
An Experiment in Using Model Driven Development:  
Compiling UML State Diagrams into VHDL 

David Akehurst1, Gareth Howells1, Klaus McDonald-Maier2, Behzad Bordbar3 

1University of Kent, Canterbury, UK 
{D.H.Akehurst, W.G.J.Howells}@kent.ac.uk 

2University of Essex, Colchester, UK 
kdm@essex.ac.uk 

3University of Birmingham, Birmingham, UK 
B.Bordbar@cs.bham.ac.uk 

 
Software systems are becoming increasingly more complex. 
Model Driven Development (MDD) techniques are being 
proposed as a potential means to manage that complexity. In 
this paper, we discuss the results of experimenting with the 
use of Model Driven Development techniques as a means of 
compiling UML State Diagrams into synthesisable VHDL 
code. These results show that although MDD provides a 
potentially useful technique, there are aspects where we still 
need significant improvement in the MDD tools and 
techniques in order to make this an easily useable approach to 
the task. 

1 Introduction 
As our software systems grow ever more complex, we 

require tools and techniques to aid the developer in 
managing that complexity. A commonly used technique is 
to raise the level of the language in which the system can 
be developed and recently there has been a move towards 
more and more use of graphical and domain specific 
languages. In particular Model Driven Development 
techniques (MDD [30]) are being proposed as a 
successful way to better manage the increasing 
complexity. 

The ModEasy [20] project explores provision of 
automated support for mapping embedded system designs 
on to both low level implementations and system 
verification toolkits. There is a clear advantage in 
providing this kind of automated support – namely that 
there is a single specification written by the designer, 
which is used to both verify and implement the system, 
thus avoiding the significant problem of the introduction 
of differences between the verified and implemented 
versions of the system. 

Part of the work of the ModEasy project requires the 
development of a framework for deriving VHDL 
specifications from UML state diagrams (one of the UML 
mechanisms for describing the behaviour of a component) 
and the definition of a set of rules that enable automated 
procedures to generate VHDL code from UML notations. 

The research on which this paper is based is twofold. 
Firstly, an investigation into the use of UML State 
Machines for specifying the behaviour of embedded 
system components. The results of this aspect of the 
research are reported in other publications. 

This paper focuses on the experience gained from the 
use of MDD techniques as a way to create a State 
Machine to VHDL compiler. The paper treats the State 
Machine to VHDL problem as a means to exercise the 
MDD techniques, and highlights interesting and 
problematic aspects of that exercise. 

Section 2 of the paper gives a brief overview of MDD, 
State Diagrams and VHDL for those readers for whom 
they are unfamiliar. Section 3 contains an overview of the 
case study. Section 4 discusses our experiences of using 
MDD techniques on this case study. Sections 5 and 6 
discuss related work and conclude the paper. 

2 Background 
 Model Driven Development 

Model Driven Engineering (MDE) or Model Driven 
Development (MDD) is an approach to software 
development in which the focuses is on Models as the 
primary artefacts in the development process, with 
Transformations as the primary operation on models, used 
to map information from one model to another. 

In general, we can view Model Driven Development as 
a general principle for software engineering that can be 
realised in a number of different ways (using different 
standards) and supported by a variety of tools. One of the 
most common realisations of MDD is using the Object 
Management Group’s (OMG) Model Driven Architecture 
(MDA) [23] set of standards. 

Within MDA the central idea of object composition is 
replaced by the notion of model transformation. The idea 
of software systems being composed of interconnected 
objects is not in opposition with the idea of the software 
life cycle being viewed as a chain of model 
transformations; rather they are seen as complimentary 
techniques, with MDA build on top of OO. 

MDD is an evolving paradigm with many expectations 
on its final potential and with much research and 
development needed before it will meet those 
expectations. A comprehensive review of MDD 
techniques is given (amongst other places) in [7]. 

 UML State Diagrams 
The UML state diagram formalism is a variant of 

Statecharts invented by David Harel [12]. Harel 
introduced diagrams that extend traditional state-
transition diagrams with the notions of hierarchy and 
concurrency. A state diagram is a technique to describe 
the behaviour of a system and represents the event 
triggered flow of control where objects change state by 
means of transitions. There are a number of books and 
papers about UML state diagrams, although the definitive 
definition is given as part of the UML standard [25]. 

 VHDL 
Very High Speed Integrated Circuits Hardware 

Description Language (VHDL) is a hardware description 
language used to describe the structure and the behaviour 



of digital electronic systems [16]. VHDL allows three 
styles of design: 
1. The Structural approach describes how the system is 

decomposed into sub-systems and how those sub-
systems are interconnected. 

2. The Behavioural approach which permits description 
of the behaviour of a component by means of high-
level language constructs, similar to other high level 
programming languages. 

3. The Dataflow approach describes the circuit in terms 
of how data moves through the system from input to 
output. 

VHDL specifications of complete systems typically 
contain a number of mixed-type designs. The 
predominant feature of VHDL is the ability to simulate 
the design before committing it to manufacturing, 
allowing designers to quickly compare alternatives and 
verify the behaviour of the circuit. 

In VHDL, the digital circuit is separated into an entity 
and one or several architectures. Basically, an entity 
models the interface of a circuit in terms of ports while an 
architecture models one possible implementation of the 
circuit, in terms of concurrent and sequential statements. 

VHDL was originally designed as a language for 
simulating digital circuits, not as a language from which 
to directly generate a hardware implementation. 
Consequently, many VHDL constructs are not supported 
by synthesis software. The set of concepts from which it 
is possible to generate hardware are a subset of the full 
VHDL language, known as Register Transfer Level 
(RTL). The syntax and semantics that can be used in 
common by all compliant RTL synthesis tools to achieve 
uniformity of results have been defined in [15]. It defines 
the subset of [16] that is suitable for RTL synthesis as 
well as the semantics of that subset for the synthesis 
domain.  

3 Overview of the Case Study 
The problem we wish to solve using MDD techniques 

is illustrated in Figure 1. The aim is to enable us to 
compile a UML based specification of an embedded 
system into VHDL code – which can be subsequently 
synthesised for implementation onto an FPGA. 

Ideally, the UML specification should consist of a 
mixture of Component and State Diagrams. The 
Component diagrams will define a configuration of 
predefined modules and their connectivity. State diagrams 
facilitate the specification of a state based behaviour for 
any component whose behaviour can be thus expressed; 
some components will require other mechanisms to define 
their non-state based behaviour. However, that issue is out 
of scope for the purpose of the example in this paper. 

The overall problem is broken down into a number of 
tasks to which we apply different aspects of MDD 
technology. We address these tasks using different MDD 
techniques as follows: 

State Diagram Editor: A State Diagram editor is 
essentially an editor for a Domain Specific Graphical 
Language. Typical graphical language tool/editing 
support should be provided enabling a pleasant user 
experience for entering State Diagram specifications. 
There are two options to providing a solution to this 
aspect: Either by using an existing UML editing tool and 

employ a model interchange format (e.g. XMI) to import 
the specification; or to build a bespoke (DSL). We 
currently use the second of these options, although we 
plan to enable import from XMI in the future. 
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Figure 1 

State Diagram and VHDL Meta-Models: The MDD 
approach to manipulating languages implies that one 
should use an abstract representation (model) of the 
language commonly referred to as a meta-model. To 
specify the meta-model, a set of class diagrams must be 
developed that capture the abstract concepts of the 
language and the relationships between them. To 
subsequently provide tool support for a language model, 
these class diagrams are used as the basis to provide a 
repository for expressions or specifications in that 
language; these are often referred to as “instances” of the 
language model. The UML State Diagram meta-model is 
defined for us in the standard [25], but there is no 
standard VHDL meta-model. 

State Diagram to VHDL Transformation: Using the 
MDD approach, the primary compilation process is 
captured in a model transformation that maps concepts 
from the State Diagram meta-model onto concepts in the 
VHDL meta-model. Recently a variety of model 
transformations techniques and tools have been 
developed, many based on the OMG’s Queries Views and 
Transformations document (QVT) [28]. There are issues 
here regarding the specification and the execution (and/or 
implementation) of the transformation. 

VHDL Code: The final stage in our compilation 
process is the creation of text files that represent the 
VHDL version of our specification. These text files, or 
VHDL code, are used as input to dedicated synthesis tools 
for generating the final data used to implement an FPGA. 
The MDD technique for creating text from a model is to 
make use of a model-to-text transformer; a common 
technique for supporting such a transformer is the use of a 
template language, and we use this technique. 

4 Experiences 
This section introduces our experience of using MDD 

techniques as a means to implement the separate parts of 
the tool chain which enables us to compile a UML State 
Diagram specification into VHDL Code. We look at five 
different aspects: implementation of the meta-models, 
transformation from DSL editor to meta-model; 
transformation between two meta-models; transforming a 
VHDL model into VHDL code; and executing or 
implementing a transformation. 

4.1 Implementing the Meta-Models 
In order to produce a model transformation that maps 

one language to another, it is necessary to define models 
of the two languages (i.e. meta-models). 



There are two basic approaches to supporting the 
implementation of a meta-model: 
1. to implement the models directly in Java (using an 

approach such as EMF [14]), 
2. to implement the models as instances in a meta-model 

repository (using an approach such as MDR [18]. 
Both of these choices have their advantages and 

drawbacks. Use of a meta-model repository provides a 
quick way to provide support for a given model. One 
needs only to provide a specification of the model 
(possibly using XMI [26]) and the meta-model repository 
can be used as a repository for instances of the given 
model. Another advantage is that the meta-repository 
should easily provide support for serialising and un-
serialising instances of the given model in a standard 
format (again potentially XMI). The drawbacks of this 
approach are efficiency issues introduced by the meta-
level objects that represent each of the given model 
objects, and the consequent reliance on the (probably 3rd 
party) meta-model repository itself. This latter issue is 
partially resolved by the standardization of the Java 
Metadata Interface (JMI) [17] that forms part of the 
libraries issued with Java 5, which provides a standard 
interface for MOF repositories, i.e. JMI (version 1.0) 
defines a Java mapping for the MOF (version 1.4). 

The direct implementation approach requires more 
effort up front (i.e. specifying the mappings from 
modelling concepts to programming concepts). 
Additionally, serialising model instances is more 
complex. The advantages of the direct approach are that 
there is no reliance on a third party library, and if you 
have control of the code generation templates you can 
have complete control of the implementation patterns and 
hence some control over the efficiency choices. 

Our State Diagram meta-model is defined in 
accordance with the UML 2 set of standards and uses 
some of the more complex modelling concepts (such as 
subsetting and refinement of properties). In part due to 
efficiency reasons, but primarily because we do not wish 
to be reliant on third party libraries, we chose the first of 
these techniques as a means to support implementation of 
the meta-models.  

Even though the modelling community has been using 
MOF and UML [24, 25] based languages for several 
years, and there are a number of tools that generate Java 
code from UML models, there are still some significant 
issues regarding how to implement some of the concepts 
(especially due to the introduction of some new ones with 
the advance to UML 2.0). In particular, one of the major 
abstractions used in object-oriented (OO) modelling 
languages such as MOF and UML is the concept of an 
association. This concept does not exist in OO 
programming languages such as Java (or any of the other 
mainstream OO languages). Consequently, in order to 
generate code from a UML or MOF model, there is a 

complex process involving the mapping of the modelling 
concepts on to the programming language concepts. 

The major results of a review into which tools can be 
used to implement a MOF 2 meta model can be found in 
our submitted work [4]; to summarise, we found none at 
the time of writing that entirely met our requirements, 
thus motivating the primary work of that paper. We use 
techniques based on the work of that paper to generate a 
Java based implementation of the standard OMG meta-
model specification for UML state diagrams. We created 
our own VHDL meta-model of the RTL subset. 

4.2 Editor to Model Transformation 
There is a significant quantity of research on the 

parsing of visual languages. However, as yet, no standard 
or commonly used process has emerged. Much of the 
work is in relation to graph grammars and graph 
transformations [6, 9], and some makes use of model 
transformation as a technique [1]. 

Our implementation makes use of a common Domain 
Specific Language (DSL) editor that has a generic model 
of diagrams; elements in the diagram model are mapped 
to different symbols in the visual representation. The 
editor makes available an instance of the generic diagram 
model that represented the expression drawn. Thus the 
transformation to language meta-model is required to be a 
definition of the mapping between the diagram meta-
model and the target language meta-model. 

4.3 Model-to-Model Transformer Specification 
Using a QVT like language (KMTL [3]), we found the 

writing of the majority of the transformations to be quite 
straight forward. However, there is an issue, specific to 
the use of model transformation as a way to define a 
compiler, which we feel if addressed, would make the 
process simpler. The issue is illustrated below, but in 
general it is with respect to transformation rules that map 
to a target pattern of objects that can be simply expressed 
in a language designed for representing target model 
expressions; however, in the language for defining a 
model transformation, these patterns can be complex and 
error prone to construct. 

Although we have used KMTL as our transformer 
specification language, the issue raised is applicable to 
most of the QVT based transformation languages. 

 An example of the issue 
The top level mapping from a State Machine to VHDL 

requires us to construct an architecture body plus some 
additional code. The bulk of the complexity in this 
transformation comes from the need to setup this ‘boiler 
plate’ VHDL code that surrounds the code specific to a 
particular state machine. To illustrate this, the example 
state machine of Figure 2, should compile to the VHDL 
code shown in Table 1. The VHDL code in bold type is 
the ‘boiler plate’ behaviour code for the architecture that 
is common to the compilation of all state machines. 

Off On 

switchUp 

switchDown 

 

Our first attempt at specifying this is shown in Table 2. 
The statements of the architecture body are defined to be 
a pattern of literal objects that represent the ‘boiler plate’ 
code illustrated in Table 1. The state machine specific 
code is subsequently linked in via the two variables ‘sas’ 
and ‘caseSt’ (highlighted in bold type) and produced by 
other mapping rules. 

Figure 2 



This is a correct specification; however, it is not what 
you would call ‘readable’ and it is also easy to make a 
mistake when writing it. The readability issue comes from 
the need to express, in the transformation language, a 
pattern of object literals. In this case, the pattern of 
objects we wish to represent is better expressed in its 
natural syntax, rather than in the syntax for expressing 
object literals. 

 A potential solution 
To facilitate this, we suggest that a mechanism be 

introduced into rule specification languages, which allows 
us to specify object literals in an alternative syntax. An 
example of the use of such a mechanism is illustrated in 
Table 3.   

Building a parser, interpreter or compiler for a 
transformation language that includes such a mechanism 
will certainly have its challenges; but we do not believe 
that it would be impossible. 

4.4 Model-to-text Transformation 
Within the domain of model transformations, in 

addition to the QVT [28], the OMG as issued a separate 
request for proposals specifically targeting the issue of 
converting models into text [27]. The predominant 
approach to this issue make use of template languages 
similar to Velocity [32] though rather than being based on 
Java, they utilise an object navigation languages such as 
OCL for navigating the MOF model. 

We have made use of just such an OCL based template 
language [5] built on top of the Kent OCL library [22]. 
An example specification is shown in Table 4, which 
generates the code for a VHDL Case statement. 

We have found the technique of a template language to 
be a very simple and effective mechanism for mapping 
our meta-model of VHDL into text files. However, there 
are a couple of significant drawbacks we have 
encountered using this approach. 

Firstly, there is a clash of interests between the layout 
of the template specification and the layout of code that is 
generated. A neatly laid out specification introduces 
excess white space into the output code, whereas enabling 
nicely laid out output code requires the template 
specification to be unreadable. Secondly, another issue 
related to formatting the output, there is no easy to use 
mechanism for producing nested indenting in the output 
within the template language used. 

ARCHITECTURE behviour OF entity IS 
  TYPE topReg IS (‘On’,‘Off’); 
  SIGNAL cs : topReg 
BEGIN 
  PROCESS (clk) BEGIN 
    IF clk=’1’ and clk’event THEN 
      IF reset=’1’ THEN 
        cs <= ‘Off’; 
      ELSE 
        CASE (cs) IS 
         WHEN ‘On’ => 
          IF switchUp=’1’ THEN 
           cs <= ‘Off’; 
          ELSE 
           cs <= ‘On’; 
          END IF 
         WHEN ‘Off’ => 
          IF switchDown=’1’ THEN 
           cs <= ‘On’; 
          ELSE 
           cs <= ‘Off’; 
          END IF 
        END CASE 
      END IF 
    END IF 
  END PROCESS 
END ARCHITECTURE 

Table 1 

rule StateMachine2ArchitectureBody 

sm:StateMachine [region=regs] 

ab:ArchitectureBody [ 
  name=’behaviour’, 
  declarativeItem=decls 
  statement = Set { 
   Process{ 
     statement=OrderedSet{ 
       IfStatement{ 
         option=OrderedSet{ 
           IfOption{ 
             condition=Expression{ 
              value=’clk=\’1\’ AND 
              clk\’event’ 
             } 
             statement=OrderedSet{ 
              IfStatement{ 
                option=OrderedSet{ 
                  IfOption{ 
                    condition=Expression{ 
                      value=’reset=\’1\’’ 
                    } 
                    statement=sas 
                  } 
                } 
                else=caseSt 
  }} } } } } }} 
] 

where { 
  Region2SetDeclaration(regs,decls) and 
  Region2InitialSigAssignment(regs,sas) and 
  Region2CaseStatement(regs,caseSt) 
} 

Table 2 

rule StateMachine2ArchitectureBody 

sm:StateMachine [region=regs] 

ab:ArchitectureBody [ 
  name=’behaviour’, 
  declarativeItem=decls, 
  statement = <template language=’VHDL’> 
                PROCESS (clk) BEGIN 
                  IF clk=’1’ AND 
                     clk’event THEN 
                    IF reset=’1’ THEN 
                      <%sas%> 
                    ELSE 
                      <%caseSt%> 
                    END IF 
                  END IF 
                END PROCESS 
              </template> 
] 

where { 
  Region2SetDeclaration(regs,decls) and 
  Region2InitialSigAssignment(regs,sas) and 
  Region2CaseStatement(regs,caseSt) 
} 

Table 3 



These issues, related to formatting the output lead us to 
believe that an additional module is required in our 
compilation process, one that formats the output code, 
according to specifiable user preferences. 

4.5 Implementing the Transformation 
This transformation has been implemented (manually) 

using SiTra a Simple Transformation library [2]. This 
library consists of two interfaces and a class, which 
between them give support for implementing model 
transformations in Java. The two interfaces are as shown 
in Table 5; and the provided class is a simple 
implementation of the Transformer interface. 

Initial attempts were made to implement this 
transformation using a full Model Transformation 
Framework, however, the developer on the project was 
new to the concepts of MDD and MTs and found that the 
additional overhead of the full (and complex) MTF to be 
daunting and difficult to use. 

The use of this simple Java library instead, meant that 
the developer could stay in the familiar environment of 
Java programming, and yet gain some support for 
building an application using the concepts of model 
transformations and transformation rules. Further 
empirical studies are planned to test whether this is a 
common experience. 

5 Related work 
This section briefly discusses several other projects 

that have investigated transforming UML state diagrams 
to VHDL and also graphical entry tools that can generate 
VHDL from state machines diagrams. There are several 
studies and tools regarding VHDL code generation from 
system-level specifications [11, 13, 21, 31, 33], and there 
are a few which address generating VHDL from the 
Unified Modelling Language (UML) [8, 10, 29]. 

There are several differences between the other 
approaches and the investigation discussed in this paper, 

which focuses on using complementary MDA techniques 
and on development issues specific to electronic 
embedded systems design. 

context 
vhdl::SequentialStatement::CaseStatement 
def : generate : String = 
let 
  alts = self.alternative, 
  oths = self.default 
 in 
<template> 
  CASE <self.expression.value> IS 
    <foreach alt in alts 
     let 
       chc=alt.choice, 
       stms = alt.statement 
     in> 
       WHEN <foreach lit in chc> 
            <lit.as(EnumerationLiteral).value>
            </foreach> <'=>'> 
          <foreach st in stms> 
           <st.generate> 
          </foreach> 
    </foreach> 
      <if oths->isEmpty then><else> 
       WHEN OTHERS <'=>'> 
        <foreach st in oths> 
          <st.generate> 
        </foreach> 
      <endif>  
  END CASE; 
</template> 

Table 4 

The researchers in [8] undertook an approach to first 
translate UML models to a language called SMDL (the 
language with formal semantics and high-level concepts 
such as states, queues and events), which is then compiled 
into VHDL code. They did not use MDA techniques. In 
our approach we try to map the high-level concepts as 
directly as possible to the target language concepts. 

The authors of [19] developed a prototype system for 
generating the VHDL specifications from the UML 
models. Their generated VHDL code is for simulating and 
verifying the UML models and not for implementing it on 
the hardware. Their approach is similar to the one 
presented here in that they transformed models using 
homomorphic mappings between dissimilar structures 
while preserving meta-model class associations in a way 
that resembles an MDA technique.  

The research team in [10] presented MODCO, a tool 
that transforms UML state diagrams directly into 
synthesisable VHDL using MDA technique. Their 
transformation approach is very similar. However, the 
authors targeted flat state-transition diagrams without 
covering hierarchy, concurrency and the notion of actions, 
only supporting a small subset of UML state diagram 
constructs. 

There are several existing tools that can generate 
VHDL from state diagrams [13, 31]. Nevertheless, it 
appears to be a limited number of tools and techniques 
that can generate VHDL from UML state diagram 
specifications [33]. However, none of them are built using 
MDD techniques, and none support the full range of 
concepts in UML state diagrams. 

6 Conclusion 
The aim of this paper has been to investigate the use of 

Model Driven Development techniques as a means to 
develop a compiler from the high level graphical language 
of UML State Machines into the lower level textual 
language of Synthesisable VHDL. To facilitate this we 
have: made use of and implemented meta-models of the 
two languages; defined and implemented two model 
transformations, one from the model of a diagram into a 
model of state diagrams, and another that maps the state 
diagram onto concepts in the VHDL language; and 
written a model-to-text transformation to map VHDL 
models into VHDL code. 

interface Rule<S,T> { 
  boolean check(S source); 
  T build(S source, Transformer t); 
  void setProperties(T target, S source, 
                     Transformer t) ; 
} 
interface Transformer { 
  Object transform(Object source); 
  List<Object> transformAll( 
                List<Object> sourceObjects); 
  <S,T> T transform( 
               Class<Rule<S,T>> ruleType, 
               S source); 
  <S,T> List<T> transformAll( 
                   Class<Rule<S,T>> ruleType,
                   List<S> source); 
} 

Table 5 



We have demonstrated the potential for MDD 
techniques as a method for producing such a compiler.  
The two languages are significantly different in structure 
for the issue to be non trivial, and we feel that the 
technique of model transformation has proved, 
potentially, to be a good mechanism for specifying the 
mapping from one to the other. However, there are still a 
few issues to address before the process is truly effective 
and easy to use. 

We identify three specific areas where we feel 
improvements are necessary: 
1. The need for a mechanism within a transformation 

specification language that makes use of a concrete 
syntax of the source and/or target models. We have 
illustrated a potential method of doing this for text 
based languages, but more investigation is required in 
this area. 

2. Simple mechanisms for defining and implementing 
model transformations that are accessible to 
programmers and do not require significant overhead 
in terms of time or supporting framework. We have 
developed SiTra [2] as ‘a’ solution to this issue and 
intend to carry out some empirical trials to test if it is 
generally effective. 

3. Associated to the notion of a model-to-text 
transformation, it is necessary to provide a mechanism 
for formatting the output of such a transformation, that 
is separate to the transformation specification. Such a 
mechanism is unnecessary if the output of a compiler 
is not going to be read by a human; however, when 
mapping high-level graphical languages onto current 
programming languages (VHDL in our case) the 
output is required to be human readable.  
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