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Abstract

In this paper we show how to use labelled event struc-
tures as a unique mathematical representation for design
models consisting of different UML 2.0 diagrams/notation.
Each diagram is used to capture a particular aspect or view
of the system including structural and behavioural aspects.
Our approach enables the analysis of complex systems de-
signed in a combination of UML 2.0 notation, and serves as
a means to detect inconsistencies in design.

1 Introduction

Designing a system often starts by identifying a correct
architecture for the system. This can be captured by a struc-
tural model which specifies components involved in the sys-
tem and their interconnections. Structural models can be
further enhanced by incorporating behavioural models. A
behavioural model specifies the interaction between system
components to fulfil various tasks of the system. The de-
sign and specification of structural and behavioral aspects
of systems have received considerable attention, for exam-
ple [14, 11, 18]. The inclusion of constraints to impose
suitable restrictions and to ensure correct functioning of the
system further refines structural and behavioural specifica-
tions. For example, constraints can be used to ensure cor-
rect synchronisation of interacting components [3], and to
specify non-functional aspects such as Quality of Service
[4], fault tolerance and policies [19]. As a result, models
representing structure, behaviour and constraints are closer
to better capture essential aspects of systems. However, for
formal analysis and verification and thus to establish a clear
understanding of the system, it is crucial to create a formal
represention that embodies all views of the system.

In this paper, we use UML 2.0 to design systems consist-
ing of a combination of class diagrams (structure), sequence
diagrams (behaviour) and OCL (further constraints). In our

approach, a design model in multiple views is translated
into a unique mathematical model (labelled event struc-
tures) which can not only be used for analysis but also
serves as a means to detect inconsistencies in design (for
example, between an OCL constraint and a sequence dia-
gram). We also expect our approach to allow us to identify
missing behaviour (not all possible scenarios of behaviour
have been identified in design), and indicate possible model
optimisations (for example, a given OCL constraint can
make a fragment within a sequence diagram redundant).

This paper is structured as follows. In Section 2 we show
how to model systems using different UML 2.0 notation and
introduce an example. Section 3 describes the mathemati-
cal model and the categorical construction used for com-
bining view models. It also describes how the same model
can be used for the two different views (structural and be-
havioural). In section 4 we define a view synchronisation
diagram which allows us to use the categorical construction
explained earlier to obtain the desired model. We illustrate
how the diagram can also be used to identify inconsistencies
or, as in our example, discard a sequence diagram that does
not take into account the constraints on the structural model.
We finish the paper with a discussion on related work and
ideas for further research.

2 Modelling with UML 2.0: An Example

This section describes how we model systems using
UML 2.0 [17]. We use two different UML diagrams to de-
scribe structural and behavioural aspects of a system. These
different aspects which we capture through class diagrams
(structure) and sequence diagrams (behaviour) can also be
seen as giving different views on the system. In addition,
we use the constraint language OCL [16] to capture fur-
ther constraints on the model which cannot be captured di-
agrammatically. We illustrate the notation used by means
of a simple example. We will come back to this example in
later sections to explain our mathematical framework.
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Consider the system described in Figure 1 of a sliding
machine. The machine pushes incoming jobs into places
A and B. In order to do so it uses two sliders. We want

A B

Jobs arriving

Job ready
to be moved

to A or B

Slider1: pushes the job to ASlider2: pushes the job to B

Figure 1. A sliding machine.

to model the system in such a way that we guarantee the
correct behaviour of the system. In particular, we want to
prevent both sliders from attempting to push the same job
into their respective places.

s2

Controller

+jobArrived()

+insertAck()

Slider

−waiting:Bool

−inserting:Bool

+startInsert()
+endInsert()

s1

Figure 2. Class diagram for sliding machine.

Figure 2 shows the classes and their relationships for the
example. The attributes of class Slider are used to indi-
cate the state of a given slider (inserting or waiting).
We assume the existence of a controller that knows when
jobs arrive and allocates each job to a slider. The following
OCL constraints restrict the possible behaviour of the ob-
jects in the system (and are intended to guarantee the correct
interleaved behaviour of the sliders).

context c:Controller inv:

not(c.s1.inserting=true and

c.s2.inserting=true)

The first constraint states that both sliders (s1 and s2)
associated to a controller c cannot simultaneously be in a
state where inserting is true. Notice, however, that it is
possible for both sliders to be waiting for a job.

The next constraint indicates that a slider can either be
waiting or inserting but not both.

context s:Slider inv:

not(s.inserting=true and

s.waiting=true)

The following constraint specifies the behaviour of the
operation (method) startInsert(). It can only be ex-
ecuted provided the slider is in state waiting (precon-
dition), and after execution it changes the value of the at-
tributes (postcondition).

context s:Slider::startInsert()

pre: s.waiting=true

post: s.waiting = false and

s.inserting=true

The final constraint describes the behaviour of the opera-
tion (method) endInsert(). The postcondition, in addi-
tion to changing the values of the attributes also states that
the slider sends a message to its controller to acknowledge
the insert.

context s:Slider::endInsert()

pre: s.inserting=true

post: s.waiting = true

and s.inserting=false and

s.ControllerˆinsertAck()

OCL as defined in the standard specification document
[16] cannot be used to describe temporal constraints such
as liveness and fairness. In the context of our example, we
cannot express the following additional temporal contraints
using OCL.

1. When a controller receives an invocation of
jobArrived() it will eventually send a mes-
sage to a (waiting) slider (either s1 or s2) to start an
insert.

2. When a slider starts an insert it will eventu-
ally end it and send an acknowledgement, i.e., a
startInsert() invocation will eventually be fol-
lowed by endInsert() which in turn will eventu-
ally be followed by an insertAck().

3. Two (independent) consecutive insert requests are al-
ways given to a different slider, i.e., for two consecu-
tive parallel invocations of jobArrived(), the con-
troller sends startInsert() messages in parallel
to different sliders.

The OCL template introduced in [7] can be used to de-
scribe simple temporal (liveness) properties of the form af-
ter 〈expression〉 eventually 〈expression〉, but it cannot be
used to impose sequences of occurrences (such as invoca-
tions) and fairness properties in general. Furthermore, it is
accepted that designers prefer diagrammatic notations such
as sequence diagrams to indicate sequences of execution.
Consequently, we use UML 2.0 sequence diagrams to cap-
ture additional behaviour and/or dynamic constraints. Our
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example constraints are captured by the sequence diagrams
in Figure 3, Figure 4 and Figure 5 respectively.

1
c.s1:Slider c.s2:Sliderc:Controller

startInsert()

[c.s1.waiting=true]

[c.s2.waiting=true]

alt

jobArrived()

startInsert()

sd

Figure 3. Modelling constraint 1.

Figure 3 shows controller c receiving a message
jobArrived() (the sender is not specified and corre-
sponds to what is called a gate). The arrowhead indicates
that the message is sent asynchronously. The controller then
sends synchronously a message to either c.s1 or c.s2.
This is modelled through the interaction fragment alt de-
noting alternative behaviour. An alt fragment contains sev-
eral operands (alternatives) separated by horizontal dashed
lines whereby each operand may have a guard. Only one of
the operands, for which the guard evaluates to true, is ex-
ecuted. If more than one guard evaluates to true we have
nonderterministic choice.

2

s:Slider

insertAck()

endInsert()

startInsert()

sd

Figure 4. Modelling constraint 2.

Figure 4 shows the order of execution of the operations
(methods) on a slider. Finally, Figure 5 shows a controller
c receiving two independent messages jobArrived()
(the square brackets along a lifeline indicate a concurrent
region). The controller then enters a par fragment denot-
ing parallel behaviour. A par fragment contains several
operands (no guards) which execute in parallel. As we
will see in the next section, we use an underlying true-
concurrent model for interpreting sequence diagrams. Con-
sequently, the messages sent in each operand can happen
simultaneously or in any order. The idea here is that the
controller tries to introduce some fairness in the allocation
of jobs between sliders.

jobArrived()

c:Controller c.s1:Slider c.s2:Slider

jobArrived()

sd 3

startInsert()

startInsert()

par

Figure 5. Modelling constraint 3.

Notice that the above model for the sliding system is not
intended to be complete or correct and we shall return to
such considerations later on.

3 Mathematical Model

We introduce a mathematical model that integrates the
system views described in UML and whilst doing so can
also be used to detect inconsistencies or incompleteness in
the design. We have used labelled event structures as an un-
derlying model for sequence diagrams in UML 2.0 [13, 5].
In this paper, we use labelled event structures for two pur-
poses: 1) as a complete behavioural model for the objects
and their relationships according to the structural view of
the system (class diagram and OCL constraints); and 2) as
a model that captures individual scenarios (sequence dia-
grams). If consistent, the models obtained in both views can
be combined using the categorical construction of [5] and
used for further analysis. Furthermore, our approach will
give us information on completeness and/or consistency.

3.1 Event Structures: Basic Notions

We recall some basic notions on the model we use,
namely labelled prime event structures [20].

Prime event structures, or event structures for short, al-
low the description of distributed computations as event oc-
currences together with relations for expressing causal de-
pendency and nondeterminism. The first relation is des-
ignated causality, and the second conflict. The causality
relation implies a (partial) order among event occurrences,
while the conflict relation expresses how the occurrence of
certain events excludes the occurrence of others. Consider
the following definition of event structures.
Event Structure. An event structure is a triple E =
(Ev,→∗, #) where Ev is a set of events and →∗, # ⊆

3



Ev × Ev are binary relations called causality and conflict,
respectively. Causality →∗ is a partial order. Conflict #
is symmetric and irreflexive, and propagates over causal-
ity, i.e., e#e

′ →∗ e
′′ ⇒ e#e

′′
for all e, e

′
, e

′′ ∈ Ev.
Two events e, e

′ ∈ Ev are concurrent, e co e
′

iff ¬(e →∗

e
′ ∨ e

′ →∗ e ∨ e#e
′
).

From the two relations defined on the set of events, a
further relation is derived, namely the concurrency relation
co. As stated, two events are concurrent if and only if they
are completely unrelated, i.e., neither related by causality
nor by conflict.

In our approach to inter-object behaviour specification,
we will consider a restriction of event structures sometimes
referred to as discrete event structures. An event structure
is said to be discrete if the set of previous occurrences of an
event is finite.
Discrete Event Structure. Let E = (Ev,→∗, #) be an
event structure. E is a discrete event structure iff for each
event e ∈ Ev, the local configuration of e given by ↓ e =
{e′ | e

′ →∗ e} is finite.
The finiteness assumption of the so-called local config-

uration is motivated by the fact that system’s computations
always have a starting point, which means that any event in
a computation can only have finitely many previous occur-
rences.

Consequently, we are able to talk about immediate
causality in such structures. Two events are related by im-
mediate causality if there are no other event occurrences in
between. Formally, if ∀e′′∈Ev(e →∗ e

′′ →∗ e
′ ⇒ (e

′′
=

e ∨ e
′′

= e
′
)) holds. If e →∗ e

′
are related by immedi-

ate causality then e is said to be an immediate predecessor
of e

′
and e

′
is said to be an immediate successor of e. We

may write e → e
′

instead of e →∗ e
′

to denote immediate
causality. Furthermore, we also use the notation e →+ e

′

whenever e →∗ e
′

and e 
= e
′
.

Hereafter, discrete event structures are designated event
structures for short.
Configuration. Let E = (Ev,→∗, #) be an event struc-
ture and C ⊆ Ev. C is a configuration in E iff it is both (1)
conflict free: for all e, e

′ ∈ C, ¬(e#e
′
), and (2) downwards

closed: for any e ∈ C and e
′ ∈ Ev, if e

′ →∗ e then e
′ ∈ C.

A maximal configuration denotes a run. A run is sometimes
called life cycle.

Finally, in order to use event structures to provide a de-
notational semantics to languages, it is necessary to link the
event structures to the language they are supposed to de-
scribe. This is achieved by attaching a labelling function to
the set of events. A generic labelling function is as defined
next.
Labelling Function. Let E = (Ev,→∗, #) be an event
structure, and L be an arbitrary set. A labelling function for
E is a total function l : Ev → L mapping each event into
an element of the set L.

An event structure together with a labelling function de-
fines a so-called labelled event structure.
Labelled Event Structure. Let E = (Ev,→∗, #) be an
event structure, L be a set of labels, and l : Ev → L be a
labelling function for E. A labelled event structure is a pair
(E, l : Ev → L).

Usually, events model the occurrence of actions, and a
possible labelling function maps each event into an action
symbol or a set of action symbols. In this paper, we use
labelled event structures for two different purposes and as
such we will need two labelling functions. When using
event structures to model the possible behaviour of objects
given a signature as defined in the class diagram, the la-
belling function maps each event to a logical formula in-
dicating its state (enabled operations, occurring operations
and values of attributes). When using event structures to
model sequence diagrams in UML 2.0, the labelling func-
tion indicates whether an event represents sending or receiv-
ing a message, a condition, the beginning or end of an inter-
action fragment.

3.2 Categorical Construction

In this section we describe the main idea of a categorical
construction for event structures which we use to combine
different models. We omit details of categorical properties
of event structures and refer the interested reader to [5, 20].
It suffices to understand that we consider two categories (ev
and cev) over event structures (based on two notions of mor-
phisms). For this paper, we only need to introduce the mor-
phism notion for the category ev (from [20]).
Event Structure Morphism. Let Ei = (Evi,→∗

i , #i) for
i = 1, 2 be event structures, and C ⊆ Ev1 an arbitrary
subset of events. A morphism from E1 to E2 consists of a
partial function h : Ev1 → Ev2 on events satisfying both
(1) if C is a configuration in E1 then h(C) is a configuration
in E2, and (2) for all e, e

′ ∈ C, if h(e), h(e
′
) are defined and

h(e) = h(e
′
) then e = e

′
.

The notion of event structure morphism as given before
preserves the concurrency relation, as has been proved in
[20]. The intuition behind the morphism is that the occur-
rence of an event is matched (synchronised) with the occur-
rence of its image.

We want to be able to combine arbitrary (labelled) event
structures by synchronising some of their events whilst
leaving the remaining events and relations unchanged.
There is no immediate categorical result on ev (or even
cev) that gives us exactly what we need. It turns out that
the model synchronisation as we need it can be obtained in
several steps when using both categories. Before introduc-
ing the construction we define the diagram over which it is
based.
Synchronisation Diagram Let E1 and E2 be two event
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structures. A synchronisation diagram for E1 and E2 is
given by a triple S = (Esynch, f1, f2) where Esynch is a
nonempty event structure, and f i with i ∈ {1, 2} are two
surjective event structure morphisms such that f i : Evi →
Evsynch, and satisfying f1(Ev1) = f2(Ev2). Moreover,
Esynch is called the synchronisation event structure of E1

and E2.
If a synchronisation diagram is not definable we say that

the models are not composable. The synchronisation dia-
gram tells us how the models relate.
Categorical Construction Let E1 and E2 be two event
structures with a synchronisation diagram given by S =
(Esynch, f1, f2) where fi : Evi → Evsynch for i ∈ {1, 2}.
Let E

′
i be the maximal event substructure of Ei such that

fi|E′
i

is a total morphism. Then doing the pullbacks in ev
and the pushout in cev as depicted, we obtain the concur-
rent composition of E1 and E2, written E1 ×synch E2, in
accordance with the synchronisation diagram S.

Pullback

Pullback

Pullback

Pushout

E1 E
′
1 E2

M1 M2

E
′
2

ev

cev

E
′
1 ×synch E

′
2

E1 ×synch E2

ev

ev

f1 f2
f1|E′

1
f2|E′

2

Esynch

The interesting aspect of the above construction is that
it combines pullbacks in ev and one final pushout in cev in
such a way that the pullbacks are done over fully synchro-
nised event structures and we always obtain morphisms in
cev satisfying the necessary conditions for the existence of
the the final pushout.

3.3 Event Structures for Class Diagrams and
OCL

In this paper, we are not interested in how to obtain an
event structure model for a class diagram and additional
OCL constraints. We are interested in how such a model
can be combined with a model for a sequence diagram in
order to obtain a more complete behavioural model or de-
tect inconsistencies. We thus assume given a model for the
structural view of the system. The labelling function of such
a model is defined below and requires the notion of a class
diagram signature.

First we recall the definition of a data signature ΣD =
(SD, ΩD), where SD is a finite set of data sorts, and ΩD is

an S∗
D × SD-indexed family of sets of data operations. For

each o ∈ ΩDw,s, w is the parameter list of the operation
o and s the result sort. The elements of ΩDε,s are called
constant symbols of sort s.

Let X be an SD-indexed family of disjoint sets of vari-
ables. A data signature may be extended with variables by
considering them as constant symbols of a given sort. A
data signature with variables is sometimes written ΣD(X).
From the symbols defined in the data signature and the
variables we can construct data terms in the usual way.
TΣD,s(X) denotes the set of data terms of sort s over
ΣD(X). TΣD (∅) is the family of closed terms, also writ-
ten TΣD . Terms denote a certain value, so they can be eval-
uated under a given interpretation. A data signature Σ is
interpreted over Σ-algebras but we omit further details.

For describing a class diagram signature, apart from data
sorts and data operations as above, we will need object sorts
SO and operations on them ΩO . Intuitively, each class is
equipped with an object sort.1

A class describes the attributes and methods2 of its po-
tential instances. Attributes, methods, and instances can be
understood as special object sort operations, but we need to
be able to distinguish them: we need to know whether a cer-
tain object operation is an attribute, method or else. Thus,
we distinguish between: an attribute object sort (S at

O ), a
method object sort (Sm

O ), and an instance object sort (S i
O).

The following defines a class diagram signature.
Class Diagram Signature A class diagram signature is a
signature Σ = (S, Ω) such that:

• S is a finite set of sorts, data and object sorts, that is,
S = SD∪SO where: SO = Si

O∪Sat
O ∪Sm

O is a disjoint
union of sets of object sorts.

• Ω is an S∗ × S-indexed family of sets of operation
symbols such that ΩD ⊆ Ω. Let Si = Si

O ∪ SD.
Further operations in Ω are

– Ωxisi with xi ∈ Si∗ and si ∈ Si
O , object instance

operations;

– Ωsisat,ri with si ∈ Si
O, sat ∈ Sat

O and ri ∈ Si,
attribute operations;

– Ωsixi,sm with si ∈ Si
O, x ∈ Si∗ and sm ∈ Sm

O ,
method operations;

Attribute and method operations are always associated
with an object instance sort. For example, the attribute op-
eration a ∈ Ωsisat,ri is associated to an object instance sort
given by si. (We antecipate that this is to be able to build

1Strictly speaking, to describe class diagrams we want to be able to
capture inheritance which can be done by introducing a partial order over
object sorts and using a so-called order-sorted data signature. We are not
considering inheritance in this paper.

2We avoid the usual term operation in this context to avoid confusion.
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terms in a special way.) Moreover, sat indicates that the op-
eration is an attribute and ri is the sort of the attribute. For
a method operation m ∈ Ωsixi,sm , xi denotes the sorts of
the arguments including possibly the result sort.

From a class diagram signature we can construct not
only data terms (as usual) but instance, attribute and method
terms for objects. For a given signature Σ(X), we will de-
note TΣ(X) the family of sets of data and instance terms,
ATΣ(X) the family of sets of attribute terms, and MEΣ(X)
the family of sets of method terms.

Instance terms are constructed like data terms. Attribute
terms have the form t.a where t is an instance term and
a an attribute operation. The sort of the term t.a is given
by the result sort of a, i.e., if a ∈ Ωsi sat,r then the at-
tribute term t.a has sort r and t is a term of sort si. Method
terms have the general form t.c(t1, . . . , tn) where t is an in-
stance term, c denotes a method, and there is a list (possibly
empty) of argument terms t1 . . . tn. The sort of a method
term t.c(t1, . . . , tn) is given by the method sort of c, i.e.,
if c ∈ Ωsix,sm then the method term is of sort sm. Closed
data and instance, attribute, and method terms are written
TΣ, ATΣ and MEΣ respectively.

The model for the structural view of a system with class
diagram signature Σ is given by MΣ = (E, µΣ) such that
the labelling function is a total function defined over:

µΣ : Ev → 2ΦΣ

where ΦΣ are atomic formulae of a state logic defined over
the signature Σ as follows.

ΦΣ ::= ATΣ,s = TΣ,s | MEΣ

The syntax of ΦΣ defines atomic formulae of a state
logic (not shown) and is used to express the states of the sys-
tem with class diagram signature Σ. The state of the system
is given by the current values of the attributes and occurring
methods of all objects in the system. A formula of ΦΣ can
be the predicate = applied to a closed attribute term and a
closed data term, or a closed method term. The labelling
function associates an event to a set of atoms, namely pairs
of attribute-value and occurring methods.

As we said earlier, in this paper we are not concerned
with how to obtain a model for a class diagram and ad-
ditional OCL constraints and we assume the model given.
The idea is, however, that the model is obtained by con-
current composition of instance models. OCL constraints
restrict the possible runs in the model. In our example, we
obtain a model for the class diagram in Figure 2 by com-
posing the models of instances of controller and slider, for
example instances c, c.s1 and c.s2 (s1 and s2 for short). Let
MΣ = (E, µΣ) be a model for the class diagram Σ. We can
also refer to the individual instance models Mc, Ms1 and
Ms2. Examples of event labels are for e1 → e2:
µΣ(e1) = {s1.waiting = true, s1.inserting = false,

s2.waiting = true, s2.inserting = false}

and for e2 ∈ Evs1 a label could be:
µΣ(e2) = {s1.waiting = false, s1.inserting = true,

s2.waiting = true, s2.inserting = false,
s1.startInsert(), c.startInsert()}

There is an infinite number of events with these labels. Be-
cause of the OCL constraints, we know that an event e3 with
label
µΣ(e3) = {s2.waiting = false, s2.inserting = true,

s1.waiting = true, s1.inserting = false,
s2.startInsert(), c.startInsert()}

is such that e2 and e3 can be related by causality in either
way or by conflict but not be concurrent.

3.4 Event Structures for Sequence Diagrams

In [13] we have shown how labelled event structures can
be used to provide a model for sequence diagrams. Here we
only provide the general idea.

To obtain the corresponding event structure model, we
want to associate events to the locations of the diagram and
determine the relations between those events to reflect the
meaning of the diagram. Figure 6 shows the relation be-
tween the locations in a simple sequence diagram and the
corresponding event structure model (where we depict im-
mediate causality). Synchronous communication is cap-
tured as a shared event, hence the two locations for sending
and receiving message endInsert() are captured by one
event only. The labels become clearer later when we define
the labelling function used.

locations
s:Slider events

e1

e2

e3

e4

e0 (s,2)

(s,2)

(s,2)

(g,startInsert,s)

(s,insertAck,g)

(s,endInsert,s)

insertAck()

endInsert()

startInsert()

sd 2

Figure 6. A simple sequence diagram and its
corresponding model.

However, for more complex diagrams with fragments the
correspondence between locations and events is not always
so obvious.

The locations within different operands of an alt frag-
ment are naturally associated to events in conflict. However,
the end location of an alt fragment is problematic. If it cor-
responded to one event then this event would be in conflict
with itself due to the fact that in a prime event structure con-
flict propagates over causality. This would, however, lead to
an invalid model since conflict is irreflexive. We are there-
fore forced to copy events for locations marking the end of
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alt fragments, as well as for all locations that follow. Events
associated to locations that fall within a par fragment are
concurrent. Synchronous communication is denoted by a
shared event whereas asynchronous communication is cap-
tured by immediate causality between the send event and
receive event.

As mentioned earlier, for representing sequence dia-
grams we use a labelling function to indicate whether an
event represents sending or receiving a message, a condi-
tion, the beginning or end of an interaction fragment. The
only considered fragments in this paper are alt and par. The
fragment ref was treated in [5] and is not considered here to
simplify the presentation.

Let D be a set of diagram names, Id be the set of in-
stances participating in the interaction described by d ∈ D,
and g denote an unspecified instance or gate with g ∈ Id

for all d ∈ D. Let FD = {d, par, alt} where d ∈ D, and
FD = {d, par, alt}. We use par (or par) as a label of an
event associated to the location marking the beginning (or
end) of a par fragment. In particular, events associated to
initial (or end) locations of a diagram d have labels d (or d).
Let Mes be a set of message labels. The labelling function
for diagram d is a total function defined over:

µd : Ev → Id×(Mes×{s, r}∪FD∪FD)∪ Id×Mes×Id

The first part of the codomain is used to describe asyn-
chronous messages or beginning/end of fragments, whilst
the second part of the codomain deals with synchronous
messages.

Finally, for a diagram d ∈ D, a model is a labelled event
structure Md = (Ed, µd).

4 Integrating Views

We have introduced our model, namely labelled event
structures, and seen how it can be used with different
labelling functions for the two views (structural and be-
havioural). In this section, we discuss how we can com-
bine the different views using our categorical construction.
This corresponds to defining synchronisation diagrams for
the models of the views and applying the construction.

In our example, we have a model MΣ for the structural
view and three models for the sequence diagrams given
Msd1, Msd2 and Msd3. The way to combine these indi-
vidual models to obtain the final complete model for our
system is arbitrary. We can either combine MΣ with the se-
quence diagram models in a series of steps, or obtain first
the model for all scenarios and then combine this with MΣ.
Here, we will see what happens if we try to combine MΣ

with the model of sequence diagrams 2 and 3.
Without giving the synchronisation diagram required for

combining the models of sequence diagrams 2 and 3, the

idea is that we duplicate the model of sequence diagram
2 for instances s1 and s2 and synchronise both models on
the shared events labelled with startInsert() to obtain the
model in Figure 7 (for space reasons the names of the meth-
ods are abbreviated in the labels). Given that there is no

(s2,par)
(c,par)

(c,(jA,r))(c,(jA,r))

(c,SI,s2)

(c,SI,s1)

e1’

(s2,eI,s2)

(s1,eI,s1)

(s2,iA,c)

(s1,iA,c)

(c,par)

(s1,par)

e2’

(s1,par) (s2,par)

Figure 7. Combined model for sequence dia-
grams 2 and 3.

choice in behaviour in both diagrams, all events are either
related by causality or concurrent. In particular, e

′
1 co e

′
2.

Let this model be M2+3. In order to be able to combine
it with the corresponding model for the structural view we
first define in general the synchronisation diagram for dif-
ferent views.
View Synchronisation Diagram Let MΣ = (EΣ, µΣ) be a
model for a structural diagram with signature Σ and set of
instances I , and Md = (Ed, µd) be a model for a sequence
diagram d. A view synchronisation diagram for MΣ and
Md is a synchronisation diagram S = (E, f1, f2) with f1 :
EvΣ → Ev, f2 : Evd → Ev both surjective and such that
for e ∈ EvΣ and e

′ ∈ Evd, f1(e) and f2(e
′
) are defined

and f1(e) = f2(e
′
) iff one of the following cases applies:

1. For i ∈ I ∩ Id, i.a() ∈ µΣ(e) and µd(e
′
) = (i, (a, r)).

2. For i ∈ I ∩ Id, i.a(), j.a() ∈ µΣ(e) and µd(e
′
) =

(i, a, j) or µd(e
′
) = (j, a, i).

The synchronisation diagram identifies the events from
both models which should be matched (synchronised). It
only matches events labelled by the occurrence of a method
(structural view) and the receipt of a message (sequence di-
agram) with the same signature. Similarly for cases of syn-
chronous communication.

If there is a view synchronisation diagram for the mod-
els of two views we apply the categorical construction in-
troduced earlier to obtain the final combined model. This
model can be optimised to remove any events (from the se-
quence diagrams) corresponding to locations marking the
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beginning/end of fragments. If the view synchronisation di-
agram is not definable we can identify the events in both
views that create a problem.

Consider the (partial) model for the structural view in
Figure 8. with following labels (with shorthand notation

e1

#

e4

e6

e5

e3e2

Figure 8. Partial model for structural view.

for attributes and methods):
µ(e1) = {s1.w = true, s1.i = false, s2.w = true, s2.i =

false}
µ(e2) = {s1.w = true, s1.i = false, s2.w = false, s2.i =

true, s2.sI(), c.sI()}
µ(e3) = {s1.w = false, s1.i = true, s2.w = true, s2.i =

false, s1.sI(), c.sI()}
µ(e5) = {s1.w = true, s1.i = false, s2.w = true, s2.i =

false, s1.eI()}
µ(e6) = {s1.w = true, s1.i = false, s2.w = false, s2.i =

true, s2.sI(), c.sI()}

To combine the view models of Figure 8 and Figure 7 we
would want to match events e3 and e1

′
, and events e2 and

e2
′
. In this particular case, we can define a view synchro-

nisation diagram with event structure morphisms f1 and f2

such that f1(e3) = f2(e
′
5) and f1(e2) = f2(e

′
2). How-

ever, in order for the event structure morphisms to be valid
f1 maps the conflicting events into two events in concur-
rency. Through the categorical construction we will ulti-
mately loose the concurrency between events e1

′
and e2

′

in the final model, and effectively remain (as intended) in
conflict as in model MΣ. In this case, our approach serves
to discard models from incorrect diagrams such as sd 3.

5 Related and Future Work

The main objective of this paper is to present a math-
ematical formalism which allows the integration of multi-
ple UML 2.0 models. The formalisation of UML diagrams
has received considerable attention in recent years, includ-
ing approaches for defining a semantics to component dia-
grams [15] and sequence diagrams [8, 13] among many oth-
ers. However, despite the vast range of approaches formal-
ising individual UML diagrams, very little has been done
on integrating several UML diagrams in a unique formal-
ism. Ehrig et al [10] presents an algebraic framework for the

composition of models for a component-based system. This
work is further extended in [9] to apply to UML diagrams.
However, their approach essentially deals with structural as-
pects of models representing various aspects of component
design. In contrast our approach uses a single semantic do-
main, labelled event structures, for interpreting the struc-
tural and behavioural views of a system. In order to be able
to obtain a unique mathematical model for a system their
design models must consistent. Ensuring the consistency in
design has recently received considerable attention. Among
others, existing approaches use temporal logic [15], variants
of automata [1], B and refinement calculus [12] and Petri
nets [2].

In our approach consistency between models can be
identified if we are able to define a view synchronisation di-
agram. If there is inconsistency between models we expect
our contruction to identify configurations in either model
that are inconsistent. On the other side, we showed that a se-
quence diagram which did not adequately describe intended
behaviour for the system was in effect discarded when ap-
plying the categorical construction to the two view models.
A clearer way to extract information from our mathematical
construction in the form of feedback for designers needs to
be further investigated.

The idea of multiple view modelling have been exten-
sively studied by Open Distributed Processing (ODP) com-
munity. For example, refinement techniques has been suc-
cessfully used to study the consistency of viewpoints [6].
These methods are different from our approach as they es-
tablish the consistency between viewpoints by showing ex-
istence of a common implementation.

The advantage of our approach lies in combining multi-
ple view models whilst detecting possible inconsistencies.
Moreover, we believe that it can be useful in identifying
incomplete behaviour. When designers specify behaviour
using scenario-based languages their obtained behaviour
specifications are generally incomplete. In future work, we
want to investigate how our approach can be used to iden-
tify missing scenarios of behaviour. Finally, we envisage
the development of tools to support our formal approach.
As mentioned earlier, the translation of formal results into
feedback for the designer is essential. This should rely en-
tirely on notation known to the designer, namely UML, and
hide any technical details.
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