
A Model Driven Approach to Represent Sequence Diagrams as Free Choice
Petri Nets

Mohamed Ariff Ameedeen, Behzad Bordbar
School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

{M.A.Ameedeen, B.Bordbar}@cs.bham.ac.uk

Abstract

Model Driven Development (MDD) aims to

promote the role of modeling in Software Engineering.
Enterprise systems and architectures are often
modeled via multiple representations. For example
UML models are widely used by the designers to
capture various viewpoint of the system; while formal
models using languages such as CSP, Z and Petri Nets
are suitable for the analysis. Model transformation
techniques developed as a part of MDD can be applied
to generate one model from another model
automatically. This allows benefiting from the tools
and techniques developed and used in multiple
languages. This paper presents a method of applying
MDD model transformation from UML 2.0 Sequence
Diagrams to Petri Nets. The paper shows that the
model transformation results in Free Choice Petri
Nets. As a result, the low complexity of analysis and
the synthesis techniques can be applied to the models
of enterprise systems which are captured in UML
Sequence Diagrams.

1. Introduction

In order to reduce the complexity, Enterprise
application architectures and methodologies often
make use of multiple models for expressing various
viewpoints and perspectives of the system. Often
multiple software tools are used to handle such
modeling languages. For example, to allow analysis of
enterprise systems various tools are developed which
transform design models to the models which are
suitable for the analysis [1-3]. Model Driven
Development (MDD) [4] provides the techniques for
creating software tools and infrastructure for
automated model transformation. In this regard, MDD
bridges the gap between two Technical Domains [5] by
automated transformation. However, model
transformation is a challenging task i.e. UML2Alloy

[3]. In particular, it is crucial to identify suitable
modeling frameworks. Our research is motivated by
the challenges of analysis and integration of models
used in the design of complex Enterprise systems.

Petri Nets are one of the most established
formalisms for modeling complex behavior. They are
widely used in various application domains for
analysis and synthesis [6, 7]. In particular, a subset of
Petri Nets known as Free Choice Petri Nets [8], in
which conflicts and concurrencies does not occur
simultaneously, have proven to be a highly suitable
choice for the analysis and synthesis.

This paper makes two contributions. Firstly, it
presents an MDD Model Transformation, from
UML2.0 Sequence Diagram to Petri Nets (SD2PN).
This allows converting Sequence Diagrams to Petri
Nets automatically. Secondly, the paper proves that
Petri Nets generated from SD2PN are Free Choice
Petri Nets. This allows benefiting from the low
complexity mechanism [8] for the analysis of Free
Choice Petri Nets to analyze Sequence Diagrams.
Moreover, well developed techniques in synthesis of
FCPNs can be applied for the integration of Sequence
Diagrams. This is particularly important as Sequence
Diagrams are often used to express partial behavior
and scenarios; synthesis of Sequence Diagram will
allow expressing of overall behavior of the system.
Although UML 2.0 [9] explains that Sequence
Diagrams do not have simultaneous conflict and
concurrencies, the equivalence of Sequence Diagrams
and Free Choice Petri Nets seems intuitive. However,
to the best of our knowledge, this has not been
published before.

This paper is organized as follows. Section 2 will
discuss preliminary information on MDD, Sequence
Diagrams and Petri Nets. Section 3 will describe the
steps involved in SD2PN model transformation,
including an example of applying SD2PN to a
Sequence Diagram based on the Man-in-the-Middle
security attack model. Section 4 will feature the proof

that shows all Petri Nets generated via SD2PN are Free
Choice Petri Nets.

2. Preliminaries

This section reviews the preliminary material
related to Model Driven Development, Sequence
Diagrams and Petri Nets used in the subsequent
chapters.

2.1. Model Driven Development

Model Driven Development [4] aims to promote the
role of modeling in software development. Models in
the context of MDD are captured in machine-readable
representations, using languages which are widely
adopted by software industry [10]. Hence it is possible
to communicate such models to various parties and
reuse them. This results in lower software production
cost and shorter development cycles. In this paper,
MDD is further used to develop a method to benefit
from advantages of using two representations of a
system, Sequence Diagrams and Petri Nets.

To allow integration of the presented approach to
existing modeling software tools, the standards set by
Model Driven Architecture (MDA) [11], a flavor of
MDD which is initiated by the Object Management
Group (OMG), will be used. Meta Object Facility
(MOF) [12] is one of such standards for describing
metamodels. Metamodels are themselves models, from
which models of the system are instantiated. MOF can
be compared to EBNF, which is used for defining
programming languages grammars. As a result, MOF
is a blueprint from which MOF Compliant metamodels
are created.

Fig. 1 depicts an outline of MDA and the process of
Model Transformation. A number of Transformation
Rules are used to define how various elements of one
metamodel (source metamodel) are mapped into the
elements of another metamodel (destination
metamodel). The process of Model Transformation is
carried out automatically via the software tools which
are commonly referred to as Model Transformation
Frameworks [13-15]. A typical Model Transformation
Framework requires three inputs: source metamodel,
destination metamodel and Transformation Rules. For
any instance of the source metamodel, a
transformation engine executes the rules to create an
instance of the destination metamodel.

Figure 1: Model Driven Development

2.2. Sequence Diagram

Sequence Diagrams is UML 2.0 version of Message
Sequence Charts [9] and are widely used in Software
Engineering [16]. Sequence Diagrams can be used in
modeling complex Enterprise Systems as they provide
a sequential listing of events and are also able to model
parallelism and alternatives. They are also effective in
modeling behaviour and concurrency.

InteractionFragment

Interaction EventOccurrence

CombinedFragments

InteractionOperator :
InteractionOpetratorKind

InteractionOperand

Lifeline

Message MessageEnd

GeneralOrdering InteractionConstraint

Constraint

<<enumeration >>
InteractionOperatorKind

Alt
Opt
Break
Par

+coveredBy

+fragment

+enclosing
Interaction

+fragment
(ordered)

+interaction

+interaction

+covered

+message

+sendMessage

+receiveMessage

+sendEvent

+receiveEvent

+before +after

+toBefore+toAfter

+operand

+guard+generalOrdering

*
*

0..1

1

1

* 0..1
0..1 0..1

0..1

* *

11
0..1

1..*

0..1

1

Figure 2: Metamodel of Sequence Diagram

Figure 2 represents a subset of UML 2.0 Sequence

Diagrams metamodel used in this paper, comprising of
important constructs used for depicting models with
complex behavior. The main fragments of the
Sequence Diagram are represented by model elements
Message and CombinedFragments. The model element
Message represents the interaction between the
instances of objects in the system while
CombinedFragments are high level addition to
Sequence Diagrams and consist of Interaction
Operators alternative, option, break and parallel.
These model elements will be referred to as fragments
of Sequence Diagrams throughout this paper.

The model element EventOccurrence and
GeneralOrdering denotes the sequencing of events in
the diagram. EventOccurrence is a specialization of
MessageEnd where each message is given a specific

order in reference to the previous and subsequent
messages.

This paper focuses on the flow of events, therefore
the constraints are not considered. However, the
constraints could be directly mapped into the
transformation resulting in Coloured Petri Nets [17]
without changing the rest of our results. Further
information on Sequence Diagram could be obtained
from the UML Super Specification document [9].

2.3. Petri Nets

Petri Nets are a graphical and mathematical

modelling language applicable to Enterprise Systems.
Petri Nets can be parallel, asynchronous, concurrent,
distributed and stochastic as well as being dynamic [6].
Similar to flow-charts, a Petri Net can model the flow
of events in a system graphically [18].

Petri nets can be formalized as follows:

Definition 1: A Petri Net is a triple N = (S, T, F) where
S is a finite set of places and T is a set of transitions
where S ∩ T = ∅. F is a relations on S ∪ T where F
∩ (S x S) = F ∩ (T x T) = ∅. A marking of N is a
function m:S →{0,1,2,3, …}, where each place s ∈ S
is assigned the number of tokens. M0 is used to show
the initial marking, the number of tokens in each place
at the beginning of execution.

Graphical representations of Petri nets depict each
place as a circles and each transition as a square.
Transitions represent actions and places often model
pre-set and post-set for the actions. Suppose two places
s1 and s2 with a transition t such that s1 is before t and
s2 is after t. This means that s1 is in the pre-set of t and
s2 is in the post-set of t; which can be written as s1 ∈ •t
and s2 ∈ t•. Similarly, the set of input and output
transitions for s1 can be written as •s1 and s1

•
respectively. The execution of the transition t will
remove a token from each place in •t and add a token
in each place in t•

. The execution of a Petri Net is non-
deterministic, which means multiple transitions can be
enabled simultaneously and the any of the transitions
could fire.

Figure 3 depicts the metamodel of Petri Net used in
this paper. Referring to Definition 1, S and T are
represented by the instances Place and Transition
while InputArc and OutputArc represents the
relationship F. The instance Marking refers to the
function m:S. Every place may have a Mark which
represents the number of tokens that belongs to a
place. This instance is represented by an integer, i.e. 0,
1, 2 and so on.

A well-studied subclass of Petri net is called Free
Choice Petri Nets [8] in which conflicts and
concurrencies cannot occur at the same time. This
subclass of Petri Net is predominantly used for
effective and efficient analysis in enterprise systems
[1]. Moreover, the theory of synthesis of Free Choice
Petri Nets is well developed [].

Petri Net

Transition

OutputArcInputArc

Place

Marking

Mark

1

1
1 1

1

1 1 1 1

*

1..*

1..* 1..*

tokens: Integer

Figure 3: Metamodel of Petri Net

Definition 2: Baccelli [19] defines Free Choice Petri
Nets, as whenever two transitions in the net share an
input place, they must not have any other input places.
This can also be written as when ⏐p•⏐ > 1, for every t
∈ p•, ⏐•t ⏐= 1.

The above definition ensures that in the Petri Net
conflict (a place has more than output) and
concurrency (a transition has more than one input) are
not occurring at the same part of the net. Therefore, it
is possible to have both conflict and concurrency
within the net, just not simultaneously.

There is another definition of FCPN presented in
[8] which is slightly weaker than the definition
presented above, i.e. if a Petri net satisfied Definition 2
will satisfy definition in [8]. For further information on
Free Choice Petri Nets see [8, 19].

3. SD2PN Model Transformation

This section describes the process of model
transformation from Sequence Diagrams to Petri Nets
(SD2PN). This transformation is broken down to three
steps to illustrate the stages involved in the process.
The steps involved are:

Step 1: Decomposing the Sequence Diagrams into
fragments.
Step 2: Transforming each fragment with its
equivalent block of Petri Nets.
Step 3: Morphing and Substituting the blocks of Petri
Nets to create a Petri Net representation of the original
Sequence Diagram.

The steps above are described in the sections 3.1 to
3.3. To illustrate the transformation, an example of
applying SD2PN is included in section 3.4.

3.1. Decomposition of Sequence Diagrams into
Fragments

The process of decomposition of a Sequence
Diagram is carried out on the concrete syntax
representation and involves identification of various
model elements and their relationships. The metamodel
of Figure 2 depicts model elements used in a Sequence
Diagram. The term Fragments in this paper refers to
messages and CombinedFragments consisting of
alternatives, options, breaks and parallels. The
GeneralOrdering can be used to identify the causality
between the EventOccurrences. In Sequence
Diagrams, this ordering is the same as top-down visual
ordering. The model transformation SD2PN must not
only transform the Fragments into their equivalent
Petri net, but also must ensure correct ordering
between the EventOccurrence so that the blocks of
Petri Nets that are generated conform to same the order
as the Sequence Diagram fragments.
 As is depicted in Figure 2, CombinedFragment
may include multiple InteractionFragments or even
other CombinedFragments. Consequently, each
CombinedFragments has a hierarchical structure. To
transfer each CombinedFragment, internal Fragments
must be transformed and then integrated into the
transformation of the high-level Fragment in the
hierarchy.

3.2. SD2PN Model Transformation Rules

This section will describe in Step 2 of the model
transformation process, which transforms each
fragments of Sequence Diagram (from Step 1) with a
corresponding block of Petri Net.

Message: Page 491 of [9] describes a message as
either a call for the execution of an operation or
depicting sending and receiving of a signal. The
execution of a message, m in a Sequence Diagram is
depicted as the firing of a transition, t in the
corresponding Petri Net. As depicted in Figure 4,
places s1 and s2 model precondition and postconditions
for the firing of the transition. These places will be
used to create correct causality of events within the
sequence diagram. As a further condition to this rule,
if m is the first message in the Sequence Diagram, then
s1 in the corresponding block of Petri Net must be
given a token to ensure firing of t. For other messages,

the model transformation ensures correct wiring of the
blocks of Petri net to ensure firing of the transition.

m t
SD2PN
Rule 1

s1

s2
Figure 4: Applying SD2PN to a Message fragment

Alternative: The Interaction Operator alternative
specifies that a set of event may occur if a condition is
satisfied and another set of event will occur otherwise
as shown in page 468 of [9]. To preserve this
semantics, this fragment is represented as a block of
Petri Net that starts with a place s1 that breaks into two
transitions t1 and t2. These two transitions denote the
different alternative scenarios in the Sequence
Diagrams and will each map into a placeholder block
ph1 and ph2 respectively, which represent
alt_fragment1 and alt_fragment2. These placeholders
will later be substituted with the actual events inside
the fragment. They will then map into transitions t1 and
t2 to signal the end of the alternative fragments and
will terminate at place p2 as shown in Figure 5. This
paper is dealing with the flow of events within the
sequence diagrams. Hence, data related issues such as
the transformation of logical constraints, which can be
used on the sequence diagram, are not considered.
However, transformation of such constraints would be
straightforward, by adding the constraints as
preconditions to the firing of transitions t1 and t2 to
obtain a Coloured Petri net. In this paper, it is assumed
that the firing of t1 and t2 occurs non-deterministically.
Alternative with more than two alt_fragments can be
explained similarly.

s1

Alt_fragment1

Alt_fragment2

alt

ph1 ph2

s2

t1 t2

t3 t4

SD2PN
Rule 2

Figure 5: Applying SD2PN to an Alternative

fragment

Option: Interaction Operator option can be treated
similar to the alternative fragment. Therefore, the same
block of Petri Net as in Figure 5 is used, with

exception of ph1 and ph2 representing opt_fragment1
and opt_fragment2 instead.

Break: Break as described in page 468 of [9] consists
of a guard (condition) such that when it is satisfied, the
operation breaks (i.e. terminates). This is modeled with
the help of two transitions: t for the case that the
guard fails and t for when the guard is satisfied.

1

2
Transition t1 connects to ph1 that represents
break_fragment1, which is the set of event that
happens if the break condition is not satisfied while t2
leads to place x which is the terminal node. The
placeholder ph1 is then connected to a transition t3 as
shown in Figure 6 to mark the termination of the block
at s2.

s1

Break_fragment1

break

ph1

s2

t1 t2

t3

XSD2PN
Rule 4

Figure 6: Applying SD2PN to a Break fragment

Parallel: A parallel operator specifies that two or
more sets of event should occur concurrently without
any pre-defined set of conditions, see page 468 of [9].
As depicted in Figure 7, the corresponding block of
Petri Nets must ensure parallel execution of
par_fragment1 and par_fragment2. The fragment start
with a place and a transition to ensure correct merging
with other fragments.

s1

Par _fragment 1

Par _fragment 2

par

ph1 ph2

s2

t1

t2

SD2PN
Rule 5

Figure 7: Applying SD2PN to a Parallel fragment

After each fragments of the Sequence Diagram are
transformed into a corresponding block of Petri Net, it
has to be put together to generate a complete Petri Net.
This is shown in the next step.

3.3. Morph and Substitute

This section will describe Step 3, where every block

of Petri Net is put together in the order outlined in the
original Sequence Diagram to create a complete Petri
Net. There are two techniques that will be used in this
section: morph and substitute. These techniques are
described in the paragraphs below.

Morph is used to join two blocks of Petri Net
together. As can be observed from Step 2, every block
of Petri Net starts and ends with a single place (even
break, where x is a terminal node and does not interact
with the rest of the Petri Net). To join two of these
blocks together, the end node of the first block is
morphed into the start of the second block. An
example of this operation could be found in Section
3.4.

Substitution is used in cases where there are
placeholders. The events that are in the actual
fragment will be substituted into the placeholders. This
will not offer any problems since immaterial of the
number of events in a specific fragment, it always
starts and end with a place, therefore a substitution can
take place. An example of this scenario can be
obtained from Section 3.4. The morph and substitute
technique is used until all the blocks of Petri Nets are
joined together in the order of the original Sequence
Diagram.

3.4. An example of SD2PN application

In this section, the SD2PN Model Transformation is
explained with the help of an example. As defined in
the previous sections, the transformation goes through
three steps, and it will all be explained using the
example in Figure 8 below.

The example in Figure 8(a) is a generic man-in-the-
middle attack model adapted from [20, 21]. This is a
model of a security breach scenario where an Attacker
listens in to the communication between the Requester
and the Authenticator. During the transmission of a
message from the Requester, the Attacker poses as the
Authenticator. This enables the Attacker to duplicate
all the ‘secret information’ from the Requester, as can
be seen in Figure 8 (a). The Attacker then
communicates with the Authenticator, posing as the
Requester, and sends the ‘secret information’. The
Authenticator validates the ‘secret information’ from
the Attacker and provides the ‘session key’ to the
Attacker. This creates a security breach and grants
unauthorized session access to the Attacker.

In this diagram, there are 12 messages and one
Interaction Operator of type alternative. This means,

Step 1 of the transformation involves the
decomposition of the Sequence Diagram into 13
fragments. These fragments are noted in the diagram
using the numbered elliptical figures.

Requestor A ttacker Authenticator AuthHelper

alt

miscMsg
miscMsgAt

miscReturn
miscReturnAt

checkSecretInfo
checkSecretInfoA t

validate

val

authenticatedSession

authenticatedSessionAt

noAuthentication
noA uthenticationAt

[trueGuard]

[else]

(a)

miscMsg

miscMsgA t

miscReturn

miscReturnA t

checkSecretInfo

checkS ecretInfoA t

validate

val

authenticatedS ession

authenticatedS essionAt

noAuthentication

noA uthenticationA t

[trueGuard] [else]

(b)

1
2

3
4

5
6

7

8

10

11

12

13

9

1

2

3

4

5

6

8

7

9

10 11

12 13

Figure 8: Example of applying SD2PN to a generic

man-in-the-middle attack model

Step 2 in SD2PN is to transform each of the 13

fragments into its corresponding block of Petri Nets
using the transformation rules outlined in Section 3.2.
These blocks of Petri Nets then needs to be joined
together to generate a complete Petri Net as shown in
Figure 8(b). The numbered elliptical figures refer to
the original fragments of Sequence Diagram that they
were transferred from. This leads to Step 3, using
morph and substitution to join the blocks of Petri Net.

Every causal block of Petri Net are joined together
using morph as explained in Section 3.3. An example
of morph is joining the block of Petri Net representing

the first message with the block that represents the
second message as shown in Figure 9 below. The end
place from the first block morphs into the beginning of
the second block, thus joining the two blocks together.

miscMsg

miscMsgAt

morph

Figure 9: Example of morph technique in SD2PN

An example of using substitution as shown in
Figure 10 below is the block of Petri net representing
the alternative fragment and the messages in each
alt_fragment represented by the placeholders.

[trueGuard] [else]

ph
1

ph
2

authenticatedSession

authenticatedSessionA t

noAuthentication

noAuthenticationA t

(substitution) (substitution)

Figure 10: Example of substitution in SD2PN

Morph and substitution are used repeatedly until all

the causal fragments are joined, preserving the order
from the original Sequence Diagram, generating the
Petri net in Figure 8(b).

It could be seen that the Petri Net generated in
Figure 8 (b) is a Free Choice Petri Net as. There is
only one place p with ⏐p•⏐ > 1 in alternative block, in
which for every t ∈ p•, ⏐•t ⏐= 1. In the next section,
we will establish that every Petri Net generated
through SD2PN is a Free Choice Petri Nets.

4. SD2PN Model Transformation
Generates Free Choice Petri Nets

To prove that SD2PN results in only Free Choice
Petri Nets, we need to formalize the definition of the
Petri Net Blocks generated by the transformation.
These Petri Net Blocks include a new type of node
called placeholders, which are depicted by the dotted
squares in Figures 5, 6 and 7. Moreover, it can be seen
that every Petri Net Block has a unique input place and
output place.

Definition 3: A Petri Net Block is a four tuple B = (S,
T, P, F) where S is a finite set of places, T is a finite
set of transitions, and P is a finite set of placeholders.

F ⊆ ((S ∪ P) × T) ∪ (T × (S ∪ P)) is a set of arcs.
In(B), Out(B) ∈ S are unique places such that In(B)
has no incoming arcs and Out(B) has no outgoing arcs.
They represent the start and end places in the Petri Net
Blocks respectively.

Petri Net Blocks clearly extends the definition of
conventional Petri Nets, since a Petri Net Block where
P = ∅ is a Petri Net.

The formal definition of morph and substitution as
used in the previous sections will be presented in
Definitions 4 and 5 below.

Definition 4: Suppose B1 = (S1, T1, P1, F1) and B2 =
(S2, T2, P2, F2) are two Petri Net Blocks. The morphing
of B1 and B2, denoted by B1 ⊗ B2 results in a Petri Net
Block B = (S, T, P, F) such that T = T1 ∪ T2, P = P1 ∪
P2, S = (S1 ∪ S2) \ {Out(B1)}, In(B) = In(B1) and
Out(B) = Out(B2).

F = ((F1 ∪ F2) \ {(x, y) ⏐ y = Out(B1)} ∪ {(x, In(B2) ⏐
(x, Out(B1) ∈ F1} ….. (∗).

To explain (∗), notice that the arcs in B are obtained
by including all the arcs in F1 ∪ F2 except the arcs
leading to output places of BB1, Out(B1). All arcs that
terminates in Out(B1) must be redirected to In(B2) in
order to morph B1 and B2.

Definition 5: Suppose B1 = (S1, T1, P1, F1) and B2 =
(S2, T2, P2, F2) are two Petri Net Blocks. Let p be a
placeholder in B2. Substituting the Petri Net Block, B1
into p, denoted by BB2[B1/p] results in a Petri Net
Block, B = (S, T, P, F), where S = S1 ∪ S2, T = T1 ∪
T2, P = (P1 ∪ P2) \ {p}, In(B) = In(B2), Out(B) =
Out(B2) and

 F = (F1 ∪ F2 \ {(x, y) ⏐ x = p or y = p}) ∪ {(x, In(B1))
⏐ (x, p) ∈ F1} ∪ {(Out(B1), y) ⏐ (p, y) ∈ F1} (∗∗).

The equation (∗∗) states that arcs in B can be
obtained by removing all arcs to and from p and
redirecting them to In(B1) and Out(B2) respectively.

The definition of Free Choice Petri Nets from
Definition 2 can be extended to Petri Net Blocks.

Definition 6: A Free Choice Petri Net Block is a Petri
Net Block, B = (S, T, P, F) such that for each q ∈ S ∪
P, if ⏐q•⏐ > 1, the for every t ∈ q•, ⏐•t ⏐= 1.

Lemma 1 is a direct result of Definition 6.

Lemma 1: A Free Choice Petri Net Block with no
placeholders is a Free Choice Petri Net.

Lemma 2: The set of Free Choice Petri Net Blocks are
closed under morph and substitution, i.e. if BB1 and B2
are Free Choice Petri Net Blocks, then B1B ⊗ B2 and
BB2[B1 / p] where p is a placeholder in B1, are also Free
Choice Petri Net Blocks.

Proof: To show that B1 ⊗ B2 = (S, T, P, F) is a Free
Choice Petri Net Block, suppose q ∈ S ∪ P such that
⏐q•⏐ > 1, then q is either a place or a placeholder in
BB1 or B2, since q ≠ Out(B1) because ⏐Out(B1) ⏐= 0. In
either case, since both B

 •

1 and B2 are Free Choice Petri
Net Blocks, then B1 ⊗ B2 is also a Free Choice Petri
Net Block since B1 ⊗ B2 does not create a new
scenario such that ⏐q ⏐ > 1. •

To show that BB2[B1/p] = (S, T, P, F) is a Free
Choice Petri Net, we suppose that p is a placeholder in
B1B . The process of substitution replaces all arcs into p
and redirects them into In(B2) and redirects Out(B2)
into the output of p. This does not incur any new
situation such that ⏐q•⏐ > 1, because the redirection of
arcs is a direct mapping from one node to another.
Therefore B2[B1/p] is a Free Choice Petri Net Block.

Theorem 1: Every Petri Net generated via SD2PN is a
Free Choice Petri Net.

Proof: As described in Section 3, the first step of the
model transformation decomposes the Sequence
Diagrams into fragments. In step 2, each fragment are
transformed into Petri Net blocks as depicted in
Figures 4 to 6. It is straightforward to see that each of
the created block is a Free Choice Petri Net Block as
for each ⏐q•⏐ > 1, every t ∈ q•, ⏐•t ⏐= 1. Step 3
involves morph and substitution and by Lemma 2, both
morph and substitution produces Free Choice Petri Net
Blocks. The transformation stops when all
placeholders are substituted and the Free Choice Petri
Net Block has no more placeholders. By Lemma 1, a
Free Choice Petri Net Block with no placeholders is a
Free Choice Petri Net.

5. Related Work

Van der Aalst [2] makes use of Petri Nets for the
analysis of Workflow Management Models. Using the
analytical capabilities of Petri Nets, the Workflow
Models are analyzed, i.e. validation, verification, and
performance analysis. Vanhatalo et. al. [1]
decomposed Business Process Models into blocks of
Single Entry Single Exit (SESE) models and analyzed
each blocks independently. This technique makes it
possible to analyze the liveness and soundness of a

Business Process Model. Moreover, they outlined that
the fastest technique used in the analysis of Workflow
Models are by transforming them into Free Choice
Petri Nets. Delatour and Lamotte [] uses Petri Net as a
replacement for State Chart Diagrams in UML. This
was to provide a more formal semantics for UML
diagrams. They also provided a tool, ArgoPN [],
where the Petri Net is generated while allowing the
users to switch back and forth from UML to Petri Nets.
All the above approaches aim to provide tools and
infrastructure for the automated analysis of models
created by the designer. Our work is different from all
the above approaches as we adopt a Model Driven
approach which allows us better maintenance of the
model transformations and their rapid modification.

Anastasakis et al [20] describe the challenge of
model transformation from UML [9] to Alloy [22] to
create UML2Alloy [3], a tool for the analysis of UML
models via the Alloy framework. UML2Alloy allows
the analysis of static models which are decorated with
OCL constraints [23]. Moreover, behavior of the
system in UML2Alloy is modeled via Pre / Post
conditions with the help of OCL. However, Alloy does
not provide the mechanisms required for capturing
complex dynamic behavior such as parallelism.
Implementing the model transformation presented in
this paper will allow us to extend UML2Alloy for
better handling of the analysis of Sequence Diagrams.
We are currently in process of implementing SD2PN
via SiTra [24] to be integrated into UML2Alloy
toolset.

There are various semantic that are defined for
Sequence Diagrams [25-27], offering different ways to
formalizing Sequence Diagrams. There are also other
interpretation such as Alur [28] who created an
analysis method for Message Sequence Charts. He
used a top-down visual order method which is also
similar to the method adopted by many others i.e.
Kuster-Filipe [27] and Muscholl [29]. Kuster-Felipe
created a semantic for Sequence Diagrams and
outlined a way for Sequence Diagrams to be
transformed into Labelled Event Structures to provide
a more formal semantics. We have also adopted a
similar approach in our research.

The model transformation presented in this paper is
complex. As a result, it is crucial to prove its
correctness i.e. establish that any Sequence Diagram
and the corresponding Petri Net created via SD2PN
have similar behavior. To achieve this, a common
semantics domain is required to compare the behavior
of the Sequence Diagram and the Petri Nets. We have
developed a proof for the correctness of SD2PN which
uses Labelled Event Structure as a common semantics
domain. Figure 11 depicts the outline of our approach

in which φ is a semantic map introduced by Kuster-
Filipe [27] and ψ is a semantic map introduced by
McMillan [30] used in unfolding of Petri Nets. The
proof is exhaustive and long, and due to space
limitations, it is not included in this paper.

Sequence Diagrams Petri Nets

LES LES

SD2PN

φ ψ

=

Figure 11: Using LES as a common semantics
domain to prove correctness of transformation

6. Conclusion

This paper presents a method of applying Model
Driven Development techniques to create Petri Net
representation of UML2.0 Sequence Diagrams. The
model transformation decomposes a Sequence
Diagram into fragments and maps them into an
extension of conventional Petri Nets called Petri Net
blocks. A Petri Net Block may have a placeholder in
which another Petri Net Block can be substituted.
Moreover, Petri Net Blocks can be combined
(morphed) together to create larger Petri Net Blocks.
The paper also proves that Free Choice Petri Net
Blocks are closed under morph and substitution. As a
result, SD2PN transforms Sequence Diagrams into
Free Choice Petri Nets. This allows applying low-
complexity analysis and synthesis techniques using
Free Choice Petri Nets into Sequence Diagrams.

8. References

[1] J. Vanhatalo, H. Volzer, and F. Leymann,

"Faster and More Focussed Control-Flow
Analysis for Business Process Models
Through SESE Decomposition," in Service
Oriented Computing - ICSOC 2007, Fifth
International Conference. vol. 4749 Vienna,
Austria: Springer, 2007, pp. 43-55.

[2] W. M. P. van der Aalst, "The Application of
Petri Nets for Workflow Management," The
Journal of Circuits, Systems and Computers,
vol. 8, pp. 21-66, 1998.

[3] B. Bordbar and K. Anastasakis, "UML2Alloy:
A tool for lightweight modelling of Discrete
Event Systems," in IADIS International
Conference in Applied Computing 2005. vol.
1 Algarve, Portugal, 2005, pp. 209-216.

[4] T. Stahl and M. Volter, Model Driven
Software Development; technology
engineering management: Wiley, 2006.

[5] J. Greenfield and K. Short, Software
Factories: Wiley, 2004.

[6] T. Murata, "Petri Nets: Properties, Analysis
and Applications," Proceedings of the IEEE,
vol. 77, pp. 541-580, 1989.

[7] E. Badouel and P. Darondeau, "On the
synthesis of General Petri Nets," Inria
Research Report vol. 3025, 1996.

[8] J. Desel and J. Esparza, Free Choice Petri
Nets: Cambridge University Press, 1995.

[9] UML, "UML Superstructure 2.0, Object
Management Group, available at
www.omg.org," 2003.

[10] UML2.0, "UML 2.0 Superstructure
Specification, Final Adopted Specification,
available at www.omg.org," 2004.

[11] MDA, "Model Driven Architecture, Object
Management Group www.omg.org/mda/,"
2005.

[12] MOF, "Meta Object Facility (MOF) 2.0 Core
Specification, Object Management Group,
available at www.omg.org,," 2004.

[13] ATLAS, "ATLAS, Université de Nantes,
http://www.sciences.univ-nantes.fr/lina/atl/,"
2005.

[14] kermeta, "Triskell Metamodelling Kernel,
www.kermeta.org," 2005.

[15] D. H. Akehurst, B. Bordbar, M. J. Evans, W.
G. J. Howells, and K. D. McDonald-Maier,
"SiTra: Simple Transformations in Java," in
ACM/IEEE 9TH International Conference on
Model Driven Engineering Languages and
Systems, 2006, pp. 351-364.

[16] J. Campos and J. Merseguer, "On the
Integration of UML and Petri Nets in
Software Development," in 27th International
Conference on Applications and Theory of
Petri Nets and Other Models of Concurrency,
Turku, Finland, 2006.

[17] J. Kurt, Coloured Petri nets (2nd ed.): basic
concepts, analysis methods and practical use:
volume 1: Springer-Verlag, 1996.

[18] J. Butler, R. Hubbly, and W. Melo, "An
MOF-based repository for enterprise
architecture models," in avaialble at www-
128.ibm.com/developerworks/rational/library
/mar05/melo/index.html, 2005.

[19] F. Baccelli, S. Foss, and B. Gaujal, "Free
Choice Petri Net: an Algebraic Approach,"
IEEE Trans. on Automatic Control, 1996.

[20] K. Anastasakis, B. Bordbar, G. Georg, and I.
Ray, "UML2Alloy: a Challenging Model
Transformation," in ACM/IEEE 10th
international confernece on Model Driven
Engineering Languages and Systems, 2007,
pp. 436-450.

[21] G. Georg, I. Ray, K. Anastasakis, B. Bordbar,
M. Toahchoodee, and S. H. Houmb3, "An
Aspect-Oriented Methodology for
Developing Secure Applications," Submitted
to Information and Software Technoology,
2008.

[22] AlloyAnalyzer, "Alloy Analyzer Website,
http://alloy.mit.edu/beta/ [cited February
2005]." 2005.

[23] OMG, "UML 2.0 OCL Specification," in
Document Id: ptc/03-10-14, OMG Final
Adopted Specification ed, 2003.

[24] SiTra, "Simple Transformer (SiTra): an MDE
tool, www.cs.bham.ac.uk/~bxb/SiTra.html,"
2006.

[25] X. Li, Z. Liu, and H. Jifeng, "A Formal
Semantics of UML Sequence Diagram," in
Australian Software Engineering Conference
(ASWEC'04), 2004, pp. 168-191.

[26] C. Seung Mo, K. Hyung Ho, C. Sung Deok,
and B. Doo Hwan, "A semantics of sequence
diagrams," Inf. Process. Lett., vol. 84, pp.
125-130.

[27] J. Küster-Filipe, "Modelling concurrent
interactions," Theor. Comput. Sci., vol. 351,
pp. 203-220, 2006.

[28] R. Alur, E. Kousha, and Y. Mihalis,
"Inference of message sequence charts," in
Proceedings of the 22nd international
conference on Software engineering
Limerick, Ireland: ACM, 2000.

[29] A. Muscholl and D. Peled, "Analyzing
message sequence charts," in 2nd Workshop
on SDL and MSC Grenoble, France, 2000.

[30] K. L. McMillan, "A technique of state space
search based on unfolding," Form. Methods
Syst. Des., vol. 6, pp. 45-65, 1995.

http://www.omg.org,/
http://www.omg.org,/
http://www.omg.org/mda/,
http://www.omg.org,,/
http://www.sciences.univ-nantes.fr/lina/atl/,
http://www.kermeta.org,/
http://alloy.mit.edu/beta/
http://www.cs.bham.ac.uk/%7Ebxb/SiTra.html,

	1. Introduction
	2. Preliminaries
	2.1. Model Driven Development
	2.2. Sequence Diagram
	2.3. Petri Nets

	3. SD2PN Model Transformation
	3.1. Decomposition of Sequence Diagrams into Fragments
	3.2. SD2PN Model Transformation Rules
	3.3. Morph and Substitute
	3.4. An example of SD2PN application

	4. SD2PN Model Transformation Generates Free Choice Petri Nets
	5. Related Work
	6. Conclusion
	8. References

