
B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

46

A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

BEHZAD BORDBAR1, RACHID ANANE2 AND KOZO OKANO3

1School of Computer Science, University of Birmingham, UK.
B.Bordbar@cs.bham.ac.uk

2Department of Computer and Network Systems, Coventry University, UK.
R.Anane@coventry.ac.uk

3Graduate School of Information Science and Technology, Osaka University, Japan
Okano@ist.osaka-u.ac.jp

Abstract: Concern over the accurate evaluation of QoS requirements has been one of driving forces in the
development of QoS management architectures. This paper presents an architectural approach to QoS evaluation
and admission control, based on the modelling of both system behaviour and QoS requirements. Two aspects are
considered. The first refers to QoS management, and to a component-based architecture for QoS evaluation. The
second illustrates the approach with the help of a case study based on a Personal Area Network. The proposed
approach is model-based and makes use of models representing both behaviour and QoS aspects of the system via
Timed Automata. The compatibility of the mechanism with architectures, which promote QoS management in its
own right, such as ITSUMO, is also highlighted.

1. INTRODUCTION

The flexibility afforded by IP mobility in distributed
systems is often at odds with the challenge of
ensuring continuity of service and maintaining an
agreed level of QoS (Burness, Hepworth et al.
2001). The highly dynamic nature of distributed
systems can be mediated by a negotiation phase
between clients and QoS managers to reflect
prevailing conditions. The outcome can be expressed
in terms of a service level agreement (SLA), which
is often translated into a service level specification
(SLS) and from which QoS parameters are
extracted. In addition to the inherent channel errors,
user mobility and contention between users for
scarce resources may lead to situations where a
service level may not be honoured by nodes,
especially when handover takes place (Cavanaugh,
Welch et al. 2000). Handover is symptomatic of the
complexity of QoS management because of its
implications for QoS provision. It may lead to the
re-negotiation of service levels and to the re-
allocation of resources, a disruption that may
increase network latency (Lu, Lee et al. 1997).
Hence, there is increasing interest in QoS
management architectures. The aims of the design of
QoS management architectures include support for
adaptivity and for accurate, transparent and efficient
evaluation of QoS requests. These aims can be
achieved by an architecture that should allow for the
gathering and storage of global QoS information,
and also for the accurate evaluation of QoS requests.

The remainder of the paper is organised as follows.
Section 2 gives an introduction to table-based QoS
management. Section 3 describes the architecture of a
QoS evaluation mechanism. Section 4 illustrates the
proposed approach with a case study. Section 5 discusses
issues raised in the paper. Section 6 presents related
work and Section 7 concludes the paper.

2. TABLE-BASED QOS MANAGEMENT

Support for seamless mobility and adaptive computing in
QoS provision are important requirements of QoS
management. The transition period generated by a
handover needs to be managed by the transfer of the SLS
of mobile stations between adjacent nodes. Transfer can
follow a reactive approach and be performed on demand
such as in the architecture proposed in (Stattenberger
and Braun 2001). An architecture such as ITSUMO
(Chen, McAuley et al. 2000; Chen, McAuley et al.
2002), which will be used in this paper for reference, on
the other hand, promotes a proactive approach; an SLS,
once determined, is broadcast to all nodes in the same
domain in order to ensure a seamless handover.
ITSUMO is a reference architecture that adopts a
principled approach to QoS management.

In many QoS architectures tables are the focal point of
activity especially in admission control, or when re-
negotiation is mandated (Cardoso and Kon 2004).
Sugawara et al (Sugawara and Tatsukawa 1999) present
an example of a table-based implementation, where
information about QoS levels is maintained. The QoS
table holds the resources required by all the scheduled
tasks in the system, and its purpose is to facilitate the

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

47

resource allocation to tasks and the determination of
system resource requirement. Both QoS control and
QoS transport (shaping etc.) issues are dealt with by
one component. This particular implementation is
one point in a wider spectrum. In the architecture
proposed by Pau et al (Pau, Maniezzo et al. 2003),
where the Wireless Quality Enhancer (WQE), a QoS
manager and policy maker, makes use of a table for
interacting with the access points (AP), which are
policy implementers. The tables are also directly
relevant to the modelling and validation of QoS
requests. One advantage of tables in QoS schemes is
that policy-based QoS management can be enforced
(Nanda and Simmonds 2003). ITSUMO (Chen,
McAuley et al. 2000; Chen, McAuley et al. 2002)
presents a more sophisticated approach to the use of
tables. The GQS keeps various items of information
including service levels agreements and their
derivatives, patterns of mobility and domain
resource availability. In conjunction with this
centralised information, each QLN holds a subset of
information in a local table that is used for run-time
purposes and updated frequently by the GQS. The
different types of table in the two components reflect
the nature and the scope of their functions. The
GQS, endowed with more intelligence, is concerned
with QoS global decisions whereas the QLN is
responsible for their implementation, at local level.
In both these architectures the QoS manager, in the
discharge of its functions relies mainly on the
information stored in the table. This approach also
puts the onus on the client application itself to
specify unambiguously its QoS requirements, since
the tables hold partial information. It may also be
prescriptive. Reaching an agreement may be a
lengthy and complicated process.

We propose an approach to QoS management and
evaluation that takes into account system behaviour,
and is designed to offer a more accurate evaluation
of the requests, minimise negotiation and allow for
extensibility. In reaching a decision, a QoS manager
puts more emphasis on the dynamic behaviour of the
system instead of confining its processing to the
manipulation of the information in the table. An
additional aim of the design is to maintain
compatibility with the ITSUMO architectures and to
supports its goals for scalability, adaptability and
accuracy.

3. A QOS EVALUATION

MECHANISM

The scope of the proposed architecture is determined
by the desire to enhance admission control in QoS

management. The architecture is presented in Figure 1.
On receipt of a QoS request the QoS Manager calls upon
the QoS Evaluation Module (QEM) to determine
whether a QoS request can be satisfied.

3.1 Component description

The evaluation process involves a number of
components as follows.

Table of Commitments (TOC): holds information on
the current state of the system. This includes information
about system nodes, resources and QoS allocated to
them. TOC can be used to create a model representing
the behaviour of the system and a model representing the
QoS. The information in TOC is logged in a repository
for optimisation purposes.

Repository: holds previously instantiated models and
their requested QoS level. This allows the system to look
up a QoS when a previous situation arises again. In the
case of a new scenario the evaluation is delegated to a
component called QEM.

QoSManager

QEM

BMR QMRQRE

TOC

Repository

Figure 1: An architecture for QoS evaluation

QoS Evaluation Module (QEM): The evaluation
process requires three elements. First, a model of the
behaviour of the system, which includes the behaviour of
the existing system components, and also the behaviour
of the new user. Second, to verify a QoS request, a
formal representation of such expression is generated.
Third, the QoS requirements must be checked against the
behavioural model. This is achieved by the use of QoS
Resolution Engine, explained further below.

Behavioural Model Repository (BMR): BMR is a
repository that contains various templates, which
represent the models of behaviour of components such
as communication protocols and channels. The templates
are the building blocks from which the overall behaviour
of the system can be composed. QEM uses the templates
in BMR to instantiate different parts of a model, and
creates a behavioural model for the overall system.

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

48

QoS Model Repository (QMR): Similarly, QMR
consist of a set of templates that can be used to
provide models for a QoS statement. QEM uses the
templates in the QMR to instantiate formal
representations of QoS aspects of the system.

QoS Resolution Engine (QRE): QRE operates on
the behavioural and QoS models generated from
BMR and QMR and TOC. A QRE is the intelligent
component that receives a model of the behaviour
and a model of the QoS request and checks the
validity of the QoS statement against the behaviour
of the model. The QoS request may be an
aggregation of the QoS request stored in the table of
commitments.

3.2 Implementation of architecture

In an earlier paper (Bordbar and Anane 2005), an
implementation of the architecture, with the focus on
the BMR, QMR and QRE, was outlined in terms of
Timed Automata. BMR includes various templates
Timed Automata (Clarke, Grumberg et al. 1999) for
source, sink, different types of buffer, decoder
(Bordbar and Okano 2003) as well as
communication protocol (Bengtsson, Griffioen et al.
2002). These are the underlying building blocks for
the creation of the behavioural models. The template
Timed Automata represent the behaviour of the sub-
components and include parameters for the variables
of the model. The behavioural models of the system
are networks of Timed Automata (Larsen, Pettersson
et al. 1997), aggregated from the instantiation of
templates in BMR, by assigning values to
parameters in each template. QMR, on the other
hand, is a repository of template Timed Automata
corresponding to various Timeliness QoS properties
such as jitter, latency and throughput (Chalmers and
Sloman; Bordbar and Okano 2003). These are to be
used as Test Timed Automata (Ageto, Bouyer et al.
2003). A Test Timed Automaton instantiated from
the templates can be used to verify the
corresponding QoS statement against the behaviour
of the system, as modelled by instantiations from the
BMR (Bordbar and Anane 2005). The final
component, QRE is based on the model checker
UPPAAL (Larsen, Pettersson et al. 1997; UPPAAL
2005), which can perform the verification of
networks of Timed Automata. To ensure
compatibility with the UPPAAL files, which are
stored as XML files, the concrete representation of
the Timed Automata is in XML. Despite this bias
towards XML as a specific representation, the main
implication is that XML is also a suitable form for

holding information in the Repository and the Table of
Commitment (TOC).

3.3 Component Interaction

An illustration of the dynamic behaviour and interaction
of the three main components of the architecture,
namely, QoS Manager, TOC and the Repository is given
below, at a higher level of abstraction. Suppose that the
QoS Manager receives a request from a new client. This
request provides details of the pattern of interaction and
the required QoS of the client. This is denoted as
Requested Model (RM: Model) and Requested QoS (RQ:
QoS). Once it receives the request the task of the QoS
Manager is to consider the requested pattern of
interaction of the new client and the resources allocated
to the existing clients, and resolve the newly requested
QoS RQ, i.e. to determine whether the new request can
be satisfied. In order to achieve this, the QoS Manager
obtains copies of the existing model of the system from
the TOC, denoted by messages getCurrentModel(),
which is returned as CurrentModel. The next step for the
QoS Manager is to assemble the current model along
with the requested model and QoS, i.e. RM and RQ, and
forward them to the Repository. As stated earlier, the
main function of the Repository is to keep a record of
previous models of the system, in order to optimise
system performance. For example, if a configuration
consists of two applications running on a PC and another
application running on a laptop, and their respective QoS
requirements and behaviour can be supported by the
system, then this fact is recorded in the repository.
Future requests can be resolved by a process similar to a
table look up. Work is currently being carried on the
enhancement of the Repository so as to allow inference
of new information from stored configurations.

 result

 (CurrentModel, RM , RQ)

 CurrentModel

getCurrentModel() RM : Model
RQ: QoS

QoS Manager TOC Repository

Figure 2: Interaction between TOC, Repository and
QoS Manager

A response to a request by the QoS Manager to the
Repository is returned by result, as a Boolean value. If
result is true, the requested combination (CurrentModel,
RM, RQ) can be supported by the system. If, on the other

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

49

hand, result is false, the combination
(CurrentModel, RM, RQ) is passed to QEM for
further resolution as described earlier. If the QEM
resolves that the system can support both the
committed QoS, encapsulated in CurrentModel, and
the newly requested QoS, then the information
captured in (CurrentModel, RM, RQ) is added to the
repository for future reference.

4. CASE STUDY: A PERSONAL

AREA NETWORK

In this section, a case study is introduced in order to
illustrate the behavioural and QoS modelling
process, and the evaluation mechanism.

4.1 Scenario

Let us consider a Personal Area Network (PAN) that
consists of a Wireless router connected to the
Internet. Figure 3 depicts a number of users
(Stations), namely two PCs (PC1, PC2) and a
Laptop (L1), which access the Internet via the router
(Access Point). L2 is not part of the initial
configuration. The stations are competing with each
other to acquire bandwidth and to achieve a better
QoS.
Now, consider a laptop L2, which wants to join the
PAN as depicted in Figure 3. The task of the QoS
manager is to determine the effect of a provision of
service to L2 on the existing components. From the
information it holds and the description of the
behaviour of L2 and its QoS, the QoS Manager can
create a model of the overall system. Let us refer to
the model that includes the description of the
behaviour of L1, L2, PC1 and PC2 as m. Under the
behaviour specified in m, the system must not only
satisfy the new QoS request from L2, but also the
committed QoS requests for L1, PC1 and PC2. Such
QoS requirements (including the request from L2)
will be referred to as q.

Internet

Wireless
Router

PC1
PC2L1

L2

Figure 3: Wireless Router used in a PAN

Given the dynamic nature of wireless networks, it is
possible that the above scenario, modelled in terms

of m and q, may have occurred before. In this case, the
QoS Manager may find such information in the
Repository. As discussed in previous section, the QoS
Manager can retrieve the models and use them to decide
if QoS q is achievable within the behavioural model m.
If, on the other hand, the models are not in the
Repository, the evaluation process goes through a
number of steps, detailed as follows. QEM receives a
request to check if q is valid for the system. The request
includes the parameters representing the QoS statement
and a model of the behaviour of the system. This can be
generated with the help of the information in TOC. QEM
then instructs BMR and QMR to instantiate the
behavioural model and the QoS statement, which are
transferred to the QRE. The QRE carries the check and
returns the result to QEM.

4.2 Components and Behaviour

The modelling process requires an explicit identification
of the components of the network, and their interactions.
To this end, it was decided to focus on the case where
the applications on the station are just downloading
packets from the Internet, i.e. there is negligible or no
traffic from any station towards the router. As depicted
in Figure 4, the Internet is the provider of the packets.
The Wireless Router sends the packets to the Stations.
Each station is assumed to contain an Input Module,
which receives the packets from the Wireless Router and
passes it to the Application Layer. The Application
Layer represents a group of applications, which are
viewed as “consumers of packets”.

Internet

Application Layer

Station n

Input Module

Application Layer

Station 1

Input Module

PCF

Wireless router

...

packets

packets

packets
packets

Figure 4: Flow of packets

For the sake of clarity caching and various other
protocols involved in the transfer of the packets were not

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

50

included. In order to communicate with the stations
the Wireless Router needs to access the medium by
means of a protocol. The wireless local area network
(802.11) (IEEE 1999) defines three basic access
mechanisms. Firstly, there is a mechanism method
based on Carrier Sense Multiple Access and
Collision Avoidance (CSMA/CA). The second type
of access method aims to address the hidden station
problem; 802.11 enhances the first method by using
two signal Request To Send and Clear To Send
(RTS/CTS). The above two methods are refereed to
as Distributed Coordinate Function (DCF). This
example adopts the Point Coordinate Function
(PCF) as the access mechanism, described Figure 5,
which shows the timing of one AP and two stations
in a Contention Free Period. First the AP
downstream some DATA and a frame called CF-poll
to ask Station 1 (STA1) to upload the data. After a
fix period of time SIFS (Simple Interframe Space),
STA1 upstreams its data and an acknowledgement
(CF-ACK). The same process repeats for STA2. To
end the Contention Free Period the AP sends a frame
CF-END. After a SIFS, a new Contention Free
Period can start.

AP

STA1

STA2

SIFS
DATA+
CF-poll

DATA+
CF-ACK SIFS

SIFS
DATA+
CF-poll

DATA+
CF-ACK SIFS

SIFSCF-END

Figure 5: Contention Free Period and Polling

For further information on the WLAN and PCF, the
reader is referred to (Schiller 2003).

4.3 Modelling behaviour

The modelling of a system’s behaviour is an
aggregation of the behavioural models of its
components. This section presents a brief description
of the behavioural models of the components in
terms of networks of Timed Automata (Larsen,
Pettersson et al. 1997) as depicted in Figure 6. The
Wireless medium is modelled via the Timed
Automata for the medium (TA for medium), which
represents two states for the medium, busy and free.
The switch between states is modelled via urgent
actions, which occur as soon as they are enabled
(UPPAAL 2005). The interaction with the router,
which makes use of PCF, is modelled as TA for
PCF. At the start of a contention free period, the
medium gets busy, and this is shown with the signal

access? Of TA for PCF. The integer value i ranges over
the number of stations. There are N stations, i.e.
i = 1, … , N. Depending on the value of i, the downlink
(data!) is meant to be delivered to station number i. The
start with value of i is 1 and, it is incremented each time
before the data is delivered to the next station.

After gaining access to the medium, the PCF sends data
to the station. The data sent by the DCF must be broken
into units of maximum length of MAC Service Data Unit
(MDSU) (IEEE 1999; Schiller 2003). A denotes the
amount of time required for the MDSU to reach the
destination. As a result, at state Sending_Data, within A
unit of time data! Is sent. Depending on the value of i,
the signal data? Is used in the Application Layer of
Station i. When the transmission of data finishes, an
urgent acting CF-poll signal is sent to mark the end of
data. To notify the medium, an idle! Signal is sent to
mark the end of access. Then the PCF waits for SIFS
(SIFS is 10 ms1). At exactly SIFS units it receives a
CF_ACK! Signal from the Station that the data has been
received. However, if i < N, in order to ensure that the
next downstream goes to station i+1, the value of i is
incremented. If i = N, this indicates that one contention
free period is finished and a CF-end signal is sent. In this
case, since no contention period is used, the CF-end is
replaced with a simple acknowledgement signal
CF_ACK. If the CF_ACK is sent a back-off period of
SIFS is required.

Each station has an identifier j with a range of values
between 1 and N. From the scenario described in Figure
4, the model of STAj is the parallel composition of two
Timed Automata; (TA for I/O) and (TA for App) for
consuming data? Created by the TA for PCF. Each part
is shown in the diagram. In the TA for I/O, on receiving
the signal CF_POLL! From the PCF, a clock starts. The
station waits for SIFS unit and then sends a CF_ACK?
To be used by TA for PCF. Since the scenario presented
in the paper is concerned with downloading data, no
upload time for sending data from the Station to the
router is included. The TA for App periodically receives
data? From PCF. As it is also possible to receive a frame
with no data, TA for App models this via dataE? The
PCF. TA for Internet models downstream flow from the
Internet to the router. It periodically creates a signal
packet!, and its period is specified by constants MP and
mP. The signal packet! Is emitted during the period
[(i-1)MP+imP, iMP]. A constant WM specifies the size
of buffer between an internet-side receiver and PCF in
the wireless router. A global variable q, which specifies
the current size of data in the buffer, is shared among TA
for Internet and TA for PCF.

1 It is 10 ms if FHSS is used and 28 ms if DSSS is used.

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

51

4.4 QoS modelling and Verification

Consider the system of the previous section, which
consists of two PCs and a laptop, and with the
parameters, WM = 5, WM = 5, SIFS = 40, PA = 20,
BD = 20 and Ad (application delay) of 5. Suppose
one of the requirements is that the throughput
(Anchored throughput (Bordbar and Okano 2003)) is
at least 1 frame every 127 units for laptop 1 (LP1),
i.e. the occurrence of at least 6 signal VSChunk! In
each period of SIFS*19, see Figure 6 “TA for I/O”.

Now, assume that a new laptop LP2, with a
specification identical to LP1 wants to join the
system. Also, assume that LP2 requests the same
level of throughput (at least 1 frame per 127 unit). If
the scenario involving LP1, LP2, PC1 and PC2 has
not been modelled before, i.e. is not held in the
TOC, the QoS Manager has to evaluate the
achievability of the QoS for LP2 using the QEM. In
order to do so a model of the system is created from
the templates in BMR. This includes using the
templates depicted in Figure 6 and the numerical
parameters to create a network of Timed Automata
model of the system. In order to check the QoS
required by LP2, a Test Timed Automata for
anchored throughput is required, as depicted in
Figure 7. For further details on Test Timed
Automata for the verification of QoS we refer the
reader to (Bordbar and Okano 2003).

Type of
timeliness
QoS

Verified
Property

Result CPU
time
(sec)

Anchored
Throughput

At least 6 signal
VSChunk! In each
period of 1000

valid <0.5

Anchored
Throughput

At least 7 signal
VSChunk! In each
period of 1000

invalid <1

Non-
Anchored
Throughput

At least 4 signal
VSChunk! In each
period of 680

valid <3

Non-
Anchored
Throughput

At least 4 signal
VSChunk! In each
period of 640

invalid <3

Anchored
Jitter

With period 160
+/-20 sec

valid <0.5

Non-
Anchored
Jitter

With period 160
+/-20 sec

valid <0.5

Table 1: QoS parameters following joining LP2

For this case, it can be seen that anchored
throughput of at least 1 frame per 127 unit is not

achievable. It is possible for LP2 to negotiate with the
QoS manager and request a lower level of QoS. For
example, it can be checked that the system can provide
at least 1 frame per 167 unit (at least 6 signal VSChunk!
In each period of SIFS*25). In a similar way, QoS
manager can evaluate other types of timeliness
properties resulting from joining the new laptop LP2 into
the system. Table 1 shows the results of experiments
conducted with different types of throughput and jitter.
All experiments are conducted via UPPAAL version
3.4.11 running on an Intel III 600MHz Linux machine.

busy free

idle!

access!

s0 s1

t <= T0

in ?
t := 0

t <= T0
out !

TA for medium TA for Internet

start Sending_Data

t <= A

End_of_Data End_of_Access Wait_for_SIFT_Units

t <= SIFS

access?

t:=0

t<=A,
q >0

data!

q--

CF_POLL? idle?

t:=0

i == N,
t == SIFS

CF_ACK?
i := 1

i < N,
t == SIFS

CF_ACK? i++

t<=A,
q == 0

dataE!

TA for PCF

start
wait_for_SIFT_Units

t <= SIFS

i == j

CF_POLL!

t := 0

t == SIFS

CF_ACK!

t<=MP

t<=MP,
mP<=t,
q<= WM

packet!

t:=0,
q ++

t==MP,
q> WM

t:=0

TA for I/O (station j) TA for App (station j)

Figure 6: Behavioural Model of the system

5. DISCUSSION

The proposed architecture was motivated by two major
concerns, namely the need to hold QoS information
about commitments and requests, and the ability to
determine accurately the viability of new QoS requests.

Start
r := r+1
vschunk?
t := 0

S1 failure

r := r+1
vschunk?

t <= SIFS*19

t == SIFS*19
r >= 6
t:=0, r:=0

t == SIFS*19
r < 6

Figure 7: TA for Anchored Throughput

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

52

 The first goal led to the introduction of a table of
commitments for current requests, and a repository
for previous ones. The evaluation and viability issue
was addressed, firstly by instantiating existing
templates into models of behaviour and QoS, and
secondly by verifying the viability of these models.
This approach simplifies the interactions between
client applications and the centralised QoS server.
Since the server is in possession of global
information and is aware of behavioural models,
QoS negotiation is minimised. A proactive approach
can also be fostered by the existence of the
repository. Concomitant with a transfer of
complexity from application to server is a better
assessment of resource management and allocation.
Furthermore, the centralised approach allows for the
enhancement of the level of intelligence in QoS
management; a prospect that is in tune with the aims
of the GQS in ITSUMO. Although a centralised
decision maker can be a potential bottleneck, its role
is mandated by user mobility and traffic level.

This affinity with ITSUMO is also underlined by a
clear separation between QoS decisions and resource
allocation. Furthermore it is the modelling approach
that confers to the proposed architecture a significant
role in providing support for flexibility, scalability
and adaptivity in dynamic QoS management.
This feature was illustrated by the case study. The
autonomy enjoyed by the QoS manager owes much
to the availability of templates, the instantiation of
models and their verification. These features may,
however, be available at a price. There is a need to
keep the template repositories up to date, and to
optimise their symbiotic relationship with the table
of commitments.

The concerns outlined above are pointers for further
work. Most significant are the investigation of
suitable structures for the table of commitments and
for the repository, and the identification and
selection of methods and adequate techniques for
representing and manipulating models. In particular,
the ability to aggregate and disaggregate instantiated
models is a requirement for an efficient
implementation of re-negotiation. Future work will
also involve the investigation and evaluation of other
formalisms for modelling behaviour.

6. RELATED WORK

The work presented in this paper relates to
architectural models for QoS management as well as
to modelling techniques for QoS. Architectures for
QoS management span a wide range of approaches
and can be defined by the level at which they

operate and by their commitment to an explicit or
implicit mode of QoS management.

6.1 QoS management

Some QoS architectures directly support both network
layer and operating systems. For example, Roscoe et al
(Roscoe and Bowen 2000) present an enhancement to
the Windows NT architecture by adding a set of
protocols, which can be used by an application to
directly modify the network packets. Nahrstedt et al
(Nahrstedt, Chu et al. 1999) describe an architecture that
aims to mediate between the application and OS. This is
achieved by a set of APIs, which allows the reservation
of the CPU resources required by the applications. The
middleware level is also directly relevant to QoS
management because of its privileged role in mediation.
Quo (Staehli, Eliassen et al. 2003; Eliassen, Staehli et
al. 2004) is a middleware platform and architecture
which supports the creation and composition of
components by specifying the structure of the required
QoS. Quo uses Reflection mechanism (Maes 1987) to
identify suitable components, instantiate them and
interconnect (bind) them.

At the other extreme of QoS management is the model
that promotes QoS management by the application itself.
Applications can be enhanced so as to make them QoS
aware. For example, Enterprise Java Beans (EJB 2002),
is a commercial component architecture for enterprise
applications that does not include any QoS Management
mechanism. The component architecture OpenORB
(Coulson, Blair et al. 2002) extends the EJB by
incorporating Component Architecture, a set of
structures which embody policies and rules to support
QoS. In OpenORB the application code is responsible
for ensuring QoS. Another extension of EJB (Miguel,
Ruiz et al. 2002) supports QoS by adding new container
components for negotiation and adaptation. The
proposed model presented in this paper offers an
alternative that conforms much more to the client server
model.

6.2 QoS modelling

Although the approach presented in this paper relies on
the formal modelling of the behavioural and QoS aspects
of wireless systems, it is important to note that this
approach to automation is independent of the choice of
the specification language. To allow automated analysis
of configurations, Timed Automata, a variation of the
Timed Automata model, was adopted. For a detailed
coverage of Timed Automata, the interested reader is
referred to (Clarke, Grumberg et al. 1999). The proposed
architecture is, however, model agnostic, and can
incorporate various modelling techniques. Timed

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

53

Automata offers accuracy potentially at the expense
of speed. Most modelling techniques, reported in the
literature are characterised by a bias towards the
object oriented model.

Bordbar et al (Akehurst, Bordbar et al. 2002;
Bordbar, Derrick et al. 2002a) present a framework
based on ODP framework (Putman 2000) for
expressing QoS. This makes use of an extension to
Object Constraint Language (OCL) (Warmer 2003)
and UML (UML 2003) for specifying required and
provided QoS of objects. CQML (Aagedal and
Ecklund 2002) is another language based on the
ODP and UML for expressing QoS. CQML+
(Rottger and Zschaler 2003) extends CQML to
express the demand on the resources in component-
based systems and Web-based applications. For a
recent review and comparison of various QoS
specification methods see (Jin and Nahrstedt 2004) .
These frameworks have the advantage of easing the
modelling process thanks to the high level concepts
they manipulate. The decomposition process, and in
particular the access to, and reuse of the sub-
components of a particular configuration present,
however, a major challenge for the designers.

7. CONCLUSION

This work has highlighted the importance of
modelling and verification in the accurate evaluation
of QoS requests in wireless systems. It has shown
that this can be achieved by a symbiotic relationship
between table manipulation and model-based
approaches. It has also pointed out that efficiency
requirements for wireless systems, in highly
dynamic environments, warrant a careful
investigation and selection of both formalism and
mechanisms in QoS management. Further work will
focus on the refinement of the architecture and the
investigation of other formalisms for QoS
modelling.

References

Aagedal, J. and E. F. Ecklund (2002). Modelling QoS:

Towards a UML Profile. 5th International Conference
on Unified Modeling Language (UML 2002),
Springer.

Ageto, L., P. Bouyer, et al. (2003). "The Power of
Reachability Testing for Timed Automata."
Theoretical Computer Science 300(1-3): 411-475.

Akehurst, D. H., B. Bordbar, et al. (2002). Design Support
for Distributed Systems: DSE4DS. Procedings of the
7th Cabernet Radicals Workshop.

Bengtsson, J., W. O. D. Griffioen, et al. (2002). "Automated
Analysis of an Audio Control Protocol Using Uppaal."
Journal of Logic and Algebraic Programming 52-53: 163-
181.

Bordbar, B. and R. Anane (2005). An Architecture for
Automated QoS Resolution in Wireless Systems.
Proceeding of the IEEE International Workshop on Web
and Mobile Information Systems (WAMIS).

Bordbar, B., J. Derrick, et al. (2002a). "Using UML to specify
QoS constraints in ODP." Journal of Computer Network
and ISDN systems, pp 279-304.

Bordbar, B. and K. Okano (2003). Verification of Timeliness
QoS Properties in Multimedia Systems. Proceeding of 5th
International Conference on Formal Engineering Methods.

Burness, L., E. Hepworth, et al. (2001). Architecture for
Providing QoS in an IP-based Mobile Network. Proc. IST
Mobile Communications Summit.

Cardoso, R. S. and F. Kon (2004). A mobile Agent
Infrastructure for QoS Negotiation of Adaptive
Distributed Applications. CoopIS/DOA/ODBASE.

Cavanaugh, C. D., L. R. Welch, et al. (2000). Quality of
Service Negotiation for Distributed, Dynamic Real-time
Systems, Parallel and Distributed Processing. International
Parallel and Distributed Processing Symposium.

Chalmers, D. and M. Sloman "A Survey of Quality of Service
in Mobile Computing Environments." IEEE
Communications Surveys 2nd quarter.

Chen, J. C., A. McAuley, et al. (2000). A QoS Architecture for
Future Wireless IP Networks. Twelfth IASTED
International Conference onParallel and Distributed
Computing and Systems (PDCS).

Chen, J. C., A. McAuley, et al. (2002). Dynamic Service
Negotiation Protocol (DSNP) and Wireless DiffServ.
IEEE International Conference on Communication.

Clarke, E. M., O. Grumberg, et al. (1999). Model Checking.
London, MIT Press.

Coulson, G., G. Blair, et al. (2002). "The design of a
configurable and reconfigurable middleware platform."
Distributed Computing Journal 15(2): 109-126.

EJB (2002). Sun Microsystems, Enterprise JavaBeans ™
Specification.

Eliassen, F., R. Staehli, et al. (2004). QuA: building with
reusable QoS-aware components. OOPSLA Companion:
154-155.

IEEE (1999). "IEEE Computer Society. Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. IEEE Standard 802.11."

Jin, J. and K. Nahrstedt (2004). "QoS Specification Languages
for Distributed Multimedia Applications: A Survey and
Taxonomy." IEEE Multimedia Magazine 11(33): 74-87.

Larsen, K. G., P. Pettersson, et al. (1997). "UPPAAL in a
Nutshell." International Journal of Software Tools for
Technology 1(1+2).

Lu, S., K.-W. Lee, et al. (1997). Adaptive Service in Mobile
Computing Environments. IFIP International Workshop
on Quality of Service.

Maes, P. (1987). Concepts and Experiments in Computational
Reflection. Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA’87).

Miguel, M. A., J. F. Ruiz, et al. (2002). QoS-Aware
Component Frameworks. Proc. 10th International
Workshop on Quality of Service (IWQoS’02).

B. BORDBAR et al: A TIMED AUTOMATA APPROACH TO QOS RESOLUTION

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

54

Nahrstedt, K., H. Chu, et al. (1999). "QoS-aware resource
management for distributed multimedia applications."
High Speed Networks 7(3-4): 229-257.

Nanda, P. and A. Simmonds (2003). Policy Based
Architecture for QoS over Differentiated Services
Network. International Conference on Internet
Computing.

Pau, G., D. Maniezzo, et al. (2003). A Cross-Layer
Framework for Wireless LAN QoS Support. IEEE
International Conference on Information Technology
Research and Education.

Putman, J. (2000). Architecting with RM-ODP, Prentice
Hall.

Roscoe, T. and G. Bowen (2000). Script-driven Packet
Marking for Quality of Service Support in Legacy
Applications. Conference on Multimedia Computing
and Networking.

Rottger, S. and S. Zschaler (2003). CQML+ :
Enhancements to CQML. Proc. 1st Int'l Workshop on
Quality of Service in Component-Based Software
Engineering.

Schiller, J. H. (2003). Mobile Communications, 2nd
Esition, Addison-Wesley.

Staehli, R., F. Eliassen, et al. (2003). Quality of Service
Semantics for component based systems. proceedings
for 2nd International Workshop on reflective and
adaptive middleware systems.

Stattenberger, G. and T. Braun (2001). QoS Provisioning
for Mobile IP Users: Applications and Services in
Wireless Networks, Hermes Science.

Sugawara, T. and K. Tatsukawa (1999). Table-based QoS
Control for Embedded Real-Time Systems. ACM
Workshop on Languages, Compilers and Tools for
Embedded Systems.

UML (2003). "UML Superstructure 2.0, Object
Management Group, available at www.omg.org."

UPPAAL (2005). "www.uppaal.com."
Warmer, J. K., Anneke (2003). The Object Constraint

Language: Getting Your Models Ready for MDA.
Reading, Mass., Addison Wesley.

