
Using modeling to put HCI design patterns to work

Russell Beale Behzad Bordbar

School of Computer Science
University of Birmingham

Edgbaston
Birmingham

B15 2TT UK

Abstract

It is recognised that creating effective, usable interactive systems is a highly non-trivial task. One approach to
supporting developers and designers is through the use of HCI design patterns - this is now recognised as an
effective way to produce usable systems. Design patterns capture the key elements of a design, providing a library
of approaches that are known to work, though most design patterns are at best only semi-formal, providing outline
structures that are filled in with discursive text and/or images.

In this paper we present a UML/OCL model of design patterns that captures not only the characteristics of the
system but also its interface representation, and provide examples of how it can be used. This approach is shown to
be flexible and very powerful.

We focus on modelling a design pattern at a high level of abstraction, producing a template, or metamodel
representation, from which specific UML instantiations can be refined. This approach immediately captures the
relationships between similar designs, showing the connections between related conceptual elements. The approach
goes further, however; from a specific UML model, we can derive code that implements the relevant design pattern.
The role of OCL is to represent constraints on the model, allowing us to define more tightly the behaviour and
representational aspects of the design pattern.

This paper discusses the reasoning behind the approach and our initial results in modeling design patterns using
UML.

1 Introduction

Designing effective interactive systems is recognised as a difficult task. Not only is the initial design itself a non-
trivial problem, but it also has to be modified and reworked in the light of changing technological or commercial
requirements. This means that such system are often component-based, i.e. they are composed of a set of smaller,
simpler mechanisms that solve certain issues reliably and effectively. During the process of building a large system,
components are assembled together to create a more complex system. However, as technologies change, the
pressure to provide revised solutions means we end up hacking the once-clean design. From an HCI perspective,
getting the initial design and interaction aspects correct is tricky, sometimes more a matter of craft and iteration than
definitive methodology, and these difficulties are worsened over the course of rapid cycles of software production -
the user can be forgotten as the technology advances and all too often new features appear in originally well-
designed systems that are unnecessary, unwanted, or simply inaccessible. Even when well designed initially,
systems can evolve away from users needs.

As an example, consider mobile systems. During the last few years, the massive success of cheaper, smaller and
more powerful devices has caused an extensive growth in the mobile industry. Software components of such
systems have grown both in size and complexity. In particular, there is a bewildering choice of implementation
technologies. Moreover, a single software application typically uses several of these technologies on different
platforms. A typical scenario triggered by the advent of a new technology is to create a slight modification of the
application to suit the new opportunities. Considering the rapid evolution of new technologies and platforms, a
software engineer who produces today's mobile system is a modern day Sisyphus, as his/her product is rendered
futile by the birth of new hardware and software technologies.

From an HCI perspective, the constraints on interaction design imposed by the technologies are rapidly changing
(different screen sizes and resolutions, ever-changing input devices, new functionalities such as digital cameras, and
so on) and providing a consistent, coherent design solution in such a rapidly moving environment is a major
challenge.

2 Addressing fundamental issues

There are two issues here

• we need to find ways of reusing the high-level designs of systems in the face of strong demands for rapid
development

• we need to ensure that these designs are effective from an interaction perspective, especially in the face of
rapid cycles of development, the continuous arrival of new technologies, and the inherent difficulties of
doing effective HCI to create usable systems.

These issues have previously been addressed independently, as outlined below.

2.1 Reusing high-level designs: UML and MDA

The issue of rapid cycles of production and new technologies has been addressed in the context of e-business
systems design, using UML-related technologies(OMG, 2005c), in particular, Model Driven Architecture
(MDA)(Kleppe, Warmer, & Bast, 2003; OMG, 2005a), the new initiative of OMG. The MDA aims to separate the
design from its implementation platform. MDA is based on two main features. The first is to promote the role of
models, which are captured via widely used industry standards such as Unified Modelling Language (UML) for
visualising, storing and exchanging software design artefacts. Using MDA, a Platform Independent Model (PIM) is
created that is mapped to various Platform Specific Model (PSM) models, each targeting a specific implementation
platform or technology. MDA models are not mere design-on-paper; they are machine-readable models, which are
understandable by CASE tools that automatically generate laborious part of implementation in various
implementation platforms. As a result, the second key feature of the MDA is its reliance on automation by
transformation tools and the benefit that it brings. Promoting the role of the models, which is the underlying idea of
the MDA, has emerged as the solution for the extending software lifetime.

2.2 Ensuring interactive system designs are good: HCI patterns

Moves towards user-centered design have addressed some of the HCI issues(Abras, Maloney-Krichmar, & Preece,
2004 (in press); IBM, 2004; Vredenburg, Isensee, & Righi, 2001). Putting key stakeholders at the centre of an
iterative process and enabling him/her to influence the development of the system along the way results in the
correcting of misconceptions and evaluating intermediate solutions. However, user-centered design is time-
consuming and costly, especially in agile development phases with attendant commercial pressures, and is reliant on
both specialist expertise and the availability of users and other stakeholders(Abras et al., 2004 (in press)). This
limits its usefulness.

A complementary approach has come to the fore, that of the use of design patterns. Derived from Alexander’s work
(Alexander, 1964, 1965; Alexander et al., 1977; Alexander, Neis, Anninou, & King, 1987)on architectural patterns,
and now commonplace in software engineering, they have been embraced by parts of the HCI community as an
approach to design(Duyne, Landay, & Hong, 2002; Thomas Erickson; Tidwell) A pattern describes a recurring
problem that occurs in a given context, and based on a set of guiding principles, suggests a solution. The solution is
usually a simple mechanism: a certain style of layout, a particular presentation of information; techniques that work
together to resolve the problem identified in the pattern. Patterns are useful because they document simple
mechanisms that work; provide a common vocabulary and taxonomy for designers, developers and architects;
enable solutions to be described concisely as collections of patterns; enable reuse of architecture, design and
implementation decisions. Patterns are useful as they allow us to capture the salient features of a design, and the
accompanying issues associated with that choice. They give us a way of sharing concepts, an approach to
discussing different options, and a repository of design practices.

At a high level, patterns are therefore highly useful constructs. Design patterns are not perfect, however. There is
no commonly accepted pattern language, and those that exist provide a framework for textual descriptions. Design
patterns are usually expressed as semi-structured free-form text: they have a regularised layout of name, uses,
problems and so on, with the details of the patterns described in natural language(Mahemoff & Johnston). Efforts
are ongoing to devise a standard XML expression (e.g. CHI 2003 workshop, 2004 workshop)(T. Erickson), which
will provide a framework for effective sharing and exchange of HCI patterns.

In addition, HCI as a design discipline is evolving rapidly, partly as technologies change and partly as we discover
more about human reactions to interactive designs and systems, and so the patterns reflect a relatively immature
design discipline. There are no completely accepted design patterns for specific situations: indeed, one of the
characteristics of breakthrough devices/systems/interactions is that they often flout the accepted practice of the time
anyway - it may never be possible to create ideal design patterns. The other major problem is that, being textual,
they rely on large quantities of real-world knowledge, are not machine-understandable, and so are hard to apply
without a great deal of craft knowledge. As a tool for less experienced designers, if the right pattern can be found
then it offers a relatively familiar structure and so can be understood more quickly. But being able to identify the set
of candidate patterns, to find related ones, to understand the constraints imposed by one choice over another, is an
unsupported, difficult task. Moreover, as patterns are often created by different authors, it becomes hard for any
substantial pattern library to identify patterns that are in fact identical, or at least very similar.

The limitations of HCI design patterns have to be combined with the wider impact of new technologies on HCI
issues: new technologies offer new functionalities which impact the interactive nature of systems; the emergence of
new styles of interaction between users drives new technologies to support these. In addition, acceptance of new
metaphors or interaction styles drives changes in the platforms, and the rapid development process causes
divergence from original design principles.

3 Merging the approaches

We are working on combining the approaches: we use MDA to integrate both the software architecture and the
interactive design aspects. This will be achieved through using UML as a language to capture the core elements as a
platform independent model (PIM) and producing transformations to produce implementable systems.

We can model both the systems and the HCI design patterns using UML at an abstract, technology-independent
level. The UML has a built-in mechanism that allows the creation of specialised, UML-based languages, called
UML Profiles. A list of UML profiles adopted by the OMG are available on their web site (OMG). Creating a UML
profile for HCI provides support for the specification of the HCI aspects of the system. Moreover, UML profiles are
can be used to define transformations that map the platform independent models that are compliant to the profile
into implementations on a variety of platforms. Using this approach, we therefore model HCI design patterns at an
appropriate level of abstraction and are able to capture their salient aspects in a way that then lends itself to mapping
down to an implementation that reflects HCI concerns as much as technical ones. This approach only works as it
retains a level of abstraction, separating out the platform independent model from the platform specific one (PSM).

MDA also provides us with a route to providing effective CASE tool support(Frankel, 2003; Kleppe et al., 2003),
which allows us to automate the process of producing specific implementations on specific platforms. This also
means we can rapidly prototype, produce and compare a variety of systems and design choices simply and cost-
effectively. Other main advantage to this approach is that it allows us to capture good design practice in the form of
semi-formal pattern libraries. In addition, the CASE tool should be able to support developers in identifying the set
of possible design patterns, at both an abstract and domain specific level. Having a tool that supports rapid
prototyping we are more easily able to facilitate user-centered design, since we can involve users in evaluating
multiple prototypes that use different patterns (i.e. approaches to solving problems) in order to ascertain which
system works best.

If this works effectively, it should allow a wider variety of developers to produce more usable, more effective
interactive systems, as they are guided through the process. It should allow the rapid dissemination of good practice,
and facilitate the production of agile systems since new technologies do not require a complete rethink of

approaches. Importantly, any tool produced should not constrain the designer to use only those solutions that fit the
patterns, but should allow the designer to create their own approaches if they feel that a new style or solution is
called for. Since the CASE tool takes care of much of the actual code production, rapid prototyping becomes much
easier and more options can be investigated in the same timeframe.

We are pursuing this research agenda for a number of reasons. HCI design patterns are a useful concept for
capturing effective aspects of interactive systems, but are not easy to use as a tool for designers. Because both MDA
and HCI design patterns exist at a similar level of abstraction, we have good reason to suggest this will lead to
interesting results. In addition, an integrated solution is required for effective evaluation. Simply having a CASE
tool is not enough - the system should allow us to create more usable software more quickly and be adaptable as
technologies alter. We therefore address a number of issues: we extend the lifetime of software, we support the
maintenance and speedy upgrade of software on top of rapidly changing technologies, we promote good interactive
design practice by providing assistive tool support for patterns, and encourage the spread of consistent effective HCI
through a common notation.

3.1 Can design patterns be represented using UML?

The UML proposes a simple mechanism for the modelling of design pattern based on the use of collaboration.
Collaborations are generally used to explain how a collection of cooperating instances achieve a joint task or set of
tasks. A collaboration describes a structure of collaborating elements (roles), each performing a specialized function,
which collectively accomplish some desired functionality. Collaborations, although very practical, have some
deficiencies(Sunye, Guennec, & Jezequel, 2000) in terms of expressing power. (Sunye et al., 2000) adopt a meta
programming approach; applying design patterns by means of successive transformation steps. However, they do
not address the issue of interaction and focus on static aspects. (France, Kim, Ghosh, & Song, 2004) and (Kim,
France, Ghosh, & Song, 2003)address both static and interaction aspects of the specification of the design patterns.
(Mak, Choy, & Lun, 2004) and (Dong & Yang, 2003)both make use of UML class diagrams and OCL statements
and suggest extensions of the UML via a profile for the modelling of the patterns, and (Dong, 2003) studies the
composition of design patterns.

3.2 Can HCI patterns be represented?

A central question is whether something that is recognisably difficult to quantify, such as HCI issues, can be
represented in UML. It is instructive to reflect on the successes in modelling Quality of Service. We plan to address
the HCI issues in much the same way as researchers have addressed the design and specification of non-functional
aspects of systems such as Quality of Service (QoS) issues. A concept somewhat like 'Good HCI' - we know it
when we get it (in fact, it’s more that we really know it when we don't get it), defining the constituent parts of a
system to deliver a certain QoS is hard. QoS is, like good HCI, an emergent end-to-end property based on the
multitude of interactions between different components, not a specific module that you can add in at a later stage: it
is an integral, inherent feature of the fundamental design and specific implementation – just as the HCI issues should
be.

However, QoS has been successfully modelled via the UML. At the time of the writing, the OMG is reviewing a
major submission on “UML Profile for Quality of Service and Fault tolerance”(OMG, 2005b), which is a
specification defining a set of UML extensions to represent Quality of Service and Fault-Tolerance concepts. The
study of methods of using the UML for the specification and modelling of QoS is a popular area of research. For
example, (Bordbar, Derrick, & Waters, 2002; D.H.Akehurst, B.Bordbar, J.Derrick, & A.G.Waters, 2002)present a
method of specification of QoS via the UML, which has resulted in the creation of a design support environment for
distributed systems, which enables the specification and verification of the QoS. There are also methods of the
integration of the QoS into the MDA (Solberg, Husa, Aagedal, & Abrahamsen, 2003)and there are already MDA
tools (ISIS, 2004) for modelling the QoS aspects of some systems. Given that this approach works for QoS, we can
have some confidence it may work for modelling some of the interactive aspects of the system as well.

There are some interesting questions to address as to whether this, or any, formalism can really effectively capture
all the relevant parts of a pattern (e.g. look and feel, aesthetics), and investigating the depth to which we can capture
things forms part of our further research agenda. However, since we do manage to capture aesthetics and other

intangibles in things like interior decorating catalogues, this suggests that we may be able to represent a lot of things
effectively.

4 Case Study: The Overview-Detail pattern

The overview-detail pattern is a common interface design pattern, used to provide detailed information selected
from a much larger set of summary information. One pattern language definition is given below, quoted from
Jenifer Tidwel(Tidwell):

Overview Plus Detail
 Use when: You need to present a large amount of content - messages in a mailbox, sections of a
website, frames of a video - that is too big, complex, or dynamic to show in a simple linear form.
You want the user to see the overall structure of the content; you also want the user to traverse the
content at their own pace, in an order of their choosing.
Why: It's an age-old way of dealing with complexity: present a high-level view of what's going
on, and let the user "drill down" from that view into the details as they need to, keeping both levels
visible for quick iteration. Overview Plus Detail breaks up the content into comprehensible pieces,
while simultaneously revealing their interrelationships to the user.
[…] the overview can serve as a "You are here" sign. A user can tell at a glance where they are in
the larger context. In the example above, the scrollbar shows that the visible message is near the
end of the mailbox.
How: The overview panel serves as a selectable index or map. Put it on one side of the page.
When the user selects an element in it, details about that element - text, images, data, controls, etc.
- appear on the other side. (Usually the overview panel is at the top or left.)
[…] keeping both halves on the same page or window is key. You could put the details into a
separate window, but it's not as effective. You want the user to be able to browse easily and fluidly
through the UI, without waiting or messing around with windows. In particular, you don't want the
user to jump back and forth between two pages (though it's usually necessary on tiny displays like
PDAs; see One-Window Drilldown, which doesn't require the use of two side-by-side panels).

J. Tidwell

Examples of this can be seen in the Windows Explorer and typical email clients, shown below:

Figure 1: Overview Detail design pattern examples: Explorer and Mozilla.

The Overview is shown in the pane on the left in Figure 1: Folders in Explorer, Mail folders in Mozilla, with details
about the selected item on the right – files and folders in Explorer’s case, an email message header in Mozilla’s. In
the Mozilla example, there is also a pane below the detail pane; the overview detail pattern is applied again to the

contents of the mailbox, with a set of message headers in the top as the overview and the detail given in the pane
below them.

Tidwel’s description of the design pattern is typical of many – a flowing, clear, description in natural language that
conveys the essence of both the circumstances under which it is appropriate and what it actually means for the
interface. The full pattern also identifies other patterns that are related. The problem is that using these patterns
requires very good craft knowledge, as there is no tool support or effective way of browsing or searching them. This
makes sharing knowledge with up and coming designers more difficult

4.1 Modelling Overview-Detail

A pattern specification can be seen as a metamodel that characterises UML design model of the pattern solution
(France et al., 2004; Kim et al., 2003). As a result, we shall start by creating a metamodel representation of the
Overview Plus Detail (OPD) pattern.

 Window

+select() : void

Overview

load(item:Item) : bool

Detail

-activated : bool
Selectable Index

Item

1

+ overview

1

1 + detail

1

1

1

1

+displays

*

1

+displays

1

1

1
Pane

1

2

Figure 2: Metamodel specification of OPD

Figure 2 depicts a static view of the OPD comprising of the concepts involved and their relationship. Each Window
includes two panes; one pane is for the Overview, which presents a high-level view of context and the second pane is
for Detail, which depicts the details related to the high-level view. The Overview is in correspondence with the only
one Detail: this is depicted by a unary association connecting the two.

Each Overview meta-element displays a number of Selectable Index items. For example, the list of emails depicted
in Figure 1 above. Selectable Indexes are linear structures such as tree, list or table (although, it is possible to have
other structures; see the signal processing example in (Tidwell). Each Selectable Index is represented by an Item
depicted in the Detail window. Each Detail window displays only one Item; this is depicted by the association from
Detail to Item.

To complete the specification of the pattern, we have to specify the dynamic aspect of the pattern by specifying the
interaction between the elements. To explain this, consider the mailer example. If the user select()s a
Selectable Index, e.g. a mail header, its state is changed on the GUI: for example, the email within the Overview
window gets highlighted. This results in the change activated = true. As a result, the corresponding Item is
downloaded to the Detail (invoking load()). In case of success in displaying the item true is returned, otherwise
false is returned. As a result, as specified in load(item:Item):bool, load accepts an object item of type
Item and return Boolean (bool).

Such interaction aspects of the system can be represented via a sequence diagram(OMG, 2005c) or an OCL
statement. The sequence diagram, which represents a possible interaction of the metamodel elements, is shown in
Figure 3

:Overview :Selectable Index :Item :Detail

select()

activated:=true
item

load()

Figure 3: Sequence Diagram representing an interaction in the OWD pattern

We can also use OCL to represent the interaction between the metamodel elements of Figure 2. The OCL
representation consists of three main parts, representing the expected behaviour of each method in the context of its
related model element. OCL gives us a more precise explanation, which is a logical formalism that can be
automatically transformed into code and incorporated into a software tool. We have omitted it here since it doesn’t
contribute significantly to the current explanation, though it is important to realise that we can programmatically
capture the interactive nature of the design pattern.

4.2 Modelling One Window Drilldown

One Window Drilldown (OWD) is an alternative to OPD. It is often used for the user interface of a device with tight
space restrictions, such as a handheld device such as a mobile phone. OWD can also be used in building interfaces
for applications running on desktops or laptop screens, if complexity is to be avoided. In particular, if the user is not
used to computers, they might have little patience with (or understanding of) having many application windows
open at once. Users of information kiosks fall into this category; as do novice PC users.

Window

+select() : void

Current

-load(item:Item)() : bool

Next

-activated : bool
Selectable Index

Item

1

0..1

1

0..1

1

+displays

*

1 +displays

1

1

1
Pane

1

1

1

+back 1

Figure 4: metamodel for specification of OWD

Figure 4 depicts the metamodel for the OWD. There is a single Pane to which a Current and Next data are loaded.
On the selection of an item from the Selectable Index, the corresponding Item is loaded as the Next pane. To ensure
in the above model there is only one in Current or Next the following OCL constraint is added.

context Pane
inv:
 -- There is either a current or a next item (or both)
 -- The if statement takes out the "both" possibility
 self.current -> size() = 1 or self.next->size() = 1 and
 (if self.current -> size() = 1 then
 self.next -> size() = 0
 else
 self.next->size() = 1
 endif
)

This essentially says that, in the diagram, there could be 0 or 1 Current screen and 0 or 1 Next screen – and we can
only display one at a time, hence the need for the constraint.

The behavioural model of the OWD is exactly the same as in Figure 3, which we would expect since the interaction
is very much the same. The OCL statement is essentially the same as well (with minor variations, again not
presented here).

4.3 Working with formalised patterns

The metamodel specification of overview plus detail, and one-window drilldown, both show that if we have data
that has the form of a selectable index that corresponds to more detail, we can use either of the design patterns
described here. Since the form of the data is captured in the specification, we expect to extend this work to develop
a CASE tool to automatically identify appropriate patterns based on the nature of the data. The interaction in both
cases is the same – select an element and see the detail – though the presentation aspects are different. This too is
captured in the metamodel – one has two panes in a window, whilst the other only has one. We can use this
information to allow us to choose which is most suitable for our application (for a mobile device where screen space
is tight, we would choose the single pane model, pushing us to use OWD, for example). It is therefore possible to
use the features of the device, or the desired style of the interaction, to allow us to select the set of useful patterns
that can be used.

5 Conclusions

We have described an approach to formalising the modelling of HCI design patterns using UML, and presented a
case study that models the Overview-Detail pattern and the One-Window Drilldown. The approach allows us to
provide automatic identification of when the patterns are potentially applicable, based on the data involved. The
models also capture the interactive elements of patterns, and some of their layout/graphical considerations. They
also demonstrate the similarities and differences clearly, and suggest that this approach is appropriate for us to
automate support for choosing which pattern to apply in a device design situation.

6 References

Abras, C., Maloney-Krichmar, D., & Preece, J. (2004 (in press)). User-Centered Design. In W. Bainbridge (Ed.),

Encyclopedia of Human-Computer Interaction: Thousand Oaks: Sage Publications.
Alexander, C. (1964). Notes on the Synthesis of Form: Cambridge, Massachusetts: Harvard University Press.
Alexander, C. (1965). A city is not tree. Architectural Forum, 122(No. 1 pages 58-61, No. 2 pages 28-62.).
Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S. (1977). A Pattern

Language. New York: Oxford University Press.
Alexander, C., Neis, H., Anninou, A., & King, I. (1987). A New Theory of Urban Design. New York: Oxford

University Press.
Bordbar, B., Derrick, J., & Waters, A. G. (2002). Using UML to specify QoS Constraints in ODP. Computer

Network and ISDN systems, 40, 279-304.

D.H.Akehurst, B.Bordbar, J.Derrick, & A.G.Waters. (2002, October). Design Support Environment for Distributed
Systems. Paper presented at the Procedings of the 7th Cabernet Radicals Workshop.

Dong, J. (2003, 2003///). Representing the applications and compositions of design patterns in UML. Paper
presented at the SAC '03: Proceedings of the 2003 ACM symposium on Applied computing.

Dong, J., & Yang, S. (2003). Extending UML To Visualize Design Patterns In Class Diagrams. Paper presented at
the Proceedings of the Fifteenth International Conference on Software Engineering and Knowledge
Engineering (SEKE), San Francisco Bay, California, USA.

Duyne, D. K. V., Landay, J. A., & Hong, J. I. (2002). The Design of Sites: Patterns: Principles and Processes for
crafting a Customer-Centered Web experience: Addison Wesley.

Erickson, T.HCI patterns, from http://media.informatik.rwth-aachen.de/patterns/tiki/hcipatterns.org.html
Erickson, T.Interaction Design Patterns Page, from

www.pliant.org/personal/Tom_Erickson/InteractionPatterns.html
France, R., Kim, D.-K., Ghosh, S., & Song, E. (2004). A UML-Based Pattern Specification Technique. IEEE Trans.

Softw. Eng. PU - IEEE Press, 30(3), 193-206.
Frankel, D. S. (2003). Model Driven Architecture: Applying MDA to Enterprise Computing: OMG Press.
IBM. (2004). User Centered Design, IBM Ease of Use, from www-306.ibm.com/ibm/easy/eou_ext.nsf/publish/570
ISIS. (2004). CoSMIC (Component Synthesis with Model Integrated Computing), from

www.dre.vanderbilt.edu/cosmic/
Kim, D., France, R., Ghosh, S., & Song, E. (2003). A UML-Based Metamodeling Language to Specify Design

Patterns, from http://www.cs.colostate.edu/~georg/aspectsPub/WISME03-dkk.pdf
Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained. The Model Driven Architecture: Practice and Promise,

: Addison-Wesley.
Mahemoff, M., & Johnston, L. J. Usability Pattern Languages: the "Language" Aspect.
Mak, J., Choy, C., & Lun, D. (2004, 2004///). Precise Modeling of Design Patterns in UML. Paper presented at the

ICSE '04: Proceedings of the 26th International Conference on Software Engineering.
OMG.Object Management Group (OMG), from www.omg.org/
OMG. (2005a). Model Driven Architecture, from www.omg.org/mda/
OMG. (2005b). UML Profile for QoS and Fault Tolerance, from

www.omg.org/technology/documents/modeling_spec_catalog.htm
OMG. (2005c). Unified Modelling Language (UML), from www.uml.org
Solberg, A., Husa, K. E., Aagedal, J., & Abrahamsen, E. (2003). QoS-aware MDA. Paper presented at the

Implementation and Validation of Object-oriented Embedded Systems (SIVOES-MDA'2003) in
conjunction with UML'2003.

Sunye, G., Guennec, A., & Jezequel, J.-M. (2000, 2000///). Design Patterns Application in UML. Paper presented at
the ECOOP '00: Proceedings of the 14th European Conference on Object-Oriented Programming.

Tidwell, J.COMMON GROUND: A Pattern Language for Human-Computer Interface Design, from
www.mit.edu/~jtidwell/interaction_patterns.html

Vredenburg, K., Isensee, S., & Righi, C. (2001). User-Centered Design: An Integrated Approach: Prentice Hall.

http://media.informatik.rwth-aachen.de/patterns/tiki/hcipatterns.org.html
http://www.pliant.org/personal/Tom_Erickson/InteractionPatterns.html
http://www.dre.vanderbilt.edu/cosmic/
http://www.cs.colostate.edu/~georg/aspectsPub/WISME03-dkk.pdf
http://www.omg.org/
http://www.omg.org/mda/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.uml.org/
http://www.mit.edu/~jtidwell/interaction_patterns.html

	Introduction
	Addressing fundamental issues
	Reusing high-level designs: UML and MDA
	Ensuring interactive system designs are good: HCI patterns

	Merging the approaches
	Can design patterns be represented using UML?
	Can HCI patterns be represented?

	Case Study: The Overview-Detail pattern
	Modelling Overview-Detail
	Modelling One Window Drilldown
	Working with formalised patterns

	Conclusions
	References

