
Testing Deadlock-freeness in Real-time Systems; A
Formal Approach

Behzad BORDBAR
�

and Kozo OKANO
�

�
University of Birmingham B.Bordbar@cs.bham.ac.uk�

Osaka University okano@ist.osaka-u.ac.jp

Abstract. A Time Action Lock is a state of a Real-time system at which neither
time can progress nor an action can occur. Time Action Locks are often seen as
signs of errors in the model or inconsistencies in the specification. As a result,
finding out and resolving Time Action Locks is a major task for the designers
of Real-time systems. Verification is one of the methods of discovering dead-
locks. However, due to state explosion, the verification of deadlock freeness is
computationally expensive. The aim of this paper is to present a computationally
cheap testing method for Timed Automata models and pointing out any source of
possible Time Action Locks to the designer.
We have implemented the approach presented in the paper, which is based on the
geometry of Timed Automata, via a Testing Tool called TALC (Time Action Lock
Checker). TALC, which is used in the conjunction with the model checker UP-
PAAL, tests the UPPAAL model and provides feedback to the designer. We have
illustrated our method by applying TALC to a model of a simple communication
protocol.

Keywords: Testing, Real-time System, Deadlock, Timed Automata, Rational Pres-
burger Sentences, Communication Protocol

1 Introduction

In a general term, a deadlock is a state at which a system is unable to progress any
further. Various types of deadlock in Real-time systems are studied in the literature [16,
8, 7, 27, 28]. In particular, a Time Lock [27] is a state at which time is prevented from
passing beyond a certain point, and Time Action Lock [8] is a Time Lock state at which
no action can occur. As a result, a Time Action Lock, is a state at which neither time
can progress nor an action can occur.

In this paper, we shall deal with Real-time systems, which are modelled via Timed
Automata [1]. Such systems can be verified with the help of model checkers such as
UPPAAL [2, 6], which uses a variant of Timed Automata model of [1]. UPPAAL has
been successfully applied to the verification of Real-time systems [5, 15, 20, 9, 2].

The process of verification of a property � starts by creating a UPPAAL Timed
Automata model of the Real-time system. Before conducting the verification of the
property � , we often check the model for the existence of deadlocks. This is to ensure
the integrity of the design; as the existence of a deadlock is often interpreted as either



an error in the model or a sign of inconsistencies in the specification. As a result, when
a model checker informs us of the existence of a deadlock, we scrutinise the model to
discover the cause of the deadlock. However, due to state explosion, the verification
of deadlock freeness is computationally expensive. The aim of this paper is to present
a method of testing of the Timed Automata models to point out any source of possi-
ble Time Action Locks to the designer. This is to help avoiding the verification of the
model for deadlock-freeness, which is computationally expensive. Our approach can
be implemented via a Testing Tool, which works in parallel with a model checker as
depicted in Fig. 1. The designer creates a model of the system in the Model Checker.
The Testing Tool checks the model for Time Action Locks and provides feedback to the
designer. The feedback provided to the designer is either, ”the system is deadlock free”
or ”there is a possibility of deadlocks.” In the case that the system is declared deadlock
free by the Testing Tool, there is no need to use the Model Checker to ensure the system
is deadlock free, and the designer can focus on the verification of � . If the Testing tool
declares that there is a possibility of deadlocks, sources of the deadlock are pointed out,
which can help the designer in scrutinising the model for finding any possible flaw in
the model or inconsistencies in the specification.

designer


Model Checker


Testing Tool


Input model


Checks


Feedback


Fig. 1. Combining Testing tool and Model Checker

The approach presented in this paper is based on the geometry of the Timed Au-
tomata. In a Timed Automaton, the progress of time is subject to a set of constraints,
which form convex regions [27] in the � -dimensional Eucleadian space

���
	
As a result,

for every location of a Timed Automaton, various types of constraint such as invariants
and guards correspond to regions in

�
��	
The idea behind our approach is to identify

subsets of such regions that might cause a Time Action Lock and test them.
Based on our approach, we have developed a Testing Tool called Time Action Lock

Checker (TALC). TALC, which works in conjunction with UPPAAL, tests the Timed
Automata via Rational Presburger Sentences and is available for download at
http://www.cs.bham.ac.uk/˜bxb/TALC.html.

The paper is organised as follows. We shall start by a brief introduction on the
Timed Automata. Section 3 follows with a brief review of the background material on
Presburger Arithmetic. Section 4 reviews definitions of various types of Time Lock.
Section 5 sketches our geometric approach for detecting Time Action Lock. Results
related to the implementation via Rational Presburger Sentences are discussed in section
6. Section 7 explains the Testing Tool TALC and applies the method to the testing of
a simple communication protocol for the existence of a Time Action Lock. The paper
finishes with a conclusion section.



2 Timed Automata

In this section, we shall review a variation of Timed Automata model proposed by
Alur and Dill [1], which is used in UPPAAL [2, 6, 21], a tool for the verification of
behavioural properties of Real-time systems.

Consider ��
���� ��� 	�	�	 � � ��� a set of clock variables with values in
��� � the set of

non-negative real numbers. Suppose that � ��� ��� is the set of all constraints created from
conjunctions of atomic formals of the form ���! #" , where �$�&%'� �  (%)�+* ��,-��.-��/� 
 � and "0%21 � � the set of non-negative Rational numbers. Also, assume that � �3� �4�
is the set of all constraints created from the conjunction of atomic formula’s of the form
�5�
 6" and �$�879�;:- 6" � where �$� �=< and  are as above and for >@?
BA � �C:(%D� 	 The
set of all possible constraints is defined by � � ���E
F� � � �4�HGI� � � �4� 	 We shall refer to
� �  J" and � � 7K� :  J" � as atomic constraints. 3

A valuation (variable assignment) is a map LNMO�QP �
� � which assigns to each
clock a non-negative Real-number. For a valuation L , a delay RS% ��� � which is denoted
by L(TUR � is defined as � LVTUR3� � �$�(
WL � �$�
TUR � if �X%X� 	 In other words, all clocks
operate with the same speed. Let Y �[Z � denote the set of all valuations.

The value of clock can be reset. A reset statement is of the form �\M]
�^ , where
�_%`� 	 In the current version of UPPAAL, ^ must be an integer. A set of reset statements
is called a reset-set or reset if each variable is assigned at most once. The result of
applying a reset a to a valuation L is denoted by the valuation a � Lb� 	 If a variable � is
such that no assignment of a changes its value then L � ����
Ua � Lc� � ��� 	 Let d denotes the
set of all resets.

A Timed Automaton e is a 6-tuple �[f �hgji=�lkm�onC� � � >p�q>pr � Z � such that

– f 
s� g i � 	�	�	 �ogut � is a finite set of locations and g i % f is a designated location
called the initial location. Assume that >p�q>pr � g i �&%D� � �4� assigns to the initial loca-
tion an initial region.

– � and Z are finite sets of clock variables and actions, respectively.
– kwv fUx_ZFx � � ��� x d x_f is the set of transition relation. An element of k is

of the form of � g � �hy$�{z�� a �og :�� � where g � �og :|% f and y % Z is an action, z %_� � �4� is
called a guard, and a|%0d is a set of reset statements. We sometimes write g �8}�~ ��~ �7$P g :
to depict that e evolves from a location g � to a new location g : � if the guard z is
evaluated true, the action y is performed and clocks and data variables are reset
according to a 	 In this case, we shall refer to ^@
 � y$�lz$� a�� as the edge connecting g �
and g : 	 We shall also write �
���o� �C� � ^�� �=�;���=�u� � ^�� and �����l� � � ^�� to denote y , z$� and a �
respectively.

– n M f P�� � ��� is a function that assigns to each location an invariant. Intuitively, a
Timed Automata can stay in a location while its invariants are satisfied. The default
invariant for a location is true ( � ,B� ).

Notation 1 For a location g % f � we shall write � g to denote the set of all edges ^4
� y$�{z�� a=� ending in g 	 Similarly, g � denotes the set of all edges starting from g 	
3 The Timed Automata model of UPPAAL contains both clock variables, as defined above, and

data variables, which have integer values. In order to simplify our model, we shall only be
dealing with clock variables. Also, the current version of TALC only implements the clock
variables.



The semantics of Timed Automata can be interpreted over transition systems, i.e.
triple ��� ��� i ��� � � where

– � v fUx Y is the set of states, i.e. each state is a pair � gl� Lb� , where g is a location
and L is a valuation

– � i % � is an initial state, and
– �Xv �Nx���Z G �H� � xI� is a transition relation, where Z is the set of all actions.

A transitions can be either a discrete transitions, e.g. � �+���oy5����� � , where y % Z or a time
transitions, e.g. � ����� R �o��� � , where R6% �H�

and denotes the passage of R time units.
Transitions are written: �=�6������ and ���������� , respectively, and are defined according
of the following inference rules:

g[� }�~ ��~ �7$P gu�=�lz � Lc�
� g � � Lb� �� � g � � a � Lc�h�

� R3�q*)R n � g � � L T'R+�u�
� gl� Lb� �� � gl� L@T'Rc�

To model concurrency and synchronisation between Timed Automaton, CCS [22]
style parallel composition operators are introduced, which synchronise over half ac-
tions. We refer the interested reader to [2] for further details of the UPPAAL model of
Timed Automata.

Assume that e is a Timed Automaton. A run � of e is a finite/infinite sequence of
transitions of the form ��iV¡�¢�Q� � ¡�£��� ��¤�¤�¤ where ��i is the initial state and ¥$��% Z G � � �
where Z is the set of actions. For further information on network of Timed Automata
and UPPAAL see [6, 21].

3 Rational Presburger Sentences

Assume that ¦ denotes the set of all linear inequalities on integer variables and integer
constants. A Presburger Sentence is a closed first-order logical statements on ¦ 	 The
phrase closed means that, there is no free variable in a Presburger Sentence. For exam-
ple,

� �$§b¨ ��© �STUª0*�¨|«I¨ ,\� � is a Presburger Sentence. Satisfiability of Presburger
Sentence is decidable [19].

A Rational Presburger Sentence (RPS) is similar to the conventional Presburger
Sentences, except that constants are rational numbers and variables range over rational
(or real) numbers. As a result, the syntax of RPS is as follow:¬ � ���­M®M¯
E�F° y �F°�± , where � is a rational-valued variable and y and ± are integer (or
rational) constants��²c³ M®M¯
 ¬ � ���m° ¬ � ���OT ��²c³ ° ¬ � ����7 ��²c³´ � �=�¶µ M�M3
 ��²c³ 
 ��²c³ ° ��²c³|/)��²c³ ° �·²3³|.)��²c³´ ��²c³ M®M¯
 ´ � �=�¶µ °�¸ ´ ��²c³ ° ´ ��²c³­¹ ´ � ����µºO»q¼ M®M¯
 � � ´ ��²c³ , where � is any free variable in

´ ��²c³ 	
Note that, for RPS ¦ and ½ � §c�$¦ can be defined as ¸ � �$¸H¦ and ¦¾«¿½ as ¸ � ¸H¦ ¹

¸H½À� . Also Á ,'z and ÁI* z are defined Á /Nz «&Á0
 z and Á .'z «EÁ0
 z , respectively.
The decision problem for RPS is decidable [13, 24]. Moreover, the computational times
for deciding the satisfiability for RPS is less than that of Presburger Sentences. RPS and



original Presburger Sentences have been successfully applied to the verification of log-
ical designs and network design protocols [10, 14, 3, 25, 4]. Tools [23, 24] are available
for the verification of RPS and Presburger sentences.

4 Deadlock in Timed Automata

Deadlocks, which have often been seen as error situations in concurrent and distributed
systems, are classically interpreted as states at which the system will never be able to
perform an action. In a Timed Automaton, a deadlock can also be created by preventing
the passing of timed beyond a certain point, i.e. the elapse of time causes a violation
of at least one of the constraints of the system. This situation, which is referred to as a
Timelock, is often created as a result of fault in the specification of guards or invariant
in the model. Finding out and resolving Timelocks is a major problem for the analysis
and design of time critical systems.

Various interpretations of deadlock are extensively studied in the literature [8, 7, 27,
16, 28]. There are two different forms of Timelock [8], Zeno Timelock and Time Action
Lock. Zeno Timelock is the case that infinite number of actions are performed in a finite
period of time. This paper is about Time Action Lock, which is defined as follows in [8].
Time-Action-Lock A Time-Action-Lock (TAL) is a state at which time can only progress
for a finite amount �¿. R .XÂ of time but no action can occur.
A special case of the above definition is the situation at which, there is a reachable state
at which neither time can progress nor an action can occur [8].

Example 1. Fig. 2 depicts two Timed Automata with TAL at the location g[i 	 The Left
Hand Side Timed Automata has a TAL at the state � gji���Ã�� � � as neither time can progress,
because of the violation of the invariant �I* Ã��C� nor an action can occur, because of the
violation of the guard ÄV*N� .BÅ 	 In both Timed Automata the reachable state � g i �hÅ � is
also a TAL, as time can pass R`
 Ã unit and no action can occur. However, � g i ��Ã�� � is
not a TAL state of the Right Hand Side Timed Automaton, as it is not a reachable state.

on, on,off off
PSfrag replacements

Æ�Ç È3ÉÆ�Ç È3É

Ê Ë¯Ì Æ�ÍcÎ É

Ï Í+Æ�Ð3Ñ

Ê Ò

Ê Ë¯Ì Æ�ÐcÎ]É

Ï Í+Æ�Ð+Ñ

Ê Ò
Fig. 2. Timed Automata with Time-Action-Lock



5 A Geometric Approach to the detection of Time-Action-Locks

A valuation is a function assigning real values to clocks �W
\��� � � 	�	�	 � � � � 	 As a result,
we can identify a valuation L�M3�ÓP � �

as a vector ÔK
 � Ô � � 	�	�	 � Ô � � � where for eachÃ *\>E*Õ� � ÔO�!
FL � �5�Ö� 	 Hence, for each constraint < %'� � �4� there is a subset of
�
��

of all points that satisfy < 	 We shall refer to such subset of
�
�� as the corresponding

region of < and denote it with < 	 For the rest of this section assume that < %I� � �4� and <
denotes the corresponding region.

Definition 1. Assume that � ,FÃ 	 For �2% ���� , we shall write × � � �h< �!
\ØhÙ;Úq��r ,�� °
�ST'r x2Û % < � � 4 where Û 
 � Ã+� 	�	�	 ��Ã �&% ���� . If there is a r such that �STNr x9Û % <
and × � � �h< � .XÂX� we shall write Fringe � � �o< �

U�ET_× � � �h< � x0Û and call it the Fringe
of � with respect to < . If × � � �h< �m
 ÂU� we shall write Fringe � � �h< �&
#� Â � . If there is
no r such that �VT¾r xKÛ % < , then × � � �o< �

Ü7 ÂX� and Fringe � � �o< �

\�+7 Â � 	
Example 2. Suppose that �_
UÝ 	 Assume that a region < is specified by the conjunction
of � � * Ã�� � � *BÝ � � � ,B� and � �À,B� 	]Þb	 Let �ß
 � � 	 Þ ��Ã � � it can be seen in Fig. 3 that
× � � �h< ��
 � 	 Þ and Fringe � � �h< �

 � Ã���Ã 	]Þ � 	

2

0.5

1

PSfrag replacements

à·á

à�â

à�ã@ä å{æ çÖè�é[ê

äëé¶èjé¶æ çpêFringe ä à·èíìbê
Region ì

Fig. 3. Example 2

If we assume that the region î denotes the invariant of a location ï of a Timed
Automata ðÕñ For a reachable state ò[ï{óhô$õ·ó we have ôÕö�î ó where îI÷�øqò[ï¶õ�ó where î
denotes the corresponding region. In this case, ùVòjô8óoî õ is the maximum amount of time
that can expire while the location remains in ïlñ
Definition 2. If î�ú�óhî·ûFö�üCò¶ý4õ and î�ú þÿî�û ó then define Fringe ò[î�ú óhî·û õ¿÷��������	�
Fringe ò[ô8óoî·û õ�ñ

4 
���
 stands for Supremum. For each ������� 
���
 � is the least upper bound of ��� For example,
���
�� � ����� � 
���
!� � �"��#$�%� . Each nonempty bounded subset of � has a supremum and the
supremum of a nonempty unbounded subset of � is &'� The supremum of empty set is defined
as ()& .



Assume that < %�� � ��� , then < v ���� denotes the corresponding region. Assume
that < denotes the Topological Closure of < [11]. The reader, who is not familiar with
the notion of Topological Closure, can use the following instead of the definition of the
Topological Closure.

Lemma 1. Suppose that < � %'* � �4� and < � is created from < � by replacing all . � / �
with * � , � , respectively. Then < � is the Topological Closure of < � , i.e. < � 
 � < � �

 < � .

Proof. By induction on the number of atomic constraints in < � and considering that the
Topological Closure of the union of finite sets is the union of the Topological Closure.

The next theorem, in a layman language, states that a Timed Automaton is Time-
Action-Lock free, if the fringe of the invariants of each location with respect to the
guards of incoming transitions are covered by the Topological Closure of the guard of
the outgoing transitions.

Theorem 1. Assume that e is a Timed Automaton. e is Time-Action-Lock free if for
each location g of e ,

Fringe �[Z,+ ��- + � v * + � (1)

where

– Z�+ 
6�ë�=� � � g � , if g is the initial location;
– if g is not an initial location or g is the initial 5 location with � g ?
/. , then Z + 
0

��1�2 + Z�+ ~ � � in which Z,+ ~ � 
 �C�����u� � ^�� 3À�ë�54 � g � 3 �í���h� � � ^�� , where �í���l� � � ^�� is the area
of
�H�� corresponding the reset set of ^ , i.e. ���I% ���� °��5�O
 �7698�: �$��% �����l� � � ^�� � ;

– - + 
��ë�54 � g � is the region corresponding to the invariant of g ;
– * + 
 0

��1 + 2 * + ~ � , where * + ~ � 
 �;���=�u� � ^�� 3I�ë�54 � g � ;
– * + denotes the Topological Closure of * + .

Proof. Assume that for all locations g the equation 1 is satisfied, but e has a Time-
Action-Lock. As a result, there is Time-Action-Lock state � gl� �$� . We shall prove that
the above assumption results in a contradiction. Without any loss of generality, we can
assume that ��% Z + . This is because, there is a reachable state � gl�<; � � where ; % Z +{�
such that by elapse of �¿. R .XÂ unit of time ends in � gl� ��� and we can state the proof

for � g{�<; � . =To see this, assume that �K
 � iS¡ ¢� ¤�¤�¤ ¡?>� � � 
 � g{� �$� is a run of e starting
at an initial state and ending in � gl� �$� . Suppose that there exists an action transition in
the set ��¥ ��� 	�	�	 � ¥ �$� , and assume that � � is the last state before � � at which an action
transition occurs. Then, there is an edge ^D%Õ� g such that ¥ � is the action of ^ 	 After
¥ � � � T 	�	�	 T_¥ � unit of time, the state � gl� �$� is reached. If there is no action transition in
��¥ ��� 	�	�	 � ¥ �$� , simply let � g{�<; � to be the initial state � i and the time elapse of RV
A@�¥ �
ends in the state � g{� �$� . So let us assume that �I% Z + . B

By the definition of Time-Action-Lock at the state � g{� �$� time can elapse only � *
R .6Â units and no action can occur. As a result CK
ÜØlÙ;Ú ��rE°3�STNr x�Û % - + � .6Â
exists. Let ¨I
\�4TDC x2Û 
 Fringe � � �<- + � . By equation (1) ¨D% * + . As a result, there

5 If E�FHGIDJ the initial location is studied twice, once with KML IONQP?N R<S FUT and the second time like
any other location.



are two cases; either ¨ is and interior point or a boundary point. case 1: ¨4%V* + , By the
definition of * + , there exists ^-% g � such that ¨4% �;���=�u� � ^���3À�ë�54 � g � . Hence at state � gl� �$�
time can elapse C units to the new state � gl� ¨;� and then ^ can occur. This contradicts
with � g{� ��� is a Time-Action-Lock state. case 2: ¨0% * +XW * + , i.e., ¨ is in the Topological
boundary of * + . By the definition of the Topological boundary, each neighbourhood of
¨ contains a point of * + 	 Consider a point which also belongs to the line joining � to
¨ 	 Then there is �ß. r . C such that �¿TNr x2Û %Y* + . Hence, there is ^S% g � such that
�mTIr x0Û % �C�����u� � ^��Z3(�ë�?4 � g � . This is a contradiction with � gl� ��� is a Time-Action-Lock
as at state � gl� ��� , time can pass r units to the new state � gl� �VT¾r xKÛ � and then ^ occurs.
As a result, in both cases, assuming that e has a TAL, results in a contradiction. [�[�[

Notice that the condition presented in the lemma is a necessary condition. In other
words, if Equation (1) satisfies the Timed Automaton has no Time-Action-Lock. We
argue that violation of equation 1, which may result in a Time-Action-Lock, is a sign of
bad design. Based on this idea, we have developed a tool that carries a static analysis
of the Timed Automata and points out to the designer any potential Time-Action-Lock.
We shall explain our approach with the help of an example.

Example 3. Consider the Timed Automaton of Fig. 4, which models a switch on/off
system. Fig. 5 depicts Z +�� 
 �C�����u� � ^ Ã �\3-�ë�54 � g{Ã ��3 �í���h� � � ^ Ã �

6���I% � �� °�� � 
 �C�h� *
� � *BÝ � , -,+�� 
6�ë�?4 � g{Ã �

6���I% � �� °�� � * Ã � and * +�� 
 �;���=�u� � ^�Ý+�]3ß�ë�?4 � glÃ �

\���I%� �� °�� � * Ã y � R-Ý|*)� � � .

PSfrag replacements

^ _ ^ á
`Öá =( On, à�á�aMbÖèdcjà âfe )

` â = (Off, bga à�áuèdcjà�ájè®à âhe )
åga à·á�a b

à â amé

Fig. 4. A Timed Automata with Time Action Lock

1 2 3

1

uncoverd 
part of frigngePSfrag replacements

ikj

i�l
i l Fringe m n?o pUqQr5o pts

n5o p

r?o p

u o

i

v

Fig. 5. Part of the Fringe is not covered



The next section presents a method of calculating the Fringe. Here, as depicted in
Fig. 5, a direct use of the definition 1 shows that Fringe ��Z + ¢ ��-,+ ¢ �_
 ���#% � �� °
� � 
 Ã�� ÝS*X� � * © � . It can clearly be seen that the part of Fringe �[Z +í����-,+�� � lying on
� � 
 Ã with � � . Ý is not covered. The Fig. 5 demonstrates the idea behind the above
Theorem. Clearly, at any state � g � � ��� , where �`
 � � � � � � � and � *N� � * Ã and � � 
 � ,
if the time elapses by 1 unit, the state � g{� ¨;� is reached. At this point neither time can
pass, since �ë�?4 � g � � gets violated, nor an action can occur, since no guard of an outgoing
transition is satisfied. We can argue that the case presented in the above examples a
clear case of wrong specification. In other words, there is a clear inconsistence in the
specification that must be corrected. The contrary position, as explained in [8], is that
such “error situations in behavioural techniques should have a behavioural/operational
intuition that is justifiable in term of real world behaviour.” This paper does not address
the above hotly debated views. Our aim is to present a computationally cheap method
of discovering such situations and pointing them to the designer.

Remark: The method presented in this paper deals only with a single Timed Au-
tomaton. As Bowman [8] points out, a Time Action Lock can also be created from
unsuitable parallel composition. We are currently working on extending our method to
cover networks of Timed Automata, i.e. parallel composition of Timed Automata. The
current implementation of TALC, checks a network of Timed Automata only by study-
ing each individual Timed Automaton component.

6 Applying Rational Presburger Sentences to Detect TAL

In this section, we shall present a method of detecting potential Time-Action-Lock
(TAL) using Theorem 1. Considering equation 1 of Theorem 1, the aim is to present
a technique to verify statements of the form Fringe � < � �h< � � v�<xw � where < � �o< � and<xw % < � �4� and < � vs< � 	 We shall verify such statements via Presburger sentences.
However, first we shall present a set of results which facilitate the translation to suitable
Rational Presburger Sentences, with minimal amount of computation.

Proposition 1. For each < %N� � �4� the corresponding < region is a convex set. More-
over, if < %`� � � �4� � then < is a rectangular region, i.e. a Cartesian product of intervals.

Proof. The convexity of the region is proved in [27]. The second part is by induction
on the number of atomic formulas in < .
Notation 2 Assume that < is a rectangular region of the form n�� xX¤�¤�¤Ox n � � where
each n � is a (non-negative) real line interval. Then by Top Corner, we mean the point� Ô ��� 	�	�	 � Ô � � � where each Ô � is the end point of n � 	 Notice, in case of an unbounded
interval, Ô � 
 Â 	 Also, define the Bottom Corner to be the point �hy ��� 	�	�	 � y � � � where
each y � is the starting point of the interval n � 	

Calculating the Fringe for a rectangular region is straight forward.

Lemma 2. If < %'� � � �4� , i.e. < is a rectangular region, and � Ô �=� 	�	�	 � Ô � � denotes the
Top Corner point of the rectangular region < � then for each point �0
 � � �=� 	�	�	 � � � �!% < �



– × � � �o< ��
Oz|{t} ��Ô � 7�� � ° Ã *N> *'� � and
– Fringe � � �o< ��
X�VTYz|{t} ��Ô � 7K� � ° Ã *)>
*N� � x�Û 	

Proof. If for each > � Ô ��
 T ÂX� then × � � �o< �_
 Â and there is nothing to prove.
Assume that for at least one co-ordinate r � Ô�~ .�Â 	 Since Ô � is the end point of the
interval coordinate of < � �­T0r xSÛ % < � if and only if for each coordinate > � �q��T0r� UÔ � �
where  (%9�3* ��. � 	 As a result, × � � �h< � 
6ØhÙ;Úq��r&°�r  6Ô �879�5� 698�:­Ã *)>­*X� � � which
is the same as z|{�} ��Ô �q7��5� ° Ã *'> *N� � 	

It might seem that, the above lemma, which provide an elegant way of computing
the Fringe is only applicable to the rectangular regions. However, the following lemma
shows that to calculate the Fringe, we only need to discard conditions of the form � � 7
� :  X" and focus on the rectangular regions.

Lemma 3. If < is a non-empty region created from a constraint in < %_� �+� �4� 	 Let < �O%
� � ��� is a constraint created from modifying < by cancelling all atomic formulas of the
form �$�37S�b:E U" 	 Also, assume that < � is the region (rectangular region) corresponding
to < � 	 Then, < vB< � and for �I% < Fringe � � �o< �

 Fringe � � �h< � � 	

Proof. Since < � is created from the relaxing conditions of <�� we have < v6< � 	 For each
��% < � we shall prove that ØlÙ;Ú ��rE°3�STNr x�Û % < � 
ÕØlÙCÚq��rE°3�4T'r x9Û % < � � 	 To see
this, let f � denotes the left hand side supremum and � � denotes the right hand side
supremum. Since < vN< � � we get f � *�� � 	 If the two are not equal by the definition of
the supremum, there is a r such that �STNr x2Û [% < and �4TNr x2Û % < � 	 This can only
happen because there is a condition of the form of ���+74�;:& J" that the vector �mTßr x�Û �
does not satisfy i.e. the inequality � ���O72rl��7 � �b:@72rl�m \" is not satisfied. But, this is
impossible, as � ��� 7�rl�H7 � �b:m7�rl�

X�$� 7��b: and �$� 7��b:E U" 	

In other words, to calculate the Fringe, we can ignore constraints of the form of � � 7
� :  " and focus on the rectangular regions. The following result identifies a less
complex set that embodies the Fringe of a point.

Lemma 4. If < is a non-empty region created from a constraint in < % � � � �4� and
ÔÕ
 � Ô ��� 	�	�	 � Ô � � is the Top Corner of < 	 For �U% < � Fringe � � �h< � v�� � < � � where if
Ô�
 � ÂX� 	�	�	 ��Â � then � � < �

\� Â � � otherwise, � � < ��
JGH���"���� ���_% � �� ° � � 
JÔ � � 	

Proof. Fringe � � �h< �

U�-T�z|{t}q��Ô � 7I� � ° Ã *)>�*'� � xIÛ 	 Assume that z|{�}8��Ô � 7I� � °Ã * >0* � � 
 Ô : 7X� : 	 If Ô : 7B� : 
 ÂX� then for each > � Ô � 
 Â 	 As a result,
Fringe � � �h< ��
\� Â � 	 If Ô : 7�� : .UÂU� then � : � the A -th coordinate of the Fringe � � �h< � �
is Ô : 
U� : T � Ô : 7�� : � 	 [�[�[

Assume that < % < � �4� and �'% < 	 In a layman language, Fringe � � �h< � is the final
point that an imaginary person can arrive at, if he/she starts from the point � and moves
on a line in the direction of the vector Û 
 � Ã+� 	�	�	 ��Ã � � while his/her trajectory of move-
ment avoids violating < 	 In a similar way, moving in the direction of � 7 Ã�� 	�	�	 � 7 Ã � can
be considered.



Definition 3. Assume that < %N� � ��� and �N% < � we shall write 6 � � � �o< � 
�ØlÙ;Ú ��r ,� °E�¾7�r x�Û % < � where Û 
 � Ã�� 	�	�	 ��Ã � 	 Let us write AntiFringe � � �o< �2
 �27� � � �o< � xUÛ 	 Moreover, if <�� % � � �4� and <�� v < then define AntiFringe � <�� �o< �D

G�� 1��{¢ AntiFringe � � �h< � 	

The following result, which is also depicted in Fig. 6 explains that to calculate the
Fringe, we can use the AntiFringe.

PSfrag replacements

Æ Ò

Æd�

�lÒ

� �

AntiFringe � � Ò Ì � � �
AntiFringe � �lÒ Ì �lÒ �

Fringe � �lÒ Ì � � �

Fig. 6. Fringe Sh� �"� � � T = Fringe(AntiFringe Sh� ��� � � T � � � )

Lemma 5. Assume that <��EvB<·� are both in � � �4� then

Fringe � <�� �h<�� ��
 Fringe(AntiFringe � <�� �o<�� � �h<·� � 	
Proof. The proof is straight forward and omitted.

The following lemma is the equivalent of Lemma 4 for AntiFringe.

Lemma 6. Assume that < %U� � �4� and y 
 �hy ��� 	�	�	 � y � � is the Bottom corner point
of the region created by discarding all atomic formulae of the from � � 79� :  Õ" . Then
AntiFringe � < �h< �

 0 �� � �]� � � < � where for Ã *'> *N� � � � � < � is created from < by

1. replacing � � / " or � � , " with � � 
 y � , and
2. for A`?
X> replacing any �C: / " with �b: , " .

Proof. Assume that ; % AntiFringe � < �o< � , then there is ¨w% < such that ; 
Q¨I7� � ¨ �h< � xXÛ . Using a similar discussion to Lemma 2, we can prove that AntiFringe� ¨ �h< �

U¨!7�z|{t}���¨ � 7 y � ° Ã *)>
*)� � . Hence, if z�{t}q��¨ � 7 y � ° Ã *N>
*)� � 
X¨ � 7 y � ,we show that ; % � � � < � . There are four types of atomic formulae in � � � < � .
1. Atomic formulae of < of the form ��� / " or �$� , " , which are replaced with
�5�O
 y � .

6 Notice, the supremum always exists.



2. For AI?
X> , atomic formulae of the form � : / " , which are replaced with � : , " .
3. For Ã *9AS*)� , atomic formulae of < of the form � : . " or � : *N" .
4. For Ã *9A � >�*)� and >m?
'A , atomic formulae of < of the form � : 7�� �  X" .

We shall prove that ; satisfies formulas which are created from the above atomic
formulas. Clearly, ; satisfies formulae of type 1 above, since ; � 
�¨ � 7 � � ¨ �o< ��
¨ � 7 � ¨ � T y � �

 y � .By the definition of � � ¨ �o< � there is an increasing sequence ��r"� � such that ��{tz��Or	�-
� � ¨ �h< � . Hence ; � 
X¨�7Àr	� xÀÛ P ¨�7 � � ¨ �h< �

 ; and for each � , ¨�7Àr<� xÀÛ % < . Using
this sequence, we can show that ; satisfies atomic formulae of type 2–4. For example,
if < has an atomic formula of the form �C: , " for AB?
Ó> then since ¨47'r � xNÛ % < ,
¨��q7�r � / " . As a result ; � , " .

The other two conditions can be proved similarly. Conversely, assume that ; %
� � � < � . There are two cases.
Case 1: ; % < . In this case, we claim � � ;5�h< �`
�ØhÙ;Úq��r , � ° ; 7Br Û % < � 
 � .
Otherwise � � ;C�o< � /)� . Then §br /B�;��; 7`r Û % < . As a result, ; � 7`r

 y � . Since ; % < ,; � 
 y � . Hence, r

 � , which is a contradiction. Consequently, ; 
 AntiFringe � ;C�o< �m%
AntiFringe � < �h< � .
Case 2: ; ?% < . In this case, since ; % � < � , the topological closure. Notice, Topological
closure, by Lemma 1 is created by replacing all /-��. with ,-� * , respectively. Now,
using the definition of closure, there is a point ¨ on the half line ��¨|T)r x¾Û °Cr /Ü� �
which also belongs to < , then ; 
 AntiFringe � ¨ �h< � . [�[�[
The next result presents a method of detecting the TAL via Presburger Sentences.

Theorem 2. Assume that < � �o< � %I� � �4� and < � v)< � . Let <xw denote disjunction of finite
number of elements of � � �4� . Then the following is valid.

Fringe � < � �o< � � vN<xw 	 (2)

if and only if for each Ã *N> *'�
� �I% � � � <�� � �l� §br ,)� �¿T2r Û % � � < �� �l� � �¿T2r Û % < w 	 � (3)

where � � � < � � is defined in the Lemma 6, < �� is the rectangular region created from < by
cancelling atomic formulae of the form � � 7�� :  U" and � � < �� � is defined in Lemma 4.

Proof. Direct result of applying Lemma 2, 3, 4 and Lemma 6.

The equation (3) above is an RPS. � � � < � � , � � < �� �l� and <xw are first order logic for-
mulae on the atomic formulae � �  F" and � � 72¨ �  #" , where " is a rational number.
Moreover, the formula is closed, as variables � ��� 	�	�	 � � � and r are in the scope of

� �
and §cr .

7 Time Action Lock Checker (TALC)

We have developed a tool called Time Action Lock Checker (TALC), which works in
conjunction with UPPAAL version 3.2.X and runs under Linux. Fig. 7 depicts the ar-
chitecture of TALC, which consists of the following five components [26]:



UPPAAL
 JAKARTA

digester


XML file
 Core of

TALC


JAVA objects


RPS Engine


query

Result


GUI


Fig. 7. The Architecture of TALC

– Model Checker UPPAAL, which saves network of Timed Automata models as eX-
tensible Markup Language (XML)[12] files.

– Jakarta Digester [18] transfers XML files to Java objects which captures the in-
formation regarding the network of Timed Automata in Java.

– Core of TALC implements the theory described in previous section and uses Java
objects created by the above component to create a set of Rational Presburger Sen-
tences, which are used to evaluate Time Action Lock freeness of the system, see
Theorem 2.

– RPS Engine is a component software based on [24] that evaluates Rational Pres-
burger Sentences. It can be invoked by the Core of TALC and receives Rational
Presburger Sentences create by Core of TALC in form of queries, evaluates the
correctness of the Rational Presburger Sentences and returns the results of the eval-
uation.

– TALC includes a user interface component (GUI) which enables the user to interact
with the system.

The next example applies the TALC to the verification of a simplified media Syn-
chronisation Protocol motivated by an example studied in [17].

x <= M y <= d0+e0 z <= d1+e1

Ps?

x := 0

x>= m, x<= M

Pr?

y := 0

y >= d0, x < theta0

Fs!

z := 0

z >=  d1, z <= d1+e1

Fe!

y >= theta0, x < theta1

Fs !
z := theta0-m-d0

x >= theta1, y <= d0+e0

Fs!z := theta1-m-d0

Fig. 8. Synchronised Protocol Module



Example: Fig. 8 depicts a Timed Automata model of Synchronisation Protocol
Module (SPM), used in a video streaming system for reducing the jitter caused by the
network delay. The Timed Automaton includes signals Ps and Pr, corresponding to
sending and receiving of packets, respectively. The outputs of SPM are signals Fs and
Fe, which mark starting and ending of the frame display, respectively.

There is a clock � , which resets when a packet is sent i.e., Ps?. For the signal Pr to
receive, there is a delay with a value in = � ��� B , where � and � are constant rational
numbers. On the arrival of Pr another clock ¨ resets. At this stage packets are decoded
into frames. Decoding requires a delay in = R i � R i TB^ i B , where R i and ^ i are constant
rational numbers. According to the time of the sending of a packet, measured by � ,
and the time of arrival of that packet, measured by ¨ , there are three possible scenarios.
Each scenario compares the value of � and ¨ with constants � i and � � and assigns the
value of a new clock ; , which will be used to determine the time of termination of the
display of frames marked by the output signal Fe. Using TALC, we can test the above
Timed Automaton and infer that the system is deadlock free.

8 Conclusion

This paper presents a geometric method for the detection of Time Action Lock in Timed
Automata, the paper makes use of the geometry of

�
�
to identify the part of the speci-

fication that may result in Time Action Lock. The emphasis is on testing and identify-
ing possible sources of defects in the design by studying various regions representing
guards and invariants of the Timed Automata. In particular, the method is based on the
study of subsets of such regions known as Fringes. Evaluating various first order closed
formulae are carried out via a Real Presburger Sentences solver. The method is imple-
mented in a tool called TALC and is successfully applied to the verification of a simple
communication protocol.

References

1. R. Alur and D.L. Dill: A Theory for Timed Automata, In Theoretical Computer Science 125,
pp.183–235, 1994.

2. T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David, A. Fehnker, T. Hune, B.
Jeannet, K. G. Larsen, O. Möller, P. Pettersson, C. Weise and W. Yi: UPPAAL—Now, Next
and Future In proceedings of Modelling and Verification of Parallel Processes (MOVEP2k),
LNCS 2067, pp.100–125, 2001.

3. T. Amon, G. Borriello, T. Hu and J. Liu Symbolic Timing Verification of Timing Diagrams
Using Presburger Formulas 34th ACM/IEEE Design Automation Conference (DAC), June
1997.

4. C. W. Barett, D. L. Dill, and J. R. Levitt: Validity Checking for Combinations of Theories
with Equality, LNCS 818, pp.187–201, 1996.

5. J. Bengtsson, W. O. D. Griffioen, K.J. Kristoffersen, K. G. Larsen, F. Larsson, P. Pettersson
and W. Yi: Verification of an Audio Protocol with Bus Collision Using UPPAAL, In Pro-
ceedings of the 8th International Conference on Computer-Aided Verification, LNCS 1102,
pp.244–256, 1996.



6. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson and W. Yi: UPPAAL, a Tool suite for
automatic verification of Real-time systems In Proceedings of Workshop on Hybrid Systems
III: Verification and Control, LNCS 1066 pp.232–243, 1995.

7. S. Bornot and J. Sifakis On the composition of hybrid systems In Hybrid systems: computa-
tion and Control, LNCS 1386, pp.49–63, 1998.

8. H. Bowman Time and action lock freedom properties of timed automata, In M. Kim, B. Chin,
S. Kang, and D. Lee, editors, Formal Techniques for Networked and Distributed Systems,
pp.119–134. Kluwer Academic Publishers, 2001.

9. H. Bowman, G. Faconti, and M. Massink: Specification and verification of media constraints
using UPPAAL, In Proceedings of Design, Specification and Verification of Interactive Sys-
tems ’98, Markopoulos and P. Johnos, editors, pp.261–277 Springer, 1998.

10. T. Bultan, R. Gerber, W. Pugh Symbolic Model Checking of Infinite State Programs Using
Presburger Arithmetic Proceedings of the 9th International Conference on Computer Aided
Verification (CAV ’97), Orna Grumberg, ed., LNCS 1254, pp.400–411, 1997.

11. N. Bourbaki: Elements of Mathematics —General Topology—, chapters 1-4, Springer-Verlag
1980.

12. eXtensible Markup Language(XML), http://www.w3.org/XML/.
13. J. Ferrante and C. Rackoff: A Deicision Procedure for the first Order Theory of Real Addition

with order, SIAM Journal of Computation 4, pp.69–76, 1975.
14. A. Finkel and J. Leroux How to compose Presburger-accelerations: Applications to broad-

cast protocols In Proc. 22nd Conf. Found. of Software Technology and Theor. Comp. Sci.
(FST and TCS 2002), Kanpur, India LNCS 2556, pp.145–156, 2002.

15. K. Havelund, A. Skou, K. G. Larsen and K. Lund: Formal Modelling and Analysis of an
Audio/Video Protocol: An Industrial Case Study Using UPPAAL In Proceedings of the 18th
IEEE Real-Time Systems Symposium, pp.2–13, 1997.

16. T. A. Henzinger Sooner is Safer Than Later, Inf. Process. Lett. 43(3) pp. 135-141, 1992.
17. T. Higashino, A. Nakata, K. Taniguchi, A. R. Cavalli: Generating Test Cases for a Timed I/O

Automaton Model, Proceedings of the Twelfth IFIP Workshop on Testing of Communicating
Systems (IWTCS’99), pp.197–214, 1999.

18. Apache Jakarta Project, Common digester, (jakarta.apache.org/commons/digester/)
19. G. Kreisel and J. Krivine Elements of Mathematical Logic; Model Theory North-Holland

Publishing Company, 1967.
20. H. Lönn and P. Pettersson: Formal Verification of a TDMA Protocol Start-Up Mechanism, In

Proceedings of 1997 IEEE Pacific Rim International Symposium on Fault-Tolerant Systems,
pp.235–242, 1997.

21. K. G. Larsen, Paul Pettersson and W. Yi: UPPAAL in a Nutshell, In Springer International
Journal of Software Tools for Technology Transfer 1(1+2) 1997.

22. R. Milner, Communication and concurrency, Prentice Hall, Upper Saddle River, NJ, 1989.
23. The Omega Project, http://www.cs.umd.edu/projects/omega/
24. N. Shibata, K. Okano, T. Higashino and K. Taniguchi: A decision algorithm for prenex nor-

mal form rational Presburger sentences based on combinatorial geometry, Proceedings of
the 2nd International Conf. on Discrete Mathematics and Theoretical Computer Science and
the 5th Australasian Theory Symposium (DMTCS’99+CATS’99), pp.344–359 1999.

25. T. R. Shiple, J. H. Kukula, and R. K. Ranjan: A Comparison of Presburger Engines for EFSM
Reachability, LNCS 1427, p.280, 1998.

26. D. Gruntz, S. Murer and C. Szyperski Component Software - Beyond Object-Oriented Pro-
gramming, Second Edition, Addison-Wesley, 2002

27. S. Tripakis, Verifying Progress in Timed Systems, In ARTS’99,Formal Method for Real-Time
and Probabilistic Systems Bamberg, LNCS 1601, 1999.

28. F. Wang, G. Hwang and F. Yu TCTL Inevitability Analysis of Dense-Time Systems LNCS
2759, pp. 176–187, 2003.


