
A Model Driven Architecture approach to fault tolerance in Service Oriented
Architectures, a performance study

Mohammed Alodib, Behzad Bordbar
School of computer Science, University of Birmingham, UK

M.I.Alodib,B.Bordbar@cs.bham.ac.uk

Abstract

In modern Service oriented Architectures (SoA)

identifying the occurrences of failure is a crucial task,
which can be carried out by the creation of Diagnosers
to monitor the behavior of the system. Model Driven
Architecture (MDA) can be used to automatically
create Diagnosers and to integrate them into the
system to identify if a failure has occurred. There are
different methods of incorporating a Diagnoser into a
group of interacting services. One option is to modify
the BPEL file representing services to incorporate the
Diagnoser. Another option is to implement the
Diagnoser as a separate service which interacts with
the existing services. Moreover, the interaction
between the Diagnoser and the services can be either
Orchestration or Choreography. As result, there are
four options for the implementation of the Diagnoser
into the SoA via MDA. This paper reports on an
Oracle JDeveloper Plugin tool developed which
applies MDA to create these four possible
implementations and compares the performance of
them with the help of a case study.

1. Introduction

Modern Service oriented Architectures (SoA) for
mission critical system must tolerate occurrences of
failure. In particular, one of the important tasks in the
design of such systems is the detection of the
occurrence of failure automatically. This can be
achieved by monitoring the interaction between the
services to identify if the failure has occurred [1, 2].
The software entity that conducts the monitoring is
commonly referred to as a Diagnoser. The approach
adopted in this paper, applies Model Driven
Architecture (MDA) techniques to benefit from
diagnosability theories in Discrete Event System
(DES) [3] for designing the Diagnoser in SoA.
Consider a number of services, which are represented

by BPEL [4] models describing the behavior of the
services and their interactions. These models are
automatically transformed to Deterministic Automaton
[5] via an MDA [6] transformation. Then, the created
Deterministic Automaton are used to develop a
Diagnoser and Observer following the DES techniques
[3]. Finally, the Diagnoser is transformed via another
MDA transformation to produce a SoA Diagnoser for
the monitor the group of services.

This paper studies various methods of incorporating
a Diagnoser into the interacting services. There is a
choice to implement the Diagnoser as a BPEL service
or separate dedicated Web service. Moreover, the
interaction between the group of services and the
Diagnoser can be an Orchestration or a Choreography
[7]. This amounts to four styles of creating the
Diagnoser. This paper reports on tool extending Oracle
JDeveloper which produces all four types of Diagnoser
and studies them from the performance point of view.
Our case study demonstrates that a dedicated service
provides a better performance, while switch from
Orchestration to Choreography make slightly different.
The proposed methods have been evaluated with the
help of stress testing facilities provided by the Oracle
Application Server [7].

The paper is organized as follows. Section 2
reviews the preliminary material used in the rest of the
paper. Section 3 briefly describes the outline of our
method of applying MDA to generate the Diagnoser.
Extended description of the method can be found in an
earlier paper [8]; the current paper extends [8] by
presenting four separate styles of implementation and
their comparison. Section 4 presents an outline of a
running example, which will be used in the rest of the
paper. Different styles of incorporating the Diagnoser
methods are explained in section 5. The results related
to the comparison are discussed in section 6. Finally
section 8 includes the concluding remarks.

2. Preliminaries

This section describes introductory notions used in
this paper. Firstly, a short introduction on the theory of
Diagnosability in Discrete Event Systems (DES) will
be presented. Secondly, an outline of Model Driven
Architecture will be discussed. Finally, a brief review
of Service Oriented Architecture and Web services
will be presented.

2.1. Diagnosability of Discrete-Event System

A Discrete Event System (DES) is a discreet-state,

event-driven system whose state depends on the
occurrence of asynchronous discrete events over time
[5]. There are a variety of languages used for capturing
DES models such as variants of automata and Petri net.
A variant of Deterministic Automaton known as
Deterministic Automaton with Unobservable Events is
used for modeling the services [3]. A Deterministic
Automaton with Unobservable Events is a four tuple
G:=(X , Σ , δ , x0), where X is a finite set of states, Σ
denotes a set of events, δ ⊆ X × Σ × X represents the
transition between the states and x0 ∈ X is called the
initial state. Some of the events in a DES are
observable, for example output of sensor or the events
specified at the interfaces of the Web services. An
event which is not observable is called an
unobservable event. Internal action of service and
events which represent a failure are example of
unobservable events. The set of observable/
unobservable events is detonated by Σo /Σuo
respectively. As result, Σ =Σo ∪ Σuo. The set of events
which represent the occurrence of the failure is
denoted by Σf. Without any loss of generality it can be
assumed that failure events are unobservable, i.e. Σf ⊆
Σuo.

The purpose of the diagnosis is to use a model of
the system, which is for example captured in
Deterministic Automaton, to identify the occurrence of
failure. Since a failure is unobservable, it cannot be
detected at the time of its occurrence. As a result, the
model of the system is used to monitor its behavior in
order to reduce the uncertainty [5]. To achieve this,
from a Deterministic Automaton, a new model called
an Observer Automaton is created, which describes the
current state of the system after the occurrence of
observable events [3, 9]. From the Observer a new
Finite State Machine, called the Diagnoser Automaton
is created. A Diagnoser Automaton is modeled as Gd=
(Qd , Σo , δd , q0) where Qd is the subset of the
observable state which includes all the states which
can be reached from the initial state under a specific

transition δd. Each state in Qd is described by its name
and a set of Labels, which describe the type of failure
that has occurred. As result, a Label either represents a
Normal status, denoted by N, or a failure state which
can be identified by a subset of failure types (F1, F2,
….Fm) to clarify what type of failure has happened.
For example, an initial state is often labeled as
{(x0,{N})} which means when the system is in state x0,
its behavior is Normal, but for example, {(x1,{F1})}
means that when the system state is in x1, a failure of
type "1" has occurred [3, 10]. Hence a Diagnoser is
produced for two main reasons [3]: i) online detection
and isolation of failure ("Did a fault happen or not?",
"What type of fault happened?"), and ii) offline
verification of diagnosability properties of the system.

2.2. Model Driven Architecture MDA

The methods adopted in this paper relies on Model

Driven Architecture (MDA) [6] techniques for
defining and implementing the chain of
transformations resulting in the creation of the
Diagnoser model. Each Model is based on a specific
metamodel, which defines the elements of a language
and models that can be created in the language [11]. In
the MDA a model transformation is defined by
mapping the meta-elements, constructs of the
metamodel, of a source language into meta-elements
of the destination language. Then every model, which
is an instance of the source metamodel, can be
automatically transformed to an instance of the
destination metamodel with the help of a model
transformation framework such as kermeta [12] ,
OpenArchitectureWare [13] and SiTra [14].

2.3. Service oriented Architecture and Web
services

There is an ever-increasing pressure on modern
enterprises to adapt to the changes in their environment
by evolving to respond to any opportunity or threat
[15]. Web services [16] relies on using a well-
accepted standards and XML languages used for
communication by interchanging message with the
help of an interactive interface such as the Web service
Description Language (WSDL) which is an XML
language used to define the message formats, data-
types and transport protocols [17]. Web services
interaction can be created as orchestration or
choreography architectures [16]. Orchestration relies
on a central process which coordinates the invocation
of different Web services. However, each Web service
knows when to execute its operation and with whom to

interact in choreography architecture without using a
central coordinator. The interaction between services
in this paper is captured via Business Process
Execution Language (BPEL) [7]. BPEL can be used to
express complex sequential, parallel, iterative and
conditional interactions.

3. A model driven approach to
Diagnosability in SoA.

Figure 1 depicts the outline of our method of

generating the Diagnoser via the MDA. Consider a
number of services which interact with each other. The
behavior of these services and their interaction are
captured by a number of BPEL files. First the services
are annotated to identify the observable and
unobservable events. This is similar to the method
adopted by Yan et al.[2]. In Figure 1 this is denoted as
“Annotated BPEL”, which is transformed
automatically to a Deterministic Automaton via the
first model transformation BPEL2FSM. Then,
algorithms from diagnosability in DES [3] are applied
to the Deterministic Automaton to compute and
generate the Diagnoser Automaton. Following that, the
generated Diagnoser Automaton is transformed to a
new BPEL representation addressing the Diagnosing
Service for the original BPEL models via the model
transformation Diag2BPEL. The Diagnosing Service is
designed to receive the current states of the system as
inputs. Then, it diagnoses the system status by
determining whether the system behavior is in Normal
state or a failure has occurred. In case of a failure, the
Diagnosing Service specifies the event that has caused
the failure.

Figure 1. Applying MDA to the design of Diagnoser.

A preliminary implementation of the above
approach is described in [8] as an Oracle JDeveloper
Plugin. The tool is designed to receive system's
annotated BPEL files and their XML Schema
Definition (XSD) as inputs which are combined
together to collect all required details related to apply
the DES method which has been done with the help of
UMDES tool [18] and performing the transformations
methods with the help of SiTra [14].

This paper is different from [8] in two main ways.
Firstly, the transformation in [8] only produces the

Diagnoser as a BPEL file. Here, we report on our
research on produce three other types of Diagnosers,
see section 5 below. Secondly this paper focuses on
comparing the four implementations in term of
performance.
The tool has been studied with the help of a case study
involving the monitoring of a Customer Service
application, to identify Right-first-time failures, in
which the Customer Support System fails to complete
a task First-Time and is forced to repeat part of the
task again. This type of failure may cause extra costs
and delays in the completion of the tasks, causing a
violation of Service Level Agreements (SLA).

4. Example: Diagnosing Right-First-Time
failure in services

The following example is based on a scenario1

involving a simplified interaction between a customer
and a number of services provided by a typical
Telecommunication Company. The services aim at
providing technical support for the customers’
Broadband connection.

Figure 2. An overview of the interaction of a Customer

As depicted in Figure 2, the customer logs2 onto the
company website and enters details such as the account
number. Choosing the “Broadband problem” option,
he submits his form online. Next, the company’s
Check Customer Account (CCA) service determines
whether the customer account is in a satisfactory
condition in order to progress the fault report. If the
current status of the account is not satisfactory the
customer is advised to phone the call centre and the
process ends. If the account status is satisfactory, the
CCA invokes a request to another service called
General Evaluation Services (GES). The GES
examines the availability of service at the exchange
side and ensures that everything is up and running, in
which case the process moves to the next step. If GES
identifies any problem with the availability of the

1 This is an imaginary example, real life scenarios and processes can

differ substantially.
2 We assume that the problem the Customer can log into the

company’s website, for example suppose the customer is not
happy with the speed of his Broadband connection.

services at the exchange side, the customer is informed
of the status and a separate process is invoked to deal
with this problem (not shown as part of this example).
If everything is fine on the exchange side, the
Customer Services sends a request to Line Test Service
(LTS). This is an automated service to check line
status up to the customer premises, but can also
indicate problems on the exchange side which were not
detected by the GES. As a result the outcome to the
check is one of the three possible cases 1) the line has
no problem move to next step, 2) the line has some
problems, advice the customer or 3) There is no
problem with the line, although there is a likely
problem with the exchange. Option 3, which is shown
in bold arrow in Figure 2, is reached only if the LTS
has the ability of checking if its exchange functioning
correctly. Notice, the exchange is carried out
independently from the GES. As a result if the case 3
happens, a failure emerges which means that GES
should repeat its course of action violating Right-First-
Time. Finally, LTS sends a request to analyze data
history in the customer router. If it is possible to carry
out analysis then get a decision from the analysis
algorithm (either all ok so the customer has to call
technical support, or the analysis finds the problem and
customer is advised what to do).

5. Incorporating the Diagnosing service.

By applying the above approach, the Diagnosing

Service is generated automatically. There are four
methods to incorporate the generated Diagnosing
Service into a group of interacting services. These
methods are explained as follows:

Method 1: This method is based on generating the

Diagnosing Service as a BPEL file, which can
collaborate with existing services to fulfill the
diagnosing task. This method requires an invocation of
the Diagnosing Service after each BPEL activity,
which may change the state of the system. For
example, consider the running example of section 4
with the BPEL representations which are Customer
Service and General Evaluation Service. Assume an
Invoke activity in Customer Service tends to invoke
General Evaluation Service (GES). Let invoke_GES
denotes an Invoke activity in Customer Service which
is used to invoke GES. When invoke_GES activity
invoked GES, the invocation result and the current
state of GES are returned to the invoke_GES in
Customer Service. Although the invoke_GES has
received the invocation result from GES, it dose not
know if a failure has occurred during the invocation of

GES. To know such information regarding to failures,
Customer Service can interact with Diagnosing Service
to determine the system behavior after the invocation
by using the two current states of Customer Service
and GES. To do so, the Diagnosing Service is
incorporated by adding a new Invoke activity after
invoke_GES activity. The purpose of this new added
Invoke activity is to interact with the Diagnosing
Service.

Figure 3. Example of method 1.

Figure 3 represents an example of services

interaction between the Diagnosing Service and three
services, which are Customer Service, GES and Line
Test Service. It can be seen that the interaction between
services is built as Choreography architecture.

Method 2: This method is an extension of method 1.
The idea of this method is based on producing the
Diagnosing Service as BPEL service with a new
service called a Protocol Service used to control all
interactions between existing services and the created
Diagnosing Service. In method 1, there is no Protocol
Services; hence the interaction is conducted by
including extra Invoke activities. In contrast to method
1, in method 2 all interacting services should send their
request to the Protocol Service performing the
invocation of the destination service which returns the
invocation result and its current state to the Protocol
Service. To determine the system behavior after the
invocation, the Protocol Service interacts with
Diagnosing Service to perform the diagnosing tasks.
Then, the diagnosing result will be provided to the
Protocol Service which returns this result with the
invocation results received from the destination service
to the invoker service (source service). Figure 4
illustrates an example of the interaction between the
Diagnosing Service and three services of the running
example discussed in section 4, these services are
Customer Service, General Evaluation Service (GES)
and Line Test Service (LTS). It can be seen that the
interaction in this method is based on the Orchestration
architecture.

Figure 4. Example of method 2.

Method 3: This method automatically produces the
Diagnosing Service as a stand- alone Web service
interacting with a group of BPEL services. The
generated Diagnosing Service is incorporated in the
same manner of Method 1. However, Method 1
produces a BPEL file, while here a full-fledge
Diagnosing Service will be created. Similar to method
1 this method is based on the Choreography.

Method 4: This method combines Method 2 and
Method 3 to automatically generate a Diagnosing
Service as a Web service, which interacts with other
services through a Protocol Service. The interaction
between the services is coordinated by the Protocol
Service; hence method 4 follows the Orchestration
architecture.

The Protocol Service is generated as a BPEL
Service carrying out two important tasks. Firstly, it
manages the interaction between the groups of services
and ensures that the invocation result is returned to the
invoker service. Secondly, it monitors the behavior of
the system by interacting with the generated
Diagnosing Service. Thus, when a BPEL service
interacts with another service, it should send the
Protocol Service a request in order to communicate the
details of the destination service and the current state
of the source service. When the request is received by
the Protocol Service, the destination service will be
invoked. Consequently, the invocation results and the
new state of destination service are returned back to
the Protocol Service. Then, the Protocol Service
interacts with the Diagnosing Service to determine the
behavior of the system after the invocation.

We shall describe the Protocol Service with the
help of an example as follows. Figure 5 represents a
scenario involving a simple interaction between two
services, Customer Service and General Evaluation
Service (GES), adopted from the running example
discussed in section 4. The interaction, which
terminates in a failure, can be described as follows.
Assume Customer Service invokes the GES. To
perform this invocation, the following six steps
(enumerated in the picture) are occurring. Firstly,
Customer Service sends to the Protocol Service a

request involving the information regarding to the
invocation process, including i) the identity of the
destination service, which is GES in this example, ii)
the destination service's parameters inputs e.g.
Customer ID, iii) the current state of the source service
(Customer Service) which is CUS9 in this example.
The Protocol Service keeps the current state of the
invoker in its record, while it invokes the GES. Then,
the invocation result and the current state of GES,
depicted as GES2 in this example, are returned to the
Protocol Service. The Protocol Service interacts with
the Diagnosing Service to identify the behavior of the
system. This interaction requires assigning the current
state of the Customer Service and GES to the inputs of
the Diagnosing Service. The diagnosing result in
Figure 5 explains that during the invocation of GES, a
failure of type "1" has occurred. Finally, the
diagnosing result and the invocation result received
from service GES are forwarded to the invoker service
which is Customer Service in this example.

Figure 5. A scenario involving Protocol Service
Interaction to identify a failure

5.1. The Diagnosing Service Transformation

To produce the Diagnosing Service and incorporate
it into a group of service, the model transformation of
[8] is modified to satisfy the new requirements. The
transformation will be explained for Method 4, which
the most elaborate of the four presented design.
Method 4 relies on generating the Diagnosing Service
as Web service interacting with a Protocol Service, the
modifications basically has only affected the second
model transformation (Diag2BPEL) of Figure 1. The
outline of the second model transformation is depicted
in Figure 6 which results in producing both the
Diagnoser Web service and the Protocol Service. In
[8], the transformation Diag2BPEL only produces the
Diagnosing Service as BPEL file without any Protocol
Service

Figure 6. Model Transformation producing both the
Diagnoser and the Protocol Service.

To define the model transformation Diag2BPEL
two metamodels are required: metamodel of Diagnoser
Automaton and metamodel of Web service. Figure 7
presents a simplified metamodel of the Diagnoser
Automaton. Metamodels of Web Service are widely
available and sometimes can be generated
automatically [19]. Then, the transformation rules
mapping from the Diagnoser Automaton metamodel to
the Web service Metamodel must be created which
will be briefly described here.

Figure 7. The Diagnoser Automaton metamodel

The Diagnoser model element is mapped into a Service
which has an Operation in the Web service model.
Then, the rest of the transformation process relies on
Model-to-Text [6] transformation techniques used to
generate the Java Code of the Service Operation. The
Java code implements the behavior of the generated
Diagnoser Automaton. The code of the Service is
generated as follows. The Diagnosing Service may
include conditional statements in form of if-then-else
statements. Each such statement uses to evaluate the
current state of the system services and returns "N" for
a normal state or the information related to the
occurrence of a failure. In case of a failure, the type of
failure and the event which is caused the failure will be
included in the diagnosing result. To conduct this
model transformation, every model-element State of
the Diagnoser Automaton metamodel, see Figure 7 is
used to specify one of the Conditions in the if-then-
else statement. StateDetail and StatusType of a

Diagnoser Automaton model are used to determine if
the State is in Normal status or a failure has occurred.
Following the of DES [3], all failure events in the
system should be categorized in a list according to
their types. For example, in the running example
discussed in section 4, GES_RFT is a failure event
occurring when the Line Test Service indicates
problems on the exchange side which were not
detected by the GES. This failure forces GES to repeat
its course of action violating Right-First-Time.
Suppose that we categorize a violation of Right-First-
Time as a failure of type "1". In this case, when the
Diagnosing Service identifies the system status as F1,
it means there is a failure of type "1" has occurred, and
it has been caused by GES_RFT. Since the failures
events are unobservable in the Diagnoser Automata, a
method called FindEventCausedFailure is added to be
used to look for the event which caused the failure.
This method basically receives the status type of the
system as inputs, and then it starts looking for the
event of that type in the list of the categorization
failures events. The following snippet of code
represents the outline of transforming the Diagnoser
Automata to Web service:
If (current_state=StateDetail) then
{
 If (StateDetail.StatusType="N") then

Result_Diagnosing="The System Status is normal";
 else

Result_Diagnosing="A failure of Type" +
event.FailureType + " has occurred, this failure is
caused by " +
FindEventCausedFailure (StateDetail.StatusType).Name;

}
Event FindEventCausedFailure(StatusType statustype)
{
…\\code for Event FindEventCausedFailure
}

5.2. Automated generation of the Protocol
Service

The Protocol Service is utilized as coordinator for a

group of services in the system. It is designed to
process the invocation requests from the service called
the source of the invocation. Then, it transfers the
request to another service called the destination of the
invocation. Then, it interacts with Diagnosing Service
to identify the behavior of the system. Finally, the
invocation is carried out and the result of the diagnosis
is returned to the source service. To automatically
generate the Protocol Service, Diag2BPEL produces a
BPEL service involving a Switch activity with multiple
Cases. Each Case includes an Invoke activity to
interact with one of the services. Then, the Switch

activity is followed by an Invoke activity added to
invoke the Diagnosing Service. For example, consider
the Customer Service and the General Evaluation
Service of the running example discussed in section 4.
The Protocol Service for these two services is
represented in Figure 8. It can be seen that the process
starts with a Switch activity involving two Cases (Case
1 to invoke Customer Service and Case 2 to invoke
General Evaluation Service). As explained, the request
is received from the source includes the destination
details which are used to decide which Case should be
followed (Case 1 or Case 2). The Invoke activity
which follows the Switch activity executes the
Diagnosing Service.

Figure 8. The Protocol Service Architecture.

6. Methods Comparisons.

The four presented methods have been tested and

evaluated in terms of performance; a common practice
of evaluating the performance is applying the stress
testing which identifies and verifies the stability,
capacity and the robustness of services [7, 20]. The
stress testing relies on handling a large number of
operations to the service to evaluate the performance in
processing the received request. This test has been
performed with the help of Oracle Application Server,
which is used to deploy and to implement the BPEL
representation. To carry out this test, there are some
attributes, which should be specified before
performing the test. These attributes are the number of
the concurrent threads allocated to the process and the
constant delay between each invocation.

In this paper the stress testing has been applied on
each proposed method by handling a different number
of concurrent threads representing the Customer. To be
accurate, the for each number of threads the process of
testing is repeated five times for each method, and then
the average of the execution time has been calculated.
To perform the stress testing, the running example
discussed in section 4 has been created in all proposed
methods. Then, these methods have been tested and
evaluated in term of the performance. The result of this
testing is depicted as line chart in Figure 9 which

represents the execution time (in second) and the
number of the concurrent threads. All the numerical
values are available at [21].

Figure 9. The stress testing result.

It can be seen that producing the Diagnosing
Service as Web Service in Method 3 and 4 are faster
than producing it as BPEL Service in Method 1 and 2.
The percentage of the difference in processing 30
threads between the fastest method, which is Method
3, and the slowest method, which is Method 1, is
approximately 0.024%, where Method 3 performs
executing these threads within 10.35 second whereas
the Method 1 takes 13.16 second. As a result,
generating the Diagnoser as Web service increases the
performance related to the interaction between
services.

Generating the Diagnoser as Web Service is highly
promising approach to enhance the efficiency of
process execution and to maintain the system
robustness. As discussed, Method 3 and 4 are the only
two methods creating the Diagnoser as Web service.
Figure 9 shows that the performance of methods 3 and
4 are very close to each other; Method 3 performs
processing 30 concurrent threads within 10.35 second
whereas Method 4 takes 10.73 second. The difference
is negligible, but Method 4 has great advantages from
the programming point of view. In particular, using a
Protocol Service results in a modularized design.
Moreover, the architecture of Method 4 is based on the
Orchestration which is a more flexible paradigm
offering the following advantages over the
Choreography [7]: i) the coordination of component
processes is centrally managed by a known
coordinator, ii) Web services can be incorporated
without being aware that they are taking part in a
business process, iii) alternative scenarios can be put in
place in case of a fault. The case study scenario,
implementation of the four types Diagnosing services
and the numerical value related to the experiments are
all available at [21].

7. Discussion and related work

The formalizing BPEL models as Discrete Event
System (DES) has been achieved by following the lead
of Yan et al. [2]. Our approach differs from [2] in
using MDA to automatically generate the Diagnoser as
Web service interacting with a Protocol Service
managing the interaction between the Diagnoser and
the existing BPEL representations. In addition, there
are four methods have been proposed to provide
techniques for the interaction between a group of
services and the Diagnoser.

In this paper, the Diagnoser is generated as a
centralized service which may result in bottlenecks
affecting the performance. Various decentralized
diagnosing scheme have been proposed to address this
issue [22, 23]. A decentralized diagnosing method
generates one Diagnoser per each module of the
system. We are currently extending our tool set to
implement a Decentralized Diagnosers and to
incorporate them into a group of services.

8. Conclusion

This paper presents a method using a chain of MDA
model transformation to automatically produce
Diagnosers for the monitoring of the behavior of the
system to identify the occurrence of failure and the
type of failure. Automated transformations are used to
transfer BPEL models to Deterministic Automata.
Relying on Discrete Event System techniques a
Diagnoser for the Deterministic Automata is created. A
second model transformation produces the Diagnosing
Web service. The paper discusses various possible
implementations of the Diagnosing service and reports
on a case study of evaluating the performance of each
implementation.

8. References

[1] Y. Wang, T. Kelly, and S. Lafortune, "Discrete

control for safe execution of IT automation
workflows," in EuroSys, 2007, pp. 305-314.

[2] Y. Yan, Y. Pencole, M.-O. Cordier, and A.
Grastien, "Monitoring and Diagnosing
Orchestrated Web Service Processes," in ICWS07,
USA, July 9-13, 2007.

[3] M. Sampath, R. Sengupta, and S. Lafortune,
"Diagnosability of discrete-event systems," in
IEEE Transactions on Automatic Control, Sept.
1995, pp. 1555-75.

[4] IBM, BEA, Microsoft, SAP, and Siebel, "Business
Process Execution Language for Web Services
(BPEL4WS) Version 1.1," 2003.

[5] C. Cassandras and S. Lafortune, Introduction to
Discrete Event Systems: Springer, 2007.

[6] A. Kleppe, J. Warmer, and W. Bast, MDA
Explained: The Model Driven Architecture--
Practice and Promise: Addison-Wesley, 2003.

[7] M. B. Juric, B. Mathew, and P. Sarang, Business
Process Execution Language for Web Services:
Packt Publishing, 2004.

[8] M. Alodib, B. Bordbar, and B. Majeed, "A model
driven approach to the design and implementing of
fault tolerant Service Oriented Architectures "
submitted for publication, 2008.

[9] C. M. Ozveren and A. S. Willsky, "Observability
of discrete event dynamic systems," Transactions
on Automatic Control vol. 35, pp. 797-806, 1990.

[10] M. Sampath, R. Sengupta, S. Lafortune, K.
Sinnamohideen, and D. C. Teneketzis, "Failure
diagnosis using discrete-event models," IEEE
Transactions on Control Systems Technology, vol.
4, pp. 105-124, 1996.

[11] T. Stahl and M. Volter, Model Driven Software
Development; technology engineering
management: Wiley, 2006.

[12] kermeta, " http://www.kermeta.org/."
[13] openArchitectureWare,

"http://www.openarchitectureware.org."
[14] D. H. Akehurst, B. Bordbar, M. J. Evans, W. G. J.

Howells, and K. D. McDonald-Maier, "SiTra:
Simple Transformations in Java," in ACM/IEEE
9TH International Conference on Model Driven
Engineering Languages and Systems, 2006, pp.
351-364.

[15] A. Arsanjani, "Empowering the business analyst
for on demand computing " IBM Systems Journal,
vol. 44, pp. 67-80, 2005.

[16] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,
Web Services: Springer Berlin, 2004.

[17] R. Chinnici, J.-J. Moreau, A. Ryman, and S.
Weerawarana, "Web Services Description
Language (WSDL) Version 2.0," W3C, 2006.

[18] L. Ricker, S. Lafortune, and S. Genc, "DESUMA:
A Tool Integrating GIDDES and UMDES," in 8th
International Workshop on Discrete-Event
Systems, 2006.

[19] B. Bordbar and A. Staikopoulos, "Automated
Generation of Metamodels for Web service
Languages.," in European Workshop on MDA,
2004.

[20] "Stress Test Strategy," Department: Software
Verification, University of Minnesota.

[21] http://www.cs.bham.ac.uk/~bxb/Alodib/Ex1.html.
[22] Y. Wang, T.-S. Yoo, and S. Lafortune, "Diagnosis

of Discrete Event Systems Using Decentralized
Architectures " Discrete Event Dynamic Systems,
vol. 17, 2007.

[23] S. Genc and S. Lafortune, "Distributed Diagnosis
of Place-Bordered Petri Nets," IEEE Transactions
on Automation Science and Engineering vol. 4, pp.
206-219, 2007.

http://www.kermeta.org/
http://www.openarchitectureware.org./
http://www.cs.bham.ac.uk/%7Ebxb/Alodib/Ex1.html

	1. Introduction
	2. Preliminaries
	2.1. Diagnosability of Discrete-Event System
	2.2. Model Driven Architecture MDA
	2.3. Service oriented Architecture and Web services

	3. A model driven approach to Diagnosability in SoA.
	4. Example: Diagnosing Right-First-Time failure in services
	5. Incorporating the Diagnosing service.
	5.1. The Diagnosing Service Transformation
	5.2. Automated generation of the Protocol Service

	6. Methods Comparisons.
	7. Discussion and related work
	8. Conclusion
	8. References

