1). All arcs that 
terminates in Out(B1) must be redirected to In(B2) in 
order to morph B1 and B2. 
 
Definition 5: Suppose B1 = (S1, T1, P1, F1) and B2 = 
(S2, T2, P2, F2) are two Petri Net Blocks. Let p be a 
placeholder in B2. Substituting the Petri Net Block, B1 
into p, denoted by BB2[B1/p] results in a Petri Net 
Block, B = (S, T, P, F), where S = S1 ∪ S2, T = T1 ∪ 
T2, P = (P1 ∪ P2) \ {p}, In(B) = In(B2),  Out(B) = 
Out(B2) and 
 
 F = (F1 ∪ F2 \ {(x, y) ⏐ x = p or y = p}) ∪ {(x, In(B1)) 
⏐ (x, p) ∈ F1} ∪ {(Out(B1), y) ⏐ (p, y) ∈ F1}  ..... (∗∗). 
 

The equation (∗∗) states that arcs in B can be 
obtained by removing all arcs to and from p and 
redirecting them to In(B1) and Out(B2) respectively. 

The definition of Free Choice Petri Nets from 
Definition 2 can be extended to Petri Net Blocks. 
 
Definition 6: A Free Choice Petri Net Block is a Petri 
Net Block, B = (S, T, P, F) such that for each q ∈ S ∪ 
P, if ⏐q•⏐ > 1, the for every t ∈ q•, ⏐•t ⏐= 1.  
 

Lemma 1 is a direct result of Definition 6. 
 
Lemma 1: A Free Choice Petri Net Block with no 
placeholders is a Free Choice Petri Net. 

 
Lemma 2: The set of Free Choice Petri Net Blocks are 
closed under morph and substitution, i.e. if BB1 and B2 
are Free Choice Petri Net Blocks, then B1B  ⊗ B2 and 
BB2[B1 / p] where p is a placeholder in B1, are also Free 
Choice Petri Net Blocks. 
 
Proof: To show that B1 ⊗ B2 = (S, T, P, F) is a Free 
Choice Petri Net Block, suppose q ∈ S ∪ P such that 
⏐q•⏐ > 1, then q is either a place or a placeholder in 
BB1 or B2, since q ≠ Out(B1) because ⏐Out(B1) ⏐= 0. In 
either case, since both B

 •

1 and B2 are Free Choice Petri 
Net Blocks, then B1 ⊗ B2 is also a Free Choice Petri 
Net Block since B1 ⊗ B2 does not create a new 
scenario such that ⏐q ⏐ > 1. •

To show that BB2[B1/p] = (S, T, P, F) is a Free 
Choice Petri Net, we suppose that p is a placeholder in 
B1B . The process of substitution replaces all arcs into p 
and redirects them into In(B2) and redirects Out(B2) 
into the output of p. This does not incur any new 
situation such that ⏐q•⏐ > 1, because the redirection of 
arcs is a direct mapping from one node to another. 
Therefore B2[B1/p] is a Free Choice Petri Net Block. 
 
Theorem 1: Every Petri Net generated via SD2PN is a 
Free Choice Petri Net. 
 
Proof: As described in Section 3, the first step of the 
model transformation decomposes the Sequence 
Diagrams into fragments. In step 2, each fragment are 
transformed into Petri Net blocks as depicted in 
Figures 4 to 6. It is straightforward to see that each of 
the created block is a Free Choice Petri Net Block as 
for each ⏐q•⏐ > 1, every t ∈ q•, ⏐•t ⏐= 1. Step 3 
involves morph and substitution and by Lemma 2, both 
morph and substitution produces Free Choice Petri Net 
Blocks. The transformation stops when all 
placeholders are substituted and the Free Choice Petri 
Net Block has no more placeholders. By Lemma 1, a 
Free Choice Petri Net Block with no placeholders is a 
Free Choice Petri Net. 
 
5. Related Work 
 

Van der Aalst [2] makes use of Petri Nets for the 
analysis of Workflow Management Models. Using the 
analytical capabilities of Petri Nets, the Workflow 
Models are analyzed, i.e. validation, verification, and 
performance analysis. Vanhatalo et. al. [1] 
decomposed Business Process Models into blocks of 
Single Entry Single Exit (SESE) models and analyzed 
each blocks independently. This technique makes it 
possible to analyze the liveness and soundness of a 



Business Process Model. Moreover, they outlined that 
the fastest technique used in the analysis of Workflow 
Models are by transforming them into Free Choice 
Petri Nets. Delatour and Lamotte [ ] uses Petri Net as a 
replacement for State Chart Diagrams in UML. This 
was to provide a more formal semantics for UML 
diagrams. They also provided a tool, ArgoPN [ ], 
where the Petri Net is generated while allowing the 
users to switch back and forth from UML to Petri Nets. 
All the above approaches aim to provide tools and 
infrastructure for the automated analysis of models 
created by the designer. Our work is different from all 
the above approaches as we adopt a Model Driven 
approach which allows us better maintenance of the 
model transformations and their rapid modification. 

Anastasakis et al [20] describe the challenge of 
model transformation from UML [9] to Alloy [22] to 
create UML2Alloy [3], a tool for the analysis of UML 
models via the Alloy framework. UML2Alloy allows 
the analysis of static models which are decorated with 
OCL constraints [23]. Moreover, behavior of the 
system in UML2Alloy is modeled via Pre / Post 
conditions with the help of OCL. However, Alloy does 
not provide the mechanisms required for capturing 
complex dynamic behavior such as parallelism. 
Implementing the model transformation presented in 
this paper will allow us to extend UML2Alloy for 
better handling of the analysis of Sequence Diagrams. 
We are currently in process of implementing SD2PN 
via SiTra [24]  to be integrated into UML2Alloy 
toolset.  

There are various semantic that are defined for 
Sequence Diagrams [25-27], offering different ways to 
formalizing Sequence Diagrams. There are also other 
interpretation such as Alur [28] who created an 
analysis method for Message Sequence Charts. He 
used a top-down visual order method which is also 
similar to the method adopted by many others i.e. 
Kuster-Filipe [27] and Muscholl [29]. Kuster-Felipe 
created a semantic for Sequence Diagrams and 
outlined a way for Sequence Diagrams to be 
transformed into Labelled Event Structures to provide 
a more formal semantics. We have also adopted a 
similar approach in our research. 

The model transformation presented in this paper is 
complex. As a result, it is crucial to prove its 
correctness i.e. establish that any Sequence Diagram 
and the corresponding Petri Net created via SD2PN 
have similar behavior. To achieve this, a common 
semantics domain is required to compare the behavior 
of the Sequence Diagram and the Petri Nets. We have 
developed a proof for the correctness of SD2PN which 
uses Labelled Event Structure as a common semantics 
domain. Figure 11 depicts the outline of our approach 

in which φ is a semantic map introduced by Kuster-
Filipe [27]  and ψ is a semantic map introduced by 
McMillan [30] used in unfolding of Petri Nets. The 
proof is exhaustive and long, and due to space 
limitations, it is not included in this paper. 

Sequence Diagrams Petri Nets

LES LES

SD2PN

φ ψ

=
 

Figure 11: Using LES as a common semantics 
domain to prove correctness of transformation 

 
6. Conclusion 
 

This paper presents a method of applying Model 
Driven Development techniques to create Petri Net 
representation of UML2.0 Sequence Diagrams. The 
model transformation decomposes a Sequence 
Diagram into fragments and maps them into an 
extension of conventional Petri Nets called Petri Net 
blocks. A Petri Net Block may have a placeholder in 
which another Petri Net Block can be substituted. 
Moreover, Petri Net Blocks can be combined 
(morphed) together to create larger Petri Net Blocks. 
The paper also proves that Free Choice Petri Net 
Blocks are closed under morph and substitution. As a 
result, SD2PN transforms Sequence Diagrams into 
Free Choice Petri Nets. This allows applying low-
complexity analysis and synthesis techniques using 
Free Choice Petri Nets into Sequence Diagrams.  
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