
An Experiment in Using Model Driven Development:
Compiling UML State Diagrams into VHDL

David Akehurst1, Gareth Howells1, Klaus McDonald-Maier2, Behzad Bordbar3

1University of Kent, Canterbury, UK
{D.H.Akehurst, W.G.J.Howells}@kent.ac.uk

2University of Essex, Colchester, UK
kdm@essex.ac.uk

3University of Birmingham, Birmingham, UK
B.Bordbar@cs.bham.ac.uk

Software systems are becoming increasingly more complex.
Model Driven Development (MDD) techniques are being
proposed as a potential means to manage that complexity. In
this paper, we discuss the results of experimenting with the
use of Model Driven Development techniques as a means of
compiling UML State Diagrams into synthesisable VHDL
code. These results show that although MDD provides a
potentially useful technique, there are aspects where we still
need significant improvement in the MDD tools and
techniques in order to make this an easily useable approach to
the task.

1 Introduction
As our software systems grow ever more complex, we

require tools and techniques to aid the developer in
managing that complexity. A commonly used technique is
to raise the level of the language in which the system can
be developed and recently there has been a move towards
more and more use of graphical and domain specific
languages. In particular Model Driven Development
techniques (MDD [30]) are being proposed as a
successful way to better manage the increasing
complexity.

The ModEasy [20] project explores provision of
automated support for mapping embedded system designs
on to both low level implementations and system
verification toolkits. There is a clear advantage in
providing this kind of automated support – namely that
there is a single specification written by the designer,
which is used to both verify and implement the system,
thus avoiding the significant problem of the introduction
of differences between the verified and implemented
versions of the system.

Part of the work of the ModEasy project requires the
development of a framework for deriving VHDL
specifications from UML state diagrams (one of the UML
mechanisms for describing the behaviour of a component)
and the definition of a set of rules that enable automated
procedures to generate VHDL code from UML notations.

The research on which this paper is based is twofold.
Firstly, an investigation into the use of UML State
Machines for specifying the behaviour of embedded
system components. The results of this aspect of the
research are reported in other publications.

This paper focuses on the experience gained from the
use of MDD techniques as a way to create a State
Machine to VHDL compiler. The paper treats the State
Machine to VHDL problem as a means to exercise the
MDD techniques, and highlights interesting and
problematic aspects of that exercise.

Section 2 of the paper gives a brief overview of MDD,
State Diagrams and VHDL for those readers for whom
they are unfamiliar. Section 3 contains an overview of the
case study. Section 4 discusses our experiences of using
MDD techniques on this case study. Sections 5 and 6
discuss related work and conclude the paper.

2 Background
 Model Driven Development

Model Driven Engineering (MDE) or Model Driven
Development (MDD) is an approach to software
development in which the focuses is on Models as the
primary artefacts in the development process, with
Transformations as the primary operation on models, used
to map information from one model to another.

In general, we can view Model Driven Development as
a general principle for software engineering that can be
realised in a number of different ways (using different
standards) and supported by a variety of tools. One of the
most common realisations of MDD is using the Object
Management Group’s (OMG) Model Driven Architecture
(MDA) [23] set of standards.

Within MDA the central idea of object composition is
replaced by the notion of model transformation. The idea
of software systems being composed of interconnected
objects is not in opposition with the idea of the software
life cycle being viewed as a chain of model
transformations; rather they are seen as complimentary
techniques, with MDA build on top of OO.

MDD is an evolving paradigm with many expectations
on its final potential and with much research and
development needed before it will meet those
expectations. A comprehensive review of MDD
techniques is given (amongst other places) in [7].

 UML State Diagrams
The UML state diagram formalism is a variant of

Statecharts invented by David Harel [12]. Harel
introduced diagrams that extend traditional state-
transition diagrams with the notions of hierarchy and
concurrency. A state diagram is a technique to describe
the behaviour of a system and represents the event
triggered flow of control where objects change state by
means of transitions. There are a number of books and
papers about UML state diagrams, although the definitive
definition is given as part of the UML standard [25].

 VHDL
Very High Speed Integrated Circuits Hardware

Description Language (VHDL) is a hardware description
language used to describe the structure and the behaviour

of digital electronic systems [16]. VHDL allows three
styles of design:
1. The Structural approach describes how the system is

decomposed into sub-systems and how those sub-
systems are interconnected.

2. The Behavioural approach which permits description
of the behaviour of a component by means of high-
level language constructs, similar to other high level
programming languages.

3. The Dataflow approach describes the circuit in terms
of how data moves through the system from input to
output.

VHDL specifications of complete systems typically
contain a number of mixed-type designs. The
predominant feature of VHDL is the ability to simulate
the design before committing it to manufacturing,
allowing designers to quickly compare alternatives and
verify the behaviour of the circuit.

In VHDL, the digital circuit is separated into an entity
and one or several architectures. Basically, an entity
models the interface of a circuit in terms of ports while an
architecture models one possible implementation of the
circuit, in terms of concurrent and sequential statements.

VHDL was originally designed as a language for
simulating digital circuits, not as a language from which
to directly generate a hardware implementation.
Consequently, many VHDL constructs are not supported
by synthesis software. The set of concepts from which it
is possible to generate hardware are a subset of the full
VHDL language, known as Register Transfer Level
(RTL). The syntax and semantics that can be used in
common by all compliant RTL synthesis tools to achieve
uniformity of results have been defined in [15]. It defines
the subset of [16] that is suitable for RTL synthesis as
well as the semantics of that subset for the synthesis
domain.

3 Overview of the Case Study
The problem we wish to solve using MDD techniques

is illustrated in Figure 1. The aim is to enable us to
compile a UML based specification of an embedded
system into VHDL code – which can be subsequently
synthesised for implementation onto an FPGA.

Ideally, the UML specification should consist of a
mixture of Component and State Diagrams. The
Component diagrams will define a configuration of
predefined modules and their connectivity. State diagrams
facilitate the specification of a state based behaviour for
any component whose behaviour can be thus expressed;
some components will require other mechanisms to define
their non-state based behaviour. However, that issue is out
of scope for the purpose of the example in this paper.

The overall problem is broken down into a number of
tasks to which we apply different aspects of MDD
technology. We address these tasks using different MDD
techniques as follows:

State Diagram Editor: A State Diagram editor is
essentially an editor for a Domain Specific Graphical
Language. Typical graphical language tool/editing
support should be provided enabling a pleasant user
experience for entering State Diagram specifications.
There are two options to providing a solution to this
aspect: Either by using an existing UML editing tool and

employ a model interchange format (e.g. XMI) to import
the specification; or to build a bespoke (DSL). We
currently use the second of these options, although we
plan to enable import from XMI in the future.

State
Diagrams

VHDL
Code

Statemachine
Meta-model

VHDL
Meta-model

Parse Diagrams

Transform
Specification

Convert to Text

Figure 1

State Diagram and VHDL Meta-Models: The MDD
approach to manipulating languages implies that one
should use an abstract representation (model) of the
language commonly referred to as a meta-model. To
specify the meta-model, a set of class diagrams must be
developed that capture the abstract concepts of the
language and the relationships between them. To
subsequently provide tool support for a language model,
these class diagrams are used as the basis to provide a
repository for expressions or specifications in that
language; these are often referred to as “instances” of the
language model. The UML State Diagram meta-model is
defined for us in the standard [25], but there is no
standard VHDL meta-model.

State Diagram to VHDL Transformation: Using the
MDD approach, the primary compilation process is
captured in a model transformation that maps concepts
from the State Diagram meta-model onto concepts in the
VHDL meta-model. Recently a variety of model
transformations techniques and tools have been
developed, many based on the OMG’s Queries Views and
Transformations document (QVT) [28]. There are issues
here regarding the specification and the execution (and/or
implementation) of the transformation.

VHDL Code: The final stage in our compilation
process is the creation of text files that represent the
VHDL version of our specification. These text files, or
VHDL code, are used as input to dedicated synthesis tools
for generating the final data used to implement an FPGA.
The MDD technique for creating text from a model is to
make use of a model-to-text transformer; a common
technique for supporting such a transformer is the use of a
template language, and we use this technique.

4 Experiences
This section introduces our experience of using MDD

techniques as a means to implement the separate parts of
the tool chain which enables us to compile a UML State
Diagram specification into VHDL Code. We look at five
different aspects: implementation of the meta-models,
transformation from DSL editor to meta-model;
transformation between two meta-models; transforming a
VHDL model into VHDL code; and executing or
implementing a transformation.

4.1 Implementing the Meta-Models
In order to produce a model transformation that maps

one language to another, it is necessary to define models
of the two languages (i.e. meta-models).

There are two basic approaches to supporting the
implementation of a meta-model:
1. to implement the models directly in Java (using an

approach such as EMF [14]),
2. to implement the models as instances in a meta-model

repository (using an approach such as MDR [18].
Both of these choices have their advantages and

drawbacks. Use of a meta-model repository provides a
quick way to provide support for a given model. One
needs only to provide a specification of the model
(possibly using XMI [26]) and the meta-model repository
can be used as a repository for instances of the given
model. Another advantage is that the meta-repository
should easily provide support for serialising and un-
serialising instances of the given model in a standard
format (again potentially XMI). The drawbacks of this
approach are efficiency issues introduced by the meta-
level objects that represent each of the given model
objects, and the consequent reliance on the (probably 3rd
party) meta-model repository itself. This latter issue is
partially resolved by the standardization of the Java
Metadata Interface (JMI) [17] that forms part of the
libraries issued with Java 5, which provides a standard
interface for MOF repositories, i.e. JMI (version 1.0)
defines a Java mapping for the MOF (version 1.4).

The direct implementation approach requires more
effort up front (i.e. specifying the mappings from
modelling concepts to programming concepts).
Additionally, serialising model instances is more
complex. The advantages of the direct approach are that
there is no reliance on a third party library, and if you
have control of the code generation templates you can
have complete control of the implementation patterns and
hence some control over the efficiency choices.

Our State Diagram meta-model is defined in
accordance with the UML 2 set of standards and uses
some of the more complex modelling concepts (such as
subsetting and refinement of properties). In part due to
efficiency reasons, but primarily because we do not wish
to be reliant on third party libraries, we chose the first of
these techniques as a means to support implementation of
the meta-models.

Even though the modelling community has been using
MOF and UML [24, 25] based languages for several
years, and there are a number of tools that generate Java
code from UML models, there are still some significant
issues regarding how to implement some of the concepts
(especially due to the introduction of some new ones with
the advance to UML 2.0). In particular, one of the major
abstractions used in object-oriented (OO) modelling
languages such as MOF and UML is the concept of an
association. This concept does not exist in OO
programming languages such as Java (or any of the other
mainstream OO languages). Consequently, in order to
generate code from a UML or MOF model, there is a

complex process involving the mapping of the modelling
concepts on to the programming language concepts.

The major results of a review into which tools can be
used to implement a MOF 2 meta model can be found in
our submitted work [4]; to summarise, we found none at
the time of writing that entirely met our requirements,
thus motivating the primary work of that paper. We use
techniques based on the work of that paper to generate a
Java based implementation of the standard OMG meta-
model specification for UML state diagrams. We created
our own VHDL meta-model of the RTL subset.

4.2 Editor to Model Transformation
There is a significant quantity of research on the

parsing of visual languages. However, as yet, no standard
or commonly used process has emerged. Much of the
work is in relation to graph grammars and graph
transformations [6, 9], and some makes use of model
transformation as a technique [1].

Our implementation makes use of a common Domain
Specific Language (DSL) editor that has a generic model
of diagrams; elements in the diagram model are mapped
to different symbols in the visual representation. The
editor makes available an instance of the generic diagram
model that represented the expression drawn. Thus the
transformation to language meta-model is required to be a
definition of the mapping between the diagram meta-
model and the target language meta-model.

4.3 Model-to-Model Transformer Specification
Using a QVT like language (KMTL [3]), we found the

writing of the majority of the transformations to be quite
straight forward. However, there is an issue, specific to
the use of model transformation as a way to define a
compiler, which we feel if addressed, would make the
process simpler. The issue is illustrated below, but in
general it is with respect to transformation rules that map
to a target pattern of objects that can be simply expressed
in a language designed for representing target model
expressions; however, in the language for defining a
model transformation, these patterns can be complex and
error prone to construct.

Although we have used KMTL as our transformer
specification language, the issue raised is applicable to
most of the QVT based transformation languages.

 An example of the issue
The top level mapping from a State Machine to VHDL

requires us to construct an architecture body plus some
additional code. The bulk of the complexity in this
transformation comes from the need to setup this ‘boiler
plate’ VHDL code that surrounds the code specific to a
particular state machine. To illustrate this, the example
state machine of Figure 2, should compile to the VHDL
code shown in Table 1. The VHDL code in bold type is
the ‘boiler plate’ behaviour code for the architecture that
is common to the compilation of all state machines.

Off On

switchUp

switchDown

Our first attempt at specifying this is shown in Table 2.
The statements of the architecture body are defined to be
a pattern of literal objects that represent the ‘boiler plate’
code illustrated in Table 1. The state machine specific
code is subsequently linked in via the two variables ‘sas’
and ‘caseSt’ (highlighted in bold type) and produced by
other mapping rules.

Figure 2

This is a correct specification; however, it is not what
you would call ‘readable’ and it is also easy to make a
mistake when writing it. The readability issue comes from
the need to express, in the transformation language, a
pattern of object literals. In this case, the pattern of
objects we wish to represent is better expressed in its
natural syntax, rather than in the syntax for expressing
object literals.

 A potential solution
To facilitate this, we suggest that a mechanism be

introduced into rule specification languages, which allows
us to specify object literals in an alternative syntax. An
example of the use of such a mechanism is illustrated in
Table 3.

Building a parser, interpreter or compiler for a
transformation language that includes such a mechanism
will certainly have its challenges; but we do not believe
that it would be impossible.

4.4 Model-to-text Transformation
Within the domain of model transformations, in

addition to the QVT [28], the OMG as issued a separate
request for proposals specifically targeting the issue of
converting models into text [27]. The predominant
approach to this issue make use of template languages
similar to Velocity [32] though rather than being based on
Java, they utilise an object navigation languages such as
OCL for navigating the MOF model.

We have made use of just such an OCL based template
language [5] built on top of the Kent OCL library [22].
An example specification is shown in Table 4, which
generates the code for a VHDL Case statement.

We have found the technique of a template language to
be a very simple and effective mechanism for mapping
our meta-model of VHDL into text files. However, there
are a couple of significant drawbacks we have
encountered using this approach.

Firstly, there is a clash of interests between the layout
of the template specification and the layout of code that is
generated. A neatly laid out specification introduces
excess white space into the output code, whereas enabling
nicely laid out output code requires the template
specification to be unreadable. Secondly, another issue
related to formatting the output, there is no easy to use
mechanism for producing nested indenting in the output
within the template language used.

ARCHITECTURE behviour OF entity IS
 TYPE topReg IS (‘On’,‘Off’);
 SIGNAL cs : topReg
BEGIN
 PROCESS (clk) BEGIN
 IF clk=’1’ and clk’event THEN
 IF reset=’1’ THEN
 cs <= ‘Off’;
 ELSE
 CASE (cs) IS
 WHEN ‘On’ =>
 IF switchUp=’1’ THEN
 cs <= ‘Off’;
 ELSE
 cs <= ‘On’;
 END IF
 WHEN ‘Off’ =>
 IF switchDown=’1’ THEN
 cs <= ‘On’;
 ELSE
 cs <= ‘Off’;
 END IF
 END CASE
 END IF
 END IF
 END PROCESS
END ARCHITECTURE

Table 1

rule StateMachine2ArchitectureBody

sm:StateMachine [region=regs]

ab:ArchitectureBody [
 name=’behaviour’,
 declarativeItem=decls
 statement = Set {
 Process{
 statement=OrderedSet{
 IfStatement{
 option=OrderedSet{
 IfOption{
 condition=Expression{
 value=’clk=\’1\’ AND
 clk\’event’
 }
 statement=OrderedSet{
 IfStatement{
 option=OrderedSet{
 IfOption{
 condition=Expression{
 value=’reset=\’1\’’
 }
 statement=sas
 }
 }
 else=caseSt
 }} } } } } }}
]

where {
 Region2SetDeclaration(regs,decls) and
 Region2InitialSigAssignment(regs,sas) and
 Region2CaseStatement(regs,caseSt)
}

Table 2

rule StateMachine2ArchitectureBody

sm:StateMachine [region=regs]

ab:ArchitectureBody [
 name=’behaviour’,
 declarativeItem=decls,
 statement = <template language=’VHDL’>
 PROCESS (clk) BEGIN
 IF clk=’1’ AND
 clk’event THEN
 IF reset=’1’ THEN
 <%sas%>
 ELSE
 <%caseSt%>
 END IF
 END IF
 END PROCESS
 </template>
]

where {
 Region2SetDeclaration(regs,decls) and
 Region2InitialSigAssignment(regs,sas) and
 Region2CaseStatement(regs,caseSt)
}

Table 3

These issues, related to formatting the output lead us to
believe that an additional module is required in our
compilation process, one that formats the output code,
according to specifiable user preferences.

4.5 Implementing the Transformation
This transformation has been implemented (manually)

using SiTra a Simple Transformation library [2]. This
library consists of two interfaces and a class, which
between them give support for implementing model
transformations in Java. The two interfaces are as shown
in Table 5; and the provided class is a simple
implementation of the Transformer interface.

Initial attempts were made to implement this
transformation using a full Model Transformation
Framework, however, the developer on the project was
new to the concepts of MDD and MTs and found that the
additional overhead of the full (and complex) MTF to be
daunting and difficult to use.

The use of this simple Java library instead, meant that
the developer could stay in the familiar environment of
Java programming, and yet gain some support for
building an application using the concepts of model
transformations and transformation rules. Further
empirical studies are planned to test whether this is a
common experience.

5 Related work
This section briefly discusses several other projects

that have investigated transforming UML state diagrams
to VHDL and also graphical entry tools that can generate
VHDL from state machines diagrams. There are several
studies and tools regarding VHDL code generation from
system-level specifications [11, 13, 21, 31, 33], and there
are a few which address generating VHDL from the
Unified Modelling Language (UML) [8, 10, 29].

There are several differences between the other
approaches and the investigation discussed in this paper,

which focuses on using complementary MDA techniques
and on development issues specific to electronic
embedded systems design.

context
vhdl::SequentialStatement::CaseStatement
def : generate : String =
let
 alts = self.alternative,
 oths = self.default
 in
<template>
 CASE <self.expression.value> IS
 <foreach alt in alts
 let
 chc=alt.choice,
 stms = alt.statement
 in>
 WHEN <foreach lit in chc>
 <lit.as(EnumerationLiteral).value>
 </foreach> <'=>'>
 <foreach st in stms>
 <st.generate>
 </foreach>
 </foreach>
 <if oths->isEmpty then><else>
 WHEN OTHERS <'=>'>
 <foreach st in oths>
 <st.generate>
 </foreach>
 <endif>
 END CASE;
</template>

Table 4

The researchers in [8] undertook an approach to first
translate UML models to a language called SMDL (the
language with formal semantics and high-level concepts
such as states, queues and events), which is then compiled
into VHDL code. They did not use MDA techniques. In
our approach we try to map the high-level concepts as
directly as possible to the target language concepts.

The authors of [19] developed a prototype system for
generating the VHDL specifications from the UML
models. Their generated VHDL code is for simulating and
verifying the UML models and not for implementing it on
the hardware. Their approach is similar to the one
presented here in that they transformed models using
homomorphic mappings between dissimilar structures
while preserving meta-model class associations in a way
that resembles an MDA technique.

The research team in [10] presented MODCO, a tool
that transforms UML state diagrams directly into
synthesisable VHDL using MDA technique. Their
transformation approach is very similar. However, the
authors targeted flat state-transition diagrams without
covering hierarchy, concurrency and the notion of actions,
only supporting a small subset of UML state diagram
constructs.

There are several existing tools that can generate
VHDL from state diagrams [13, 31]. Nevertheless, it
appears to be a limited number of tools and techniques
that can generate VHDL from UML state diagram
specifications [33]. However, none of them are built using
MDD techniques, and none support the full range of
concepts in UML state diagrams.

6 Conclusion
The aim of this paper has been to investigate the use of

Model Driven Development techniques as a means to
develop a compiler from the high level graphical language
of UML State Machines into the lower level textual
language of Synthesisable VHDL. To facilitate this we
have: made use of and implemented meta-models of the
two languages; defined and implemented two model
transformations, one from the model of a diagram into a
model of state diagrams, and another that maps the state
diagram onto concepts in the VHDL language; and
written a model-to-text transformation to map VHDL
models into VHDL code.

interface Rule<S,T> {
 boolean check(S source);
 T build(S source, Transformer t);
 void setProperties(T target, S source,
 Transformer t) ;
}
interface Transformer {
 Object transform(Object source);
 List<Object> transformAll(
 List<Object> sourceObjects);
 <S,T> T transform(
 Class<Rule<S,T>> ruleType,
 S source);
 <S,T> List<T> transformAll(
 Class<Rule<S,T>> ruleType,
 List<S> source);
}

Table 5

We have demonstrated the potential for MDD
techniques as a method for producing such a compiler.
The two languages are significantly different in structure
for the issue to be non trivial, and we feel that the
technique of model transformation has proved,
potentially, to be a good mechanism for specifying the
mapping from one to the other. However, there are still a
few issues to address before the process is truly effective
and easy to use.

We identify three specific areas where we feel
improvements are necessary:
1. The need for a mechanism within a transformation

specification language that makes use of a concrete
syntax of the source and/or target models. We have
illustrated a potential method of doing this for text
based languages, but more investigation is required in
this area.

2. Simple mechanisms for defining and implementing
model transformations that are accessible to
programmers and do not require significant overhead
in terms of time or supporting framework. We have
developed SiTra [2] as ‘a’ solution to this issue and
intend to carry out some empirical trials to test if it is
generally effective.

3. Associated to the notion of a model-to-text
transformation, it is necessary to provide a mechanism
for formatting the output of such a transformation, that
is separate to the transformation specification. Such a
mechanism is unnecessary if the output of a compiler
is not going to be read by a human; however, when
mapping high-level graphical languages onto current
programming languages (VHDL in our case) the
output is required to be human readable.

References
1. Akehurst, D.H.: An OO Visual Language Definition

Approach Supporting Multiple Views. VL2000, IEEE
Symposium on Visual Languages (September 2000)

2. Akehurst, D.H., Bordbar, B., Evans, M., Howells, W.G.,
McDonald-Maier, K.D.: SiTra: Simple Transformations in
Java. ACM/IEEE 9th International Conference on Model
Driven Engineering Languages and Systems (formerly the
UML series of conferences), Vol. 4199. LNCS, Genova, Italy
(October 2006) 351-364

3. Akehurst, D.H., Howells, W.G., McDonald-Maier, K.D.:
Kent Model Transformation Language. Model
Transformations in Practice Workshop, part of MoDELS
2005, Montego Bay,Jamaica (October 2005)

4. Akehurst, D.H., Howells, W.G., McDonald-Maier, K.D.:
Implementing Associations: UML 2.0 to Java 5. Journal on
Software and Systems Modeling (to appear)

5. Akehurst, D.H., Patrascoiu, O.: Tooling Metamodels with
Patterns and OCL. In: Evans, A., Sammut, P., Willans, J.S.
(eds.): Metamodelling for MDA: First International
Workshop, York, UK (November 2003) 203

6. Bardohl, R., Taentzer, G., Minas, M., Schurr, A.: Application
of Graph Transformations to Visual Languages: Handbook
on Graph Grammars and Computing by Graph
Transformation, Vol. 2: Applications, Languages and Tools.
World Scientific (1999)

7. Berre, A., Hahn, A., Akehurst, D.H., Bezivin, J., Tsalgatidou,
A., Vermaut, F., Kutvonen, L., Linington, P.F.: State-of-the
art for Interoperability architecture approaches. InterOP
Network of Excellence - Contract no.: IST-508 011,
Deliverable D9.1 (November 2004)

8. Bjorklund, D., Lilius, J.: From UML Behavioural
Descriptions to Efficient Synthesizable VHDL. Proceedings
of 20th IEEE Norchip Conference, Copenhagen, Denmark
(November 2002)

9. Costagliola, G., Tortora, G., Orefice, S., DeLucia, A.:
Automatic generation of visual programing environments.
IEEE Computer 28 (March 1995) 56-66

10. Coyle, F., Thornton, M.: From UML to HDL: a Model
Driven Architectural Approach to Hardware-Software Co-
Design. Information Systems: New Generations Conference
(ISNG), Las Vegas NV, USA (April 2005) 83

11. Daveau, J.-M., Marchioro, G.F., Valderrama, C.A., Jerraya,
A.A.: VHDL generation from SDL specification. Hardware
Description Languages and their Applications (CHDL'97),
Toledo, Spain (1997)

12. Harel, D.: Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8 (1987) 231-
274

13. HDL-Designer. http://www.mentor.com
14. IBM: Eclipse Modeling Framework.

http://www.eclipse.org/emf/
15. IEEE: IEEE Standard for VHDL Register Transfer Level

(RTL) Synthesis. IEEE, IEEE Std 1076.6 (1999)
16. IEEE: IEEE Standard VHDL Language Reference Manual.

IEEE, IEEE Std 1076 (2000)
17. Java Community Process: Java Metadata Interface (JMI)

Specification. http://java.sun.com/products/jmi/
18. Matula, M.: NetBeans Metadata Repository.

http://mdr.netbeans.org
19. McUmber, W.E., Cheng, B.H.: UML-based Analysis of

Embedded Systems Using a Mapping to VHDL. IEEE High
Assurance Software Engineering (HASE 99), Washington,
DC, USA (November 1999)

20. ModEasy-Team: ModEasy Project.
http://www.lifl.fr/modeasy/

21. Narayan, S., Vahid, F., Gajski, D.D.: Translating system
specifications to VHDL. IEEE European Design Automation
Conference, Amsterdam, netherlands (1991)

22. OCL-team: Kent OCL library.
www.cs.kent.ac.uk/projects/ocl

23. OMG: Model Driven Architecture (MDA). Object
Management Group, ormsc/2001-07-01 (July 2001)

24. OMG: Meta Object Facility (MOF) 2.0 Core Specification.
Object Management Group, ptc/03-10-04 (October 2003)

25. OMG: UML 2.0 Superstructure Specification. Object
Management Group, ptc/03-08-02 (August 2003)

26. OMG: XML Metadata Interchange (XMI), v2.0. Object
Management Group, formal/03-05-02 (May 2003)

27. OMG: MOF Model to Text Transformation Language RFP.
Object Management Group, ad/2004-04-07 (April 2004)

28. OMG: MOF QVT Final Adopted Specification. Object
Management Group, pct/05-11-01 (November 2005)

29. Savaton, G., Delatour, J., Courtel, K.: Roll your own
Hardware description Language: An Experiment in Hardware
Development using Model Driven Software Tools. Best
Practices for Model Driven Software Development, OPPSLA
& GPCE Workshop, Portland, Oregon (October 2004)

30. Selic, B.: The Pragmatics of Model-Driven Development.
IEEE Software 20 (Sept 2003) 19-25

31. StateCAD. http://www.xilinx.com
32. Velocity: Velocity Template Language.

http://jakarta.apache.org/velocity/
33. WithClass. http://www.microgold.com

http://www.mentor.com/
http://www.eclipse.org/emf/
http://java.sun.com/products/jmi/
http://mdr.netbeans.org/
http://www.lifl.fr/modeasy/
http://www.cs.kent.ac.uk/projects/ocl
http://www.xilinx.com/
http://jakarta.apache.org/velocity/
http://www.microgold.com/

	1 Introduction
	2 Background
	Model Driven Development
	UML State Diagrams
	VHDL

	3 Overview of the Case Study
	4 Experiences
	4.1 Implementing the Meta-Models
	4.2 Editor to Model Transformation
	4.3 Model-to-Model Transformer Specification
	An example of the issue
	A potential solution

	4.4 Model-to-text Transformation
	4.5 Implementing the Transformation

	5 Related work
	6 Conclusion
	References

