
APC 2005

Bridging Technical Spaces With A Metamodel
Refinement Approach. A BPEL To PN Case

Study

Athanasios Staikopoulos 1

School of Computer Science
University of Birmingham

Birmingham, UK

Behzad Bordbar 2

School of Computer Science
University of Birmingham

Birmingham, UK

Abstract

To benefit from positive aspects of an existing diverse set of Technical Spaces, it is
important to develop methods of automated transformation of models between such
domains. Sometimes it is possible to describe Technical Spaces via metamodels.
In such cases, the Model Driven Engineering and Architecture pose as a natural
candidate for dealing with such transformations between Technical Spaces. This
paper deals with the case where the metamodel of the source Technical Space is
more complex than the metamodel of the destination. Thus, the gap between the
two Technical Spaces is highly non-trivial. The method presented in this paper is
based on successive metamodel refinements to bridge this gap. Finally, the method
is applied to the transformation of Business Process Execution Language (BPEL)
models to Petri nets.

Key words: Metamodel Refinement, Bridging Technical Spaces.

1 Introduction

Technical Spaces (TS) [11], [14] and Domains [7] deal with the working con-
text where systems and applications are specified and developed from certain
perspectives. To benefit from positive aspects of different Technical Spaces

1 Email: A.Staikopoulos@cs.bham.ac.uk
2 Email: B.Bordbar@cs.bham.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Staikopoulos, Bordbar

and Domains, applications belonging to one context may need to be trans-
ferred to alternative contexts, while using their specified tools and technology.
For example, models of Business Process Execution Language (BPEL) [5], as
an XML Technical Space, can be translated to Petri nets [15] to allow veri-
fication and analysis of the system [6], [18]. Such translation facilitates the
cooperation of alternative technologies and techniques rather than their com-
petition while supporting the best possibilities of each domain [14]. To do so,
we need to define mappings across the spaces and eliminate their conceptual
gaps between the two domains.

The Model Driven Development or Engineering [1], [11], [17] can play an
important role, as it provides an approach and a technical framework for
establishing bridges between two Technical Spaces while assisting domain in-
tegration and interoperability via Metamodel mechanisms [14], [17]. However,
if there is a large conceptual gap between the two Technical Spaces, defining
a suitable MDA transformation [9] is a highly non-trivial task.

This paper deals with the scenario in which the metamodel of the Technical
Space of the source is richer than the metamodel of the Technical Space of
the destination. The method presented is called One Step Refinement of the
destination metamodel and is based on the destination enrichment to bridge
the gap between the two Technical Spaces. We shall demonstrate our approach
by mapping a number of BPEL constructs to Petri nets.

The paper is organised as follows: Section 2 covers the basic concepts in-
volved in the paper, giving a number of definitions and preliminary informa-
tion. Section 3 compares the Spaces of Business Processes and Petri nets and
discusses issues relating to their mapping. Section 4 describes the proposed
approach for bridging Technical Spaces and Domains. Section 5 presents how
the method is applied with a number of examples. Section 6 provides various
discussion points. Finally, Section 7 presents the conclusions drawn during
the authors’ experimentations and summarises the basic characteristics of the
approach adopted.

2 Preliminaries

In this section we shall present a brief overview of the concepts used in the
paper:

Technical Spaces and Domains: Technical Spaces [11], [14] represent
specific working contexts with specific implementation technologies, tools and
approaches, where applications are specified, instantiated and utilised from
various tools and engines. On the other hand, domains [7] are characterised
by specific application aspects and not by given programming language con-
structs. In some respect, Technical and Domain contexts are comparable
within metamodelling, where the first focuses on capturing the technological
and implementation issues, while the other on conceptual application repre-

2

Staikopoulos, Bordbar

sentations.

Metamodels and Model Driven Approaches: Metamodels are models
that formally describe the syntax and semantics of a given context by mod-
elling languages such as UML [16]. A model has “an instance of” relationship
with its metamodel. Metamodelling [1], [13] is an essential foundation for
model driven development and architecture. The Model Driven Development
(MDD) [1], [17] is a model-centric software engineering approach, focusing on
the design models instead of the code. One of its most prominent variants
is the Model Driven Architecture (MDA) [9], [10] promoted by the Object
Management Group (OMG) [20]. The MDA specifies a technical framework of
standards for designing systems via models. It promotes the creation of highly
abstract models that are developed independently of implementation details,
which repeatedly and automatically can be transformed by tools to specific im-
plementations and technologies [9], [13]. Similarly to MDD, the Model Driven
Engineering (MDE) [11] is a form of generative engineering building upon the
idea of MDA. It supports the integration of Technical Spaces and promotes
their synergy in a smooth way by providing bridges [8], [12].

Next, we provide some basic information regarding the Technical Spaces
that will be used in our case study. These are as follows:

Business Process Execution Language: The Business Process Execution
Language for Web Services (WS-BPEL or BPEL for short) [7] is a specifica-
tion allowing the creation of complicated processes by creating and wiring
together different service activities. For example, processes can perform Web
service invocations, manipulate data and in general coordinate their activi-
ties towards common objectives. Consequently, the specification provides an
XML notation and semantics for specifying business process behaviour, based
on collaborating participants (external Web services). The behaviour is de-
fined upon a set of interconnected hierarchical activities that are formulated in
various ways similar to workflow specifications [21], forming patterns such as
those for simulating loops and parallel execution. In our case study, the BPEL
specification determines the technical space and domain of interest where our
process models will be based upon.

Petri nets: A Petri net (PN) [15] is a particular kind of directed graph
consisting of “Places” (p), “Transitions” (t), which are connected with “Arcs”
either from a “Place” to a “Transition”, as “PTArc”, or from a “Transition” to
a “Place” as “TPArc”. Graphically, “Places” are illustrated as circles, “Tran-
sitions” as bars and “Arcs” as directed arrows. “Tokens” are represented by
black dots in “Places” to simulate the current dynamics (states) of the sys-
tem. PNs have received considerable attention as proper mathematical tools
[22] to formally describe and study information processing systems that are

3

Staikopoulos, Bordbar

characterised as concurrent, distributed, parallel or non-deterministic. In our
case study, PNs specify the semantic domain of business processes (BPEL)
used for analysis and validation purposes.

3 Mapping and Bridging Technical Spaces

Technical Spaces and Domains specify contexts that can be represented by
equivalent metamodels. In order to re-use their contexts, core characteristics
and specialised tools, it makes sense to shift from one Space or Domain to
another (please refer to Fig. 1). In this respect, Kurtev et. al. [14] promote the
idea that there should be more cooperation than competition among alterative
Technologies/Spaces and similar among Domains.

To realise such an idea, we need to establish bridges between the different
Technical Spaces with specified mappings and properties. In that way, Tech-
nical Spaces or Domains are no longer isolated islands but cooperating units,
allowing original instances to be transferred to alternative representations,
with an objective to solve a given problem by exploiting the full potential of
each technology.

Furthermore, the Model Driven Development and Engineering can auto-
mate the generation of the corresponding target Space or Domain instances
[2], [3], [4], by providing a supporting infrastructure and utilising appropriate
tools and meta-modelling techniques. Transformations execute the mapping
rules established upon well-defined metamodel elements. As a result, they
provide bridges enabling the inter-operability of different technologies by for-
malising the inter-relationships and transformation rules of their Technical or
Domain metamodels.

PN
Metamodel

PN
native Language

BPEL
Metamodel

BPEL
native Language

BPEL
Tools & Support

PN
Tools & Support

?
mapping

Fig. 1. Mapping BPEL and PN Technical Spaces and representations

Sometimes, however, it is not possible at the first attempt to map directly
two metamodels together, as the Technical Spaces or Domains may be rather
different and not consistent with each other. Such problems often occur when
one Space may define or possess characteristics that the other one does not
define or accounts for. In this paper such problems are investigated and an
approach on bridging the gap among quite different Spaces is proposed.

To realise and present the approach, the authors experiment on bridging
the Technical Spaces of BPEL and PNs with a case study.

In reality, the BPEL language [5] specifies business process models via
XML Schemas and technologies as depicted in Fig. 2. Similarly, PNs [15]

4

Staikopoulos, Bordbar

code2

Fig. 2. A sample BPEL scenario

specify processing systems in graphical notations in terms of places, transitions
and tokens as shown in Fig. 3.

fig 2a PN Example

Fig. 3. A sample PN model

As both Spaces and Domains are originally based upon different languages,
we need to represent them in a common formalism, for example a UML meta-
model representation [16]. That is conducive to our objective to map them
together upon common means, tools and techniques. In order to do so, we
assume that metamodelling techniques are sufficiently capable to specify the
languages precisely in terms of meta-classes and meta-relationships. For BPEL
and PNs we do not encounter any significant problems [18], [19]; following Fig.
4 and Fig. 5 depict their equivalent metamodel representations.

Fig. 4. A metamodel segment of BPEL

5

Staikopoulos, Bordbar

MagicDraw UML, 1-1 H:\+ Rev WiSME for JOURNAL\models\PN New.xml SPN 14-Feb-2006 16:16:2

OutputPlace

Transition

enabled
label

f ired

InputPlace

PetriNet

/marking
label

w eight

Arc

Place

label

Token

PTArc

TPArcrel4

+target 1

rel1

+source 1

+places2..*

rel2

+target
1

rel3

+source
1

+transitions
1..*

+tokens
0..*

Fig. 5. A metamodel for simple Petri nets

Even if Fig. 4 depicts just a segment of the BPEL metamodel, it is rather
clear that the metamodel of BPEL is more sophisticated than the metamodel
of PN, including complicated, high-level constructs such as “Invoke”, “Re-
ceive” and “PartnerLink”. As a result, there is a visible gap between the two
Technical Spaces that needs to be filled.

4 A Method for Bridging Technical Spaces

In order to map two different Technical Spaces represented by metamodels, one
needs to identify and match their corresponding metamodel elements and sup-
ported characteristics. However, identifying and matching their corresponding
conceptual meta-elements is not an easy task. For example, the BPEL meta-
model consists of numerous elements such as “Invoke” and intricate structures
such as “Sequence” and “While”. As a result, the BPEL metamodel is re-
garded as much more complicated when compared to a PN metamodel, which
is defined upon just few model elements such as “Place” and “Transition”.
For that reason, there is a need to systematically analyse the languages and
their constituent elements into categories, depending on their characteristics,
as well as develop methods that would gradually build and map their corre-
sponding metamodel definitions.

Mapping Technical Spaces: In general, languages and consequently meta-
models specify and distinguish their elements into two broad categories: a)
the Primary Elements that are regarded as atomic, elementary units, repre-
senting fundamental concepts of a domain and cannot be analysed further,
for example, an Action in UML and a Place in a PN language and b) the
Composite Elements that are regarded as more complicated entities, where
their definitions are based upon other primary elements and compositions.
Usually, they represent more complicated and abstract concepts of their do-
main, for example, a composite structure in UML or a complete Petri net in a
PN language or metamodel. The mapping process is initiated by distinguish-
ing and mapping the corresponding primary concepts and elements at source

6

Staikopoulos, Bordbar

and target languages. Then, the process continues gradually by allocating the
more complicated and compound concepts and characteristics till a complete
language mapping is achieved.

Refinement Approach: The refinement paradigm has become an inevitable
step in software development and process, aimed to solve complicated prob-
lems. In general, refinement refers to the verifiable transformation of a higher
level specification (abstract) into a lower level (concrete) specification [23].
Logically the process of refinement involves implication, specified as a set of
rules. The stepwise refinement allows the process to be done in successive
stages so that details are added incrementally.

Metamodel Refinement: Our approach applies the refinement paradigm
at metamodel level, where a more general metamodel specification such as
PN is refined to a more detailed metamodel specification such as xPN. The
transformation (implication) is specified by QVT and OCL rules or alternative
by graph transformations. The successive refinement of the initial metamodel
would create a final metamodel specification, permitting a complete and thor-
ough mapping to a different domain, which in this case is represented by the
BPEL metamodel. Therefore, the successive metamodel refinement approach
provides a method for bridging the conceptual gap among the Technical Spaces
of BPEL and PN that are rather different. More specifically, the method pro-
posed to bridge the discrepant Technical Spaces of BPEL and PN is applied
upon the destination PN metamodel, as depicted in Fig. 6 and it is described
as follows:

Approach Description: Assuming that the aim is to define a model trans-
formation from a Technical Space modelled via a metamodel N (in this exam-
ple a BPEL) into a Technical Space modelled via a metamodel M (a simple
PN). At this example, emphasis is placed upon one-way mappings from N to
M, where the metamodel of the source N is more expressive or richer than the
metamodel M, in the sense that there is a considerable number of metamodel
elements of N, which cannot be directly mapped into metamodel elements of
M.

In some cases, it might be possible to map some of the model elements of
N into M as depicted by the ψ0 mapping. Now, consider a model element β1

of N that cannot be directly mapped into any model elements of M. However,
suppose that it is possible to construct β1 via model elements of M := M0.
This leads to one step refinement M1 := M0⊕α1 such that β1 can be mapped
to α1. The process can be repeated until an extension Mκ (after κ stages) is
created, such that all model elements of N can be mapped successfully and
meaningfully into model elements of Mκ.

As a result of the refinement, the technical spaces of Mκ and N are now
close enough to be mapped completely, as depicted by ψκ. Now, if all step

7

Staikopoulos, Bordbar

fig4 jpeg

Fig. 6. Refinement of the Destination Metamodel

refinements from M to Mκ are decomposable (see Definition 4.1), then it is
possible to define model transformations ψι from Mι to Mι−1 (1 ≤ ι ≤ κ) such
that the mapping ϕ = ψ0 ◦ ψ1 ◦ ψ2...ψκ ◦ ψ maps N to M.

Definition 4.1 Assuming that M is a metamodel and M ⊕ α is a One Step
Refinement of M by adding α. Then, we say M ⊕ α is decomposable, if we
can define a model transformation from M ⊕ α to M.

The metamodel extensionM⊕α may be decomposable, when the newly in-
troduced concept α can be represented with the previous metamodel elements
of M, without loosing any essential information during the decomposition.

The successive refinement of the destination metamodel can be imple-
mented either by profiles (referred as light-weight extensions) or more con-
servative metamodel extensions (based upon heavy-weight extensions) [13].

5 Applying the Method Adopted - Case Study

Let us consider the Technical Spaces N and M described by the BPEL and
PN meta-models respectively. The aim is to establish a bridge between these
Technical Spaces by successively refining the destination M (PN) metamodel.
To demonstrate the method and raise a number of related issues, the BPEL
“Invoke” activity will be mapped to an equivalent Petri net representation.

The BPEL “Invoke” activity provides a two-way operation (request/reply)
between a business process and a Web service participant. Its operational se-
mantics will block the process till the participant replies back with an answer
[5]. The BPEL metamodel of Fig. 4 describes “Invoke” and its associated
elements, as input and output variables used by operations provided by par-
ticipants. The BPEL “Invoke” activity is considered as a primary BPEL
element, specifying a particular type of behaviour interaction, which may be
reused by other composite and more complicated elements defining groups and
coordinating business activities such as “Flow” and “Sequence”.

8

Staikopoulos, Bordbar

Metamodel Refinement - A Synthesis Perspecive: Within the des-
tination metamodel (PN) the “Invoke” concept does not have a clear counter-
part. The PN metamodel as previously discussed (please refer to preliminary
section) consists of just few elements.

Assuming that we want to extend the Technical Space M of a simple PN
with the notion or concept α, the “Invoke” operation. In order to satisfy the
previously described characteristics, the extension metamodel M ⊕ α will be
refined as the one depicted in Fig. 7 and its equivalent PN instance represen-
tation, qualified with an according PN representation as the one depicted in
Fig. 8.

Transition

enabled
label

f ired

BasicActivity

OutputData

PetriNet

/marking
label

w eight

Arc

InputData

PTArc

TPArc

Place

label

Invoke

Token

Wait

{ordered}

rel4

+target 1

rel8'

2

rel1

+source 1

rel7'
rel3'

rel3

+source
1

external1

rel6'

external2

rel2'

rel4'

+places2..*

rel2

+target
1

+tokens
0..*

rel1'

+transitions

1..*

rel5'

Fig. 7. A PN metamodel extension for “Invoke”

The introduced PN “Invoke” element represents a new primary concept,
created as a self-contained element, allowing to be reused by more complicated
language constructs, such as structured activities to make full compact mod-
els. The “Invoke” element can be described as a specialised type of transition
and can be treated as such [6]. It extends “BasicActivity” that is the common
classifier with other similar activities such as “Receive”. More specifically,
“Invoke” directly defines and contains two simple “Transitions”, three spe-
cialised places identified as “Wait”, “InputData” and “OutputData”, as well
as two external arcs linking to another PN model, which represents the activ-
ity of a participant. In that respect, “Invoke” is a composite transition having
internal transitions and states, represented by the three ”Place” types. The
“Wait” place represents the situation (state), where the process waits for the
participant’s answer, by remaining blocked. The “InputData” and “Output-
Data” places, together with their tokens, represent respectively the input and
output variables used at actual “in” and “out” parameters of the operation.
The operation call is actually represented by the first internal transition and
its completion by the second one. The action can be considered as atomic, in
the respect that it cannot be externally interfered and represents one unit of

9

Staikopoulos, Bordbar

action. Finally, the two arcs, one outgoing and one incoming, represent the
interaction of the process with its external participant.

fig 5 PN invoke

Fig. 8. A PN instance (extension) representation for “Invoke”

The PN model of Fig. 8 depicts an instantiation of its metamodel for
performing the “Invoke” operation as previously described, according a PN
notation.

Metamodel Composition - The Synthesis Rules: The following Ta-
ble 1 highlights in detail which elements of M are refined to elements of the
M ⊕ α increment, representing the “Invoke” concept when applying the one
step refinement approach.

Refined Elements (M) Refining Elements (M ⊕ α)

Transition Transition, Invoke

Place Place, Wait, InputData, OutputData

rel1 rel1, rel1’, rel5’

rel2 rel2, rel2’, rel6’, external2

rel3 rel3, rel3’, rel7’, external1

rel4 rel4, rel4’, rel8’

Table 1
Refined Elements for “Invoke” concept

At M ⊕α increment, new associations such as rel1’ and types such as “In-
voke” are introduced. The rel1 association is now refined to a rel1 (following
the previously defined rules), rel1’ and rel5’ (where new rules are introduced).
In particular, the rel1’ redefines the rel1 (refer to Fig. 5) applied among or-
dinary “Places” and “Transitions”. The rel1’ is now applied among “Places”
that are of “InputData” type and “Transitions” that are contained by other
“Transitions” having an “Invoke” type. Similar redefinition rules are applied

10

Staikopoulos, Bordbar

to the rest associations, however, there are associations of particular interest
involving “Places” and “Transitions” which belong to different PN models,
thus they are regarded and denoted as “external” associations, such as exter-
nal1.

The refinement rules can be formalised in a QVT/OCL language and ex-
ecuted by a transformation tool such as ATLAS [24]. For example the refine-
ment rules for “Place” can be described as follows:

Example 5.1 Pseudo-code

--Select all place instances. For each of them ...

--if there is not an associated invoke element return Place

--otherwise if the place is the first element of the invoke places

--(returns an ordered set) return InputData

--else if it is the second element return Wait

--otherwise return OutputData

OCL Description

package xPN

context Place:: getPlaceType():Place

post: let p:Set(Place)= Place.allInstances in

result =

if p.invoke.isEmpty() then p.oclAsType(Place)

else

if p.invoke.places.first()=p then p.oclAsType(InputData)

else

if p.invoke.places.at(2)=p then p.oclAsType(Wait)

else p.oclAsType(OutputData)

end

end

end

endpackage

Finally, the set of the refined rules specifies the one step refinement of α
(representing the Invoke concept within PNs), mapping M to M ⊕ α.

Within the PN domain, the M⊕α metamodel extension is now a M refine-
ment defining an “Invoke” element and enabling the resulting PN metamodel
to be mapped effectively with its corresponding BPEL “Invoke” elements. For
example, Fig. 4 depicts the BPEL relevant metamodel elements. The BPEL
metamodel similar to PNs has an “Invoke” element that is associated with
“InputVariable” and “OutputVariable”, a WSDL “Operation” provided by a
“PartnerLink” and representing the actual participant.

In that way mappings across the two metamodels can be provided easily,
defining the notion of “Invoke” and establishing a bridge of collaboration and
mapping.

Additionally, the PN metamodel extension, representing the BPEL “In-

11

Staikopoulos, Bordbar

voke” operation, is capable of modelling its dynamic and operational charac-
teristics. So, it justifies our initial aim to use it for analysis and verification
purposes. For example, the internal states and transitions of “Invoke” (see
Fig. 7) can be mapped to important (run time) aspects, such as reading the
operation’s parameter variables and writing the returned results to internal
variables. Thus, they allow the simulation and analysis of our BPEL models
by specialised tools within the PN Space.

Metamodel Decomposition: To decompose the “Invoke” notion, we have
to represent its context with the original PN metamodel elements such as PN,
T, P, TPArc and PTArc (please refer to preliminary section). In that case we
have to rewrite the metamodel and assist as much as possible the semantic
interpretation of its decomposed elements:

If the “Invoke” transition is removed, then we have to deal with its in-
ternal content, which in this case is defined by two simple “Transitions” and
three specialised “Places”. The element may also have internal defined OCL
statements, which need to be transferred equivalently as well. As “Invoke” is
of transition type the closer element is a “Transition”. However, the notion
of “Transition” cannot contain “Places” or other “Transitions” of any kind.
Thus, if we preserve such relations we will have a significant violation of its
fundamental semantics, see Fig. 9. As the “composition relation” accommo-
dates the need to depict the constituent elements of the “Invoke” structure,
which actually no longer exists (“Invoke” is decomposed), then there is no
reason to be retained.

However, there are cases where the appearance of “Invoke” can be identi-
fied as a pattern of loosely combined elements similar to grammars, which iden-
tify the tokens of a language via parsing. Similarly, the decomposed “Places”
may be identified if they are appropriately annotated by QVT/OCL rules
(provide algorithm) which construct a conceptual context (e.g. “Invoke”) as
in parsing. In this case the most relevant type or element for “OutputData”,
“InputData” and “Wait” is that of a “Place”. As a “Transition” is allowed to
have associations with “Places” via “Arcs”, there is no problem to preserve
their relationships and model them analogously, however now they belong to
the “Place” context and not to “Invoke”.

Semantic Interpretation: As the specialised elements such as “Wait” do
not exist any longer, identifying and distinguishing them may not be an easy
task, as now all of them are of the same type “Place”. However, we may
address such problems at some extent, if we annotate the association ends
with their type names or use the attribute “Label” (see Fig. 5) to mark their
types. In this case, “Labels” are used as “classifiers” to reveal the intention
of being of a specific type. Analogously, OCL statements can be used to dis-
tinguish them, if the Space or Domain allows it. Alternatively, we may mark
the modelling element with stereotypes, which effectively is similar to trying

12

Staikopoulos, Bordbar

to make the metamodels profileable.

Transition

enabled
label

fired

Place

label

PetriNet

/marking
label

w eight

Arc

PTArc

TPArc

Token

they are discarded as they represent Invoke constitution

rel4

+target 1

rel8'

+outputData

rel4'

+w ait

rel7'
rel3'

rel3

+source
1

external1

rel6'

external2

rel2'

rel5'

rel1

+source

1

rel2

+target
1

rel1'

+inputData

+places2..*

+transitions

1..*

+tokens
0..*

2

Fig. 9. Decomposing Invoke PN metamodel elements regarding the original

Finally, the mapping of a BPEL “Invoke” element to a decomposed PN ex-
tension depends largely on to how one has managed to decompose successively
the context of the notion introduced and how easily this can be identified. If
the previous requirements are met, then it is possible to establish a meaningful
mapping. However, this time it would be much more difficult to define and
more complicated to distinguish than before.

6 Discussion

There are two major prerequisites for the success of our method. The first
point is that, as depicted in Fig. 6, we must identify and map the primary
and fundamental elements of our Technical Space N and then gradually build
the more complicated elements on top of the already refined metamodels at
source. This is a “bottom up” modelling approach. In particular, there are
different ways of refining a source metamodel. For example, the authors can
model “Invoke” in three different ways utilising suitable OCL statements. It
seems possible to come up with scenarios that a model element of the source
“can not” be added to destination to create further refinement, which can be
interpreted as that two Technical Spaces are too far from each other. Further
research and case studies on the matter are required.

The second major prerequisite is the ability to decompose, see Definition
4.1, a refined metamodel. Currently, it is not very clear to authors under what
circumstances it is possible to decompose successively a metamodel. However,
it seems crucial that the refinement does not change the semantics of the meta-
model, i.e. the semantics of M, as a part of M ⊕ α must remain unchanged.

13

Staikopoulos, Bordbar

For example, in PNs, constructs such as “Place” may have different semantic
interpretations regarding the context which is used. For example, within an
“Invoke” activity “Place” represent the “InputData” and “OutputData” for
an operation, where in “Switch” activity they can represent the “PreCondi-
tion” and “PostCondition”. Therefore, when it comes to decompose them we
may loose semantic information and as a result the model elements may be
misinterpreted during instantiation and mapping from tools. For that reason
we have to devise ways to incorporate such information to our original meta-
models. Various techniques can be applied such as using OCL expressions,
labelling association ends and stereotypes. Further research on the matter is
required.

7 Summary

This paper presents a method of bridging two Technical Spaces, which can be
expressed via metamodels. The presented method is based on the MDA and
aims to address the scenarios that the metamodel of the destination Technical
Space has less complex structure than the metamodel of the source Technical
Space. To bridge the conceptual gap, the metamodel of the destination is
refined by adding model elements corresponding to model elements of the
source Technical Space. We have presented examples of application of the
approach to bridge the gap between the Technical Space of BPEL and PN.

References

[1] Atkinson, C. Kuhne, T., Model-driven development: a metamodeling foundation,
University of Mannheim; Software, IEEE, Publication Date: Sept.Oct. 2003,
Volume: 20, Issue: 5 p. 36- 41, ISSN: 0740-7459, (2003)

[2] Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F., An Experiment in Mapping
Web Services to Implementation Platforms, Technical report: 04.01, LINA,
University of Nantes, Nantes, France (2004).

[3] Bordbad, B., Staikopoulos, A., Modeling and Transforming the Behavioural
Aspects of Web Services, In: Proc. 3rd Workshop in Software Model Engineering
- WiSME2004, UML (2004)

[4] Bordbar, B., Staikopoulos, A., On Behavioural Model Transformation in Web
Services, In: Proc. Conceptual Modelling for Advanced Application Domain
(eCOMO), Shanghai, China, p. 667-678, (2004)

[5] BPEL: BEA, Microsoft, IBM, SAP, Siebel, Business Process Execution
Language for Web Services, Version 1.1. (2003)

[6] Chun Ouyang, van der Aalst, Stephen Breutel, Marlon Dumas, Arthur ter
Hofstede, Eric Verbeek, Formal Semantics and Analysis of Control Flow in
WS-BPEL, (2005)

14

Staikopoulos, Bordbar

[7] Greenfield, J, Keith Short, Software Factories, Wiley, ISBN: 0471202843, (2004)

[8] Ivan Kurtev, Adaptability of Model Transformations, PhD Thesis, University of
Twente, ISBN 90-365-2184-X, (2005)

[9] J. Miller and J. Mukerji: MDA Guide Version 1.0.1, OMG Document Number:
omg/2003-06-01”, OMG, 12.6.2003, http://www.omg.org/cgi-bin/doc?omg/
2003-06-01

[10] J. Siegel, Developing in OMG’s Model Driven Architecture, Object Management
Group, November (2002)

[11] J.M. Favre, Towards a Basic Theory to Model Model Driven Engineering,
3rd Workshop in Software Model Engineering, WiSME 2004, http://www-
adele.imag.fr/̃jmfavre

[12] Juliane Dehnert, van der Aalst, Bridging the Gap Between Business Models and
Workflow Specifications, International Journal of Cooperative Systems, (2004)

[13] Kleppe, A., Warmer, J., Bast, W., MDA Explained: The Model Driven
Architecture-Practice and Promise, (2003)

[14] Kurtev, J. Bezivin, and M. Aksit, Technological spaces: An initial appraisal, In
Int. Federated Conf. (DOA,ODBASE, CoopIS), Industrial track, Los Angeles,
(2002)

[15] Murata, Tadao, Petri Nets: Properties, Analysis and Applications, In:
Proceedings of the IEEE, Vol. 77, No. 4, p 541-580, April (1989)

[16] OMG, UML 2.0 Superstructure Specification, Document id: ptc/03-08-02 (2003)

[17] Gitzel, R. and Korthaus, A, The Role of Metamodeling in Model-Driven
Development, In: Proceedings of the 8th World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI2004), Orlando, USA, July, (2004)

[18] van der Aalst, van Hee, and Houben, Modelling and analysing workflow using
a Petri-net based approach, Proc. 2nd Workshop on Computer Supported Co-
operative Work, Petri nets and related formalisms, p. 31-50, (1994)

[19] Y. Yuhong, A. Bejan, Modelling Workflow within Distributed Systems, 6th
International CSCW in Design, Canada, (2001)

[20] OMG, MDA Guide Version 1.0.1, Object Management Group, Document
Number: omg/2003-06-01 June, (2003)

[21] W. M. P. van der Aalst and A. H. M. ter Hofstede, Workflow Patterns: On the
Expressive Power of (Petri-net-based) Workflow Languages, Proc. of the Fourth
International Workshop on Practical Use of Coloured Petri Nets and the CPN
Tools, Denmark, Aug, p. 1-20, (2002)

[22] Karsten Schmidt and Christian Stahl, A Petri net semantic for BPEL4WS -
validation and application, Proceedings of the 11th Workshop on Algorithms
and Tools for Petri Nets (AWPN’04), Oct, p. 1-6, (2004)

15

Staikopoulos, Bordbar

[23] Pons, C., Prez,G., Giandini, R., Kutsche, Ralf-D, Understanding Refinement
and Specialization in the UML, In. 2nd Int. Workshop on Managing
Specialization/Generalization Hierarchies. In IEEE ASE 2003, Canada.

[24] Jean Bezivin, Frederic Jouault, David Touzet, An introduction to the ATLAS
Model Management Architecture, Lina, Research Report no 05.01, Feb 2005

16

	Introduction
	Preliminaries
	Mapping and Bridging Technical Spaces
	A Method for Bridging Technical Spaces
	Applying the Method Adopted - Case Study
	Discussion
	Summary
	References

