
UML2Alloy: A Challenging Model
Transformation

Kyriakos Anastasakis1, Behzad Bordbar1, Geri Georg2, and Indrakshi Ray2

1 School of Computer Science, University of Birmingham, Edgbaston, Birmingham,
UK

[K.Anastasakis,B.Bordbar]@cs.bham.ac.uk
2 Computer Science Department, Colorado State University, Fort Collins, Colorado,

USA
[georg,iray]@cs.colostate.edu

Abstract. Alloy is a formal language, which has been applied to mod-
elling of systems in a wide range of application domains. It is supported
by Alloy Analyzer, a tool, which allows fully automated analysis. As a
result, creating Alloy code from a UML model provides the opportunity
to exploit analysis capabilities of the Alloy Analyzer to discover possible
design flaws at early stages of the software development. Our research
makes use of model based techniques for the automated transformation
of UML class diagrams with OCL constraints to Alloy code. The paper
demonstrates challenging aspects of the model transformation, which
originate in fundamental differences between UML and Alloy. We shall
discuss some of the differences and illustrate their implications on the
model transformation process. The presented approach is explained via
an example of a secure e-business system.

Keywords: Alloy, MDD, Class Diagram, OCL

1 Introduction

The Unified Modelling Language (UML) [1] is the de-facto language used in
the industry for specifying the requirements and the design of software systems.
Detecting faults during the early stages of the software development lifecycle,
instead of the later stages, provides a significant saving in cost and effort.

This necessitates analysing the requirements and design specifications for po-
tential errors and inconsistencies before the system has been developed. Manual
analysis is error-prone and tedious. A number of approaches have been proposed
in the literature [2–4] for analysing UML specifications. These analyses rely on
using theorem-provers. Theorem provers are hard to use, require expertise, and
the analysis requires manual intervention. Consequently, such approaches are
not very suitable for use in real-world applications.

In this paper, we advocate the use of Alloy [5] for analysing UML specifica-
tions. Alloy is a modelling language for expressing complex structural constraints
and behaviour. It has a well-designed syntax most suitable for Object Oriented



2

modelling. Moreover, Alloy is supported by a software infrastructure [6], which
provides fully automatic analysis of models in the form of simulation and check-
ing. Alloy has received considerable attention in the academic and research com-
munity. For example, it has been successfully applied to modelling and analysis of
protocols in distributed systems [7], networks [8] and mission critical systems [9]

There are clear similarities between Alloy and UML languages such as class
diagrams and OCL. From a semantic point of view both Alloy and UML can
be interpreted by sets of tuples [5, 10]. Alloy is based on first-order logic and is
well suited for expressing constraints on Object Oriented models. Similarly, OCL
has extensive constructs for expressing constraints as first order logic formulas.
Considering such similarities, model transformation from UML class diagrams
and OCL to Alloy seems straightforward. However, UML and Alloy have funda-
mental differences, which are deeply rooted in their underlying design decisions.

For example Alloy makes no distinction between sets, scalars and relations,
while the UML makes a clear distinction between the three. This has grave
consequences in the transformation between the two languages. Current state of
model transformation techniques is not dealing with such issues. In this paper
we reflect on such differences and their effect on the transformation.

We have incorporated the ideas presented in this paper in a tool called
UML2Alloy. UML2Alloy which has been applied to the analysis of discrete event
systems [11] and the architecture of enterprise web applications [12].

The next section provides an overview of basic concepts used in this paper.

2 Preliminaries

This section provides a brief introduction to the basic concepts of the MDA and
Alloy, which will be used in the rest of the paper.

Model Driven Architecture: The method adopted in this paper makes use
of Model Driven Architecture (MDA) [13] techniques for defining and imple-
menting the transformations from models captured in the UML class diagram
and OCL into Alloy. Central to the MDA is the notion of metamodels [14]. A
metamodel defines the elements of a language, which can be used to represent a
model of the language. In the MDA a model transformation is defined by map-
ping the constructs of the metamodel of a source language into constructs of the
metamodel of a destination language. Then every model, which is an instance of
the source metamodel, can be automatically transformed to an instance of the
destination metamodel with the help of a model transformation framework such
as SiTra [15].

Alloy: Alloy [5] is a textual modelling language based on first-order relational
logic. An Alloy model consists of a number of signature declarations, fields, facts
and predicates. Each signature denotes to a set of atoms, which are the basic en-
tities in Alloy. Atoms are indivisible (they can not be divided to smaller parts),
immutable (their properties remain the same over time) and uninterpreted (they



3

do not have any inherent properties) [5]. Each field belongs to a signature and
represents a relation between two or more signatures. Such a relation denotes to
a set of tuples of atoms. In Alloy facts are statements, which define constraints
on the elements of the model. Parameterised constraints, which are refereed to
as predicates, can be invoked from within facts or other predicates. The con-
straints specified in the body of a predicate, can be applied on the instances
of the signatures or fields, which are passed as parameters when invoking the
predicate.

Alloy is supported by a fully automated constraint solver, called Alloy An-
alyzer [6], which allows analysis of system properties by searching for instances
of the model. It is possible to check that certain properties of the system (as-
sertions) are satisfied. This is achieved by automated translation of the model
into a Boolean expression, which is analysed by SAT solvers embedded within
the Alloy Analyzer. A user-specified scope on the model elements bounds the
domain, making it possible to create finite Boolean formulas for the evaluation
by the SAT-solver.

One important characteristic of Alloy is that it treats scalars and sets as re-
lations. For example a relation between two atoms A1 and A2 is represented by
the pair: {(A1, A2)}. A set like: {A1, A2} is represented by a set of unary rela-
tions: {(A1), (A2)}. Finally a scalar, is represented as a singleton unary relation.
For example the scalar A1, will be represented in Alloy as: {(A1)}.

This interesting property of Alloy makes it distinguishable from other pop-
ular modelling notations and particularly UML. Hence it introduces additional
complexity into the definition of the transformation rules. The following section
discusses our MDA based approach to transform UML class diagrams annotated
with OCL constraints to Alloy.

3 Model transformation from the UML to Alloy

This section presents a brief description of our work. We use an MDA compliant
methodology to transform a subset of UML class diagram models enriched with
OCL constraints to Alloy.

Figure 1 depicts an outline of our approach. Using the EBNF representation
of the Alloy grammar [5], we shall first generate a MOF compliant [14] meta-
model for Alloy. We then select a subset of the class diagrams [16] and OCL [17]
metamodels. To conduct the model transformation, a set of transformation rules
has been defined. The rules map elements of the metamodels of class diagrams
and OCL into the elements of the metamodel of Alloy. The rules have been imple-
mented into a prototype tool called UML2Alloy. If a UML class diagram, which
conforms to the subset of UML we support is provided as input to UML2Alloy,
an Alloy model is automatically generated by the tool.

The next section illustrates our work on transforming the EBNF representa-
tion of Alloy’s grammar into a MOF compliant metamodel.



4

Class diagram
metamodel

Class diagram

Transformation
Rules

UML2Alloy

<<ConformTo>>

<<ConformTo>>

<<Implements>>

<<ConformTo>>

Alloy
metamodel

Alloy model

EBNF representation
of Alloy’s grammarOCL

metamodel

OCL
statements

Fig. 1. Outline of the transformation method.

3.1 EBNF to MOF

Alloy is a textual language and its syntax is defined in terms of its EBNF [18]
grammar [5, Ap. B]. The grammar represents the concrete syntax of the Alloy
language. In order to use the MDA, we need to convert the concrete syntax of
the Alloy language to a MOF compliant abstract syntax representation. Wimmer
and Kramler [19] have already proposed a method for generating a metamodel
of a language, based on the EBNF representation of its syntax. We utilised
their approach with some simplifications, since some of their proposals were not
required in the case of Alloy. For example we did not use annotations to give
additional semantics to the Alloy metamodel that was generated.

Figure 2 depicts a portion of the Alloy metamodel we constructed for sig-
nature declarations. A signature declaration (SigDecl) is an abstract metaclass.
It can either be an ExtendSigDecl or an InSigDecl, used for subtyping and sub-
seting signatures respectively. A SigDecl has a signature body (SigBody). It can
contain a sequence of constraints (ConstraintSequence). A signature declaration
can also specify a number of declarations (Decl). Declarations are used to define
signature fields. They declare one or more variables (VarId) and are related to
a declaration expression (DeclExp). A declaration expression can either declare
a binary relation between signatures (DeclSetExp) or a relation that associates
more than two signatures (DeclRelExp). Similarly, we have defined the parts of
the Alloy metamodel which represent expressions, constraints and operations.

Since the construction of the metamodel was an intermediate step to utilise
the MDA technology, we did not use OCL to specify well-formedness rules on
the elements of the metamodel, an approach which is adopted by the UML spec-
ification. Instead well-formedness rules were embedded in the transformation,
ensuring that the generated Alloy models are well-formed. For example there
are some reserved words in Alloy (e.g. some and one, which denote multiplicity
constraints). No defined element, such as a signature, can have a name which
conflicts with those predefined Alloy keywords. Our transformation rules deal
with it and raise an error if any of the UML model elements has a name which
is not allowed in Alloy.



5

Fig. 2. Part of the Alloy metamodel used to represent signature declarations.

3.2 Mapping Class diagram and OCL to Alloy

This section presents a brief introduction on the transformation rules from UML
to Alloy. It provides an informal correspondence between elements of the UML
and Alloy metamodels, as a basis on which to present the challenges of the
transformation. A more detailed description of the transformation rules can be
found in [11]. Due to space limitations the UML and OCL metamodels are
not presented here. An extensive explanation can be found in the respective
specification documents [16, p. 29] [17].

Table 1 provides an informal correspondence between the most crucial ele-
ments of the UML and OCL metamodels and Alloy. More specifically a UML
Class is translated to an Alloy signature declaration (ExtendsSigDecl), which
defines a SigId with the same name as the class name. If the class is not a spe-
cialization the Alloy signature is not related to any SigRef. Otherwise it will be
related to a SigRef, which references the signature it might extend.

For example the Client class in the UML model of Figure 3 is transformed
to an ExtendsSigDecl, which declares a SigId, whose name is Client. Because
it doesn’t represent a subclass, it is not related to any SigRef. Similarly the
SoftwareClient and WebClient are transformed to an ExtendsSigDecl. Unlike
the Client class though, they are related to a SigRef, which refers to the SigId
generated to represent the Client class.

The next section presents an example UML class diagram, which will be used
to illustrate the challenges of the transformation from UML to Alloy.

UML+OCL metamodel element Alloy metamodel element

Class ExtendsSigDecl

Property DeclExp

Operation Predicate

Parameter Decl

Enumeration ExntedsSigDecl

EnumerationLiteral ExtendsSigDecl

Constraint Expression

Table 1. Informal mapping between UML and Alloy metamodel elements



6

4 Example UML class diagram

Figure 3 depicts a UML class diagram that represents the login service of an
e-commerce application. The e-commerce system allows clients (i.e. Client) to
purchase goods over the internet. It is therefore susceptible to various attacks,
including a man-in-the-middle attack that allows an attacker to intercept infor-
mation that may be confidential. The login service has therefore been augmented
with the SSL (Secure Sockets Layer [20]) authentication and confidentiality pro-
tocol. We model the man-in-the-middle attack in our example by adding an
Attacker class that intercepts all communications between the Client and the
e-commerce server, Server, possibly changing message content prior to passing
them onto the intended recipient. The SSL protocol works the same whether the
Client is a SoftwareClient or a WebClient, but the SoftwareClient provides some
extra functionality to the user. If the SSL handshake completes successfully, a
secret session key that can be used for message encryption and decryption will
have been exchanged between Client and Server. All further communication be-
tween them will be encrypted, and thus confidential. If the handshake fails, all
communication is aborted between Client and Server.

Figure 3 depicts a high level representation of the system, where attribute
of the classes hold the values of the messages exchanged between the entities
that participate in the interactions. Due to space limitations some user defined
types, such as the EncryptedDigestType are not represented in this diagram. For
an extended study of this model, please refer to [21].

Figure 4 depicts an excerpt of the OCL specification of the abortLoginAttempt
method, which will be used later on to demonstrate the differences between OCL
and Alloy.

5 Differences between UML and Alloy which Influence
the Transformation

Although both UML and Alloy are designed to be used in Object-Oriented (OO)
paradigm, the two languages have different approaches to some of the fundamen-
tal issues of OO such as inheritance, overloading and predefined types [22]. Some
of these differences directly influence the model transformation process. In this
section, we shall discuss such differences and explain how our approach deals
with them.

Inheritance: Both UML and Alloy support inheritance. In the UML, a child
class inherits and can specialise the properties of one or more classes [16, p. 126].
The UML standard uses the term ‘redefines’ to denote attribute or operation
overriding.

In Alloy a signature can extend another signature and the elements of the
subsignature are a subset of the elements of the supersignature. However a sub-
signature can’t declare a field whose name is the same as the name of a field of
its supersignature. Thus a subsignature can’t override the fields of a supersigna-
ture. In our transformation we have resolved this shortcoming, by renaming all



7

Fig. 3. Partial model of the SSL protocol included in the e-commerce system login
service.

Alloy fields which have naming conflicts. This is explained with the help of an
example.

context Client::abortLoginAttempt (): Boolean

post abortLoginAttempt:

self.loginAborted = ResultType::r_true and

self.resultPage = ResultPageType::nullPage

Fig. 4. OCL specification of the abortLoginAttempt operation of the Client class

Consider the SoftwareClient class of Figure 3. It has an attribute name,
which overloads the attribute name of the Client class. In order to transform
this model, we need to create a field with a unique name in Alloy and change all
references, which refer to the name attribute of the SoftwareClient class, to ref-
erence the uniquely named field. However this brings additional complications.
According to the UML specification constraints of a superclasses are propagated
to the subclasses. In particular it is mentioned that: ‘A redefining element... can
add specific constraints or other details that are particular to instances of the spe-
cializing redefinition context that do not contradict invariant constraints in the
general context.’ [16, p. 126]. Let us assume the following constraint: self.name
<> NameType::null exists in the Client class and the constraint self.name <>
NameType::aName exists in the SoftwareClient. During the transformation the
name attribute of the SoftwareClient is renamed to name1. The original con-
straint is then translated to a signature constraint: name1 ! = aName in Alloy.
However this allows for the field name1 to have a null value, which is not accept-
able in the original UML model. Therefore another constraint (i.e. name1 ! =



8

null) needs to be injected in the translated Alloy model to reflect the constraints
applied to the name attribute of the Client class. A similar approach is followed
when dealing with operation overriding.

Namespace: All UML model elements are defined in a namespace [17, p. 72].
For example, classes in a class diagram are defined in the namespace of the
package, while attributes are defined in the namespace of the class they belong
to.

Model elements of an Alloy model also belong to a namespace [5, p. 254].
However the notion of a namespace in Alloy and UML are slightly different.
For example the UML specification defines that: ‘The set of attribute names
and class names need not be disjoint ’ [17, p. 178]. In Alloy on the other hand
signature names, have to be distinct from their field names.

Therefore we need to ensure that during the transformation a unique name is
created for Alloy elements that belong to the same namespace. In our approach
we first identify elements in the UML metamodel, which belong to different
UML namespaces, but are translated to the same Alloy namespace (e.g. class
operations). If those elements do not have a unique name, we make sure to assign
to them a unique name during the transformation to Alloy. All references to those
elements in the original UML model, are changed during the transformation to
reference the unique names in the generated Alloy model.

For example class operations in UML are defined in the namespace of a class.
This allows for two classes to have two operations with the same name, param-
eters and return values. In Alloy on the other hand predicates (the equivalent
notion of operations) belong to the namespace of the whole model. Subsequently
operations are renamed, during the transformation, if two classes share two op-
erations with the same name.

Another issue is that in OCL the instance of the class on which the operation
is applied, can be accessed using the self keyword. Alloy does not have a notion
which corresponds to self. This makes it difficult to reference the instance of
the signature on which the Alloy predicate is applied. As a solution we pass
the instance as a parameter to the predicate. For an example of a solution to
this problem, consider the abortLoginAttempt() operation of the Client. Its OCL
specification makes use of the self keyword and is depicted in Figure 4. Following
our transformation rules, we translate it to Alloy to the following predicate:
pred abortLoginAttempt(act:Client){
act.loginAborted = r_True &&
act.resultPage = nullPage }

As it can be seen act, which is an instance of the signature Client, is passed
as a parameter to the predicate.

Sets, Scalars, Relations and Undefinedness: Alloy treats sets and scalars as
relations. In particular in Alloy a relation denotes to a set of tuples. The number
of elements in each tuple depends on the arity of the relation. For example a
binary relation is represented by a 2-tuple. A set in Alloy is represented as a
unary relation and a scalar is a singleton unary relation [5, p. 45].



9

In UML on the other hand, sets and scalars have the standard meaning they
have in set theory. The equivalent of relations in UML is an association between
classes, which is represented as a set of tuples [17, p. 184].

These differences in the two languages stem from the fact that UML and
Alloy have different design philosophies. More specifically one of the purposes of
UML is to represent Object Oriented programming concepts, where the distinc-
tions between scalars and sets is clear. On the other hand Alloy was designed
for analysing abstract specifications and the uniform way it deals with sets,
scalars and relations contributes to its succinct syntax and leverages its expres-
siveness [23].

To explain this consider the navigation dot (.). In Alloy it is treated as the
relational join [5, p. 59]. As a result navigating over an empty relation denotes
to an empty set. Consequently Alloy doesn’t need to address the problem of
partial functions by introducing a special undefined value, like in UML [17, Ap.
A.2.1.1]. More specifically let us assume in the model of Figure 3 we have the
following OCL statement:

context Client inv: self.at.name = self.at.lm.name (1)

In UML if the instance of the Client in which this OCL invariant is evaluated
is related to no Attacker, the part self.at.name of this statement will denote to
an undefined value. The result of the invariant will then be undefined. In an
equivalent Alloy model, however if the Client was related to no Attacker, such a
constraint would always denote to true! This is because the left hand side part
of the expression, that is self.at.name, would denote to an empty set relation.
Similarly the right hand side, self.at.lm.name would evaluate to an empty set.
Therefore the invariant will always evaluate to true.

This has serious implications because the statement will produce a different
outcome in Alloy than in OCL. To overcome the problem, we check if an OCL
statement can evaluate to an undefined value. To check for undefinedness, the
oclIsUndefined() OCL operation is used. For example the OCL statement of (1)
will become:
context Client

inv: if not self.at.name.oclIsUndefined() and
not self.at.lm.name.oclIsUndefined() then

self.at.name = self.at.lm.name
else

false
endif

In this case the modeller has specified that if any part of the expression
is undefined, the invariant should evaluate to false. This ensures that the OCL
statement will either evaluate to true or false, but not undefined. Such an expres-
sion is transformed to Alloy using our standard UML to Alloy transformation
rules.

Predefined Types and Operations: The UML specification defines a num-
ber of primitive types (e.g. String, Real, etc.). Those types can be used when



10

developing UML models. For example the attribute browser of the WebClient
class in Figure 3 is of type String.

On the other hand, Alloy has a simple type system and the only predefined
type it supports is Integers. However some of the rest of UML’s predefined types,
can be modelled in Alloy. For example a String, can be modelled as a sequence
of characters and each character can be represented by an atom.

One consequence of this approach, is that while in UML primitive types and
their operations are part of the metamodel, in Alloy they need to be defined on
the model level (i.e. a String has to declared as an Alloy signature). Our trans-
formation rules do this automatically for certain attribute types (e.g. String).

UML’s extension mechanism: UML provides two extensions mechanisms [1,
p. 11]. One is to create a profile and another one is to extend the UML meta-
model. If UML has been extended, we need to incorporate the rules involving
the new elements into the transformation.

Our current transformation deals with a subset of the standard UML and
OCL metamodels. If the metamodels have been extended, the new semantics
need to be incorporated into the transformation. For example let’s assume that
UML has been extended with the ability to define a Singleton stereotype. This
stereotype, when used on a class, restricts the class to have only one instance.
This is expressed with the following invariant in OCL: self.allInstances()→ size()
=1. In such a case the transformation rules need to be adjusted accordingly. In
particular, whenever a Singleton stereotype is found on a class, a constraint needs
to be injected in the produced Alloy model, to impose that the transformed sig-
nature will have only one instance. The implementation of our transformation
rules, is modular and uses the SiTra [15] transformation engine, which can be
easily augmented to accommodate for any extensions.

Aggregation and Composition: The UML treats aggregation and composi-
tion as special kinds of associations [1, p. 112]. Alloy doesn’t directly support
notions like aggregation and composition. Fortunately [24] present a methodical
way of refactoring aggregation and composition as an association with additional
OCL constraints that represent the semantics of aggregation and composition.
We utilise this approach, as it allows us to use transformation rules for binary
associations and OCL constraints we have already defined.

Static vs Dynamic Models: Models in Alloy are static, i.e. they capture the
entities of a system, their relationships and constrains about the system. An
Alloy model defines an instance of a system where the constraints are satisfied.
However Alloy models do not have an inherent notion of states. In particular,
Alloy does not have any built in notion of statemachine [5, Ap. B.5.1]

In UML the term ‘static’ is used to describe a view of the system, that
represents the structural relations between the elements as well as the constraints
and the specification of operations with the help of pre and post conditions. In
UML, unlike Alloy, static models have an inherent notion of states. A system



11

state is made of the values of objects, links and attributes in a particular point
in time [17, p. 185].

Hence UML has an implicit notion of states, while Alloy does not support
it directly. This introduces additional complexity in the transformation. Let
us assume the following OCL statement is the definition of the receiveResult()
operation of the Client:

context Client::receiveResult():void
pre: self.resultPage = ResultPageType::nullPage
post: self.resultPage = ResultPageType::homePage

To evaluate this expression two consecutive states are required, one to repre-
sent the state before the execution of the operation (precondition) and another
to represent the state after the execution of the operation (postcondition). The
OCL standard formally specifies the environment on which pre and postcondi-
tions are evaluated [17, p. 210].

If the specification of the receiveResult() operation, was directly translated
to Alloy it would translate to:

pred receiveResult(act:Client){ act.resultPage = nullPage
act.resultPage = homePage }

However such an Alloy specification leads to an inconsistent model. This is
because the value nullPage and homePage are assigned to the resultPage field,
at the same time. This leads to a logical inconsistency, as both statements can
not be true (i.e. resultPage will either be the nullPage or homepage).

A solution is to introduce the notion of a state at the model level. This is a
standard way of modelling dynamic systems in Alloy [25]. Our approach [11, 12]
uses this pattern of modelling dynamics in Alloy, to translate UML models to
Alloy. This allows us to have two consecutive states and evaluate the precondi-
tions of each operation on the first state, while evaluating the postcondition of
an operation on the next state.

6 Analysis and Future Work

This section presents a brief overview on the results of the analysis we conducted
on the example UML model. It also provides a discussion on further issues that
were encountered and suggests directions for future work.

6.1 Analysis via Alloy

We applied our model transformation rules from UML to Alloy on the example
model presented in Section 4. We checked the produced Alloy model, using the
Alloy Analyzer. The assertion that must be validated is that if the Attacker
obtains the secret session key, the handshake should always fail. This assertion
can be specified using OCL:



12

context Client
inv sameKeySuccess: Client.allInstances() -> forAll(ac:Client |

ac.loginAborted = ResultType::r_false implies (
ac.cKey = SessionKeyType::symmKey and
ac.at.sKey = SessionKeyType::symmKey
and ac.at.aKey <> SessionKeyType::symmKey))

This OCL statement was automatically transformed to the following Alloy
assertion:

assert sameKeySuccess{ all ac:Client | ac.loginAborted = r_false
implies ac.cKey = symmKey && ac.at.lm.sKey = symmKey
&& ac.at.aKey != symmKey }

This assertion was checked for a scope of six. A scope of six means that
the Alloy Analyzer will attempt find an instance that violates the assertion,
using up to six instances for each of the entities defined in the class diagram
of Figure 3 (for example Client, Attacker, Server). The assertion produced no
counterexample, meaning that it is valid for the given scope.

6.2 Discussion and Future Work

This section briefly presents a discussion on further practical issues we had to
deal with, when defining the transformation rules. Moreover it suggests directions
for future work.

A difficulty that was encountered when defining the transformation rules, was
that parts of the UML specification are inconsistent with the UML informative
semantics section of the specification [17, An. A]. For example even though the
UML standard allows for overloading of attributes and operations [16, Section
7.3.46], the UML formal semantics part of the specification seems to adopt a
different stance [17, p. 182]. In particular it doesn’t allow for attributes or op-
erations of a subclass to have the same name as the attributes and operations
of its superclass. As explained in Section 5 we made use of the informal seman-
tics in our transformation rules, since attributes and operations overriding is an
important facility provided in object oriented modelling.

Another issue we had to overcome, originates in the nature of OCL. In par-
ticular the transformation rules had to be invoked recursively. For example the
definition of the abstract syntax of If expressions [17, p. 45] allows for any type
of an OCL expression to be part of the condition clause. As a result, when
defining the transformations someone needs to check the type of the condition
expression and invoke the corresponding transformation rule, which will be used
to transform that specific kind of expression to Alloy. This problem is dealt by
the SiTra [15] transformation framework we used for our implementation. SiTra
allows for recursive calls of transformation rules with dynamic type checking.
Therefore depending on the type of the expression, the corresponding rule is
automatically invoked.



13

The UML specification defines a number of concepts (e.g. ordered and subsets
annotations of association ends, package import), which are not formally defined.
For some of those concepts the semantics are not clear (e.g. package merge) [26].
Transformation rules for such concepts have not been defined yet. Modellers can
define their interpretation of the semantics of such concepts on the model level
using OCL.

The OCL standard allows for recursion: ‘We therefore allow recursive invo-
cations as long as the recursion is finite’ [17, p. 205]. Alloy on the other hand
does not directly support recursion. It might be possible to represent some cases
of recursion, using the expressiveness of the Alloy language as suggested in [22].
How this might be incorporated into our transformation rules in order to provide
support for recursion, remains an issue for future research.

As we use Alloy to formalise UML, our approach admits some of the inher-
ent limitations of the Alloy language. Some UML primitive types (such as Real
numbers) can not be directly transformed to Alloy. Therefore it is not feasible to
check whether certain properties involving real values are satisfied. Additionally
the UML offers a number of collection types (e.g. Sequence, Bag), which can
not be directly represented in Alloy. Moreover, since Alloy is a first-order lan-
guage, it does not support nested collections. The possibility of representing the
capabilities of UML collection types in Alloy remains to be investigated further.

7 Related Work

Formalising UML for the purpose of analysis is a popular approach. Evans et
al [4] propose the use of Z [27] as the underlying semantics for UML. Marcano and
Levy [2] advocate the use of B [28], while Kim [3] makes use of an MDA method to
translate a subset of UML to Object-Z. These methods rely on theorem provers
to carry out the analysis, which complicates the process.

A number of UML tools also provides support for analysis. For example the
USE tool (UML Specification Environment) [10] is a powerful instance evaluator
with the ability of simulation.

Using Alloy to formalise UML has also received considerable attention. More
specifically Denis et al [9] use Alloy to expose hidden flaws in the UML design of a
radiation therapy machine. Georg et al [8] have used Alloy to analyse the runtime
configuration of a distributed system. Unlike our work, those approaches conduct
the translation from UML to Alloy manually, a procedure which is tedious and
error prone.

Additionally there have been studies on the comparison of languages of UML
and Alloy [22, 29]. However they do not use model driven approaches to demon-
strate the differences.

Finally transformations from a three-valued logic language to a two-valued
logic language, such as ours from UML to Alloy have been applied to the field
of database semantics. For example [30] propose the use of an interpretation
operator to treat statements with undefined values in databases either as true
or false.



14

8 Conclusions

Model transformations in the context of MDA are predominantly used for code
generation. Model transformations can be used for the creation of analysable
models, allowing the discovery of possible flows in the design of a system. Lan-
guages used for creation of analysable models have strong formal foundations.
Hence, a model transformation from the UML to such languages is highly non
trivial.

In this paper we have reflected on the lessons learned from the model transfor-
mation from UML class diagrams to Alloy. We discussed some of the differences
between UML and Alloy. For example the different perspectives on inheritance,
functions, static and dynamic models. We also studied the implications of such
differences in the model transformation. Our proposed solutions to such chal-
lenges were presented. The method is implemented in a prototype tool called
UML2Alloy. The approach is illustrated with the help of an example from the
security domain.

References

1. OMG: UML Infrastructure Document: formal/05-07-05. http://www.omg.org.
2. Marcano, R., Levy, N.: Using B formal specifications for analysis and verifica-

tion of UML/OCL models. In Kuzniarz, L., Reggio, G., Sourrouille, J.L., Huzar,
Z., eds.: Blekinge Institute of Technology, Research Report 2002:06., Department
of Software Engineering and Computer Science, Blekinge Institute of Technology
(2002) 91–105

3. Kim, S.K.: A Metamodel-based Approach to Integrate Object-Oriented Graphi-
cal and Formal Specification Techniques. PhD thesis, University of Queensland,
Brisbane, Australia (2002)

4. Evans, A., France, R., Grant, E.: Towards Formal Reasoning with UML Models.
In: Proceedings of the OOPSLA’99 Workshop on Behavioral Semantics. (1999)

5. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, London, England (2006)

6. Jackson, D.: Alloy Analyzer website http://alloy.mit.edu/.
7. Taghdiri, M., Jackson, D.: A lightweight formal analysis of a multicast key man-

agement scheme. In: Formal Techniques for Networked and Distributed Systems -
FORTE 2003. Volume 2767 of Lecture Notes in Computer Science., Springer (2003)
240–256

8. Georg, G., Bieman, J., France, R.B.: Using Alloy and UML/OCL to Specify Run-
Time Configuration Management: A Case Study. In Evans, A., France, R., Mor-
eira, A., Rumpe, B., eds.: Practical UML-Based Rigorous Development Methods -
Countering or Integrating the eXtremists. Volume P-7 of LNI., German Informatics
Society (2001) 128–141

9. Dennis, G., Seater, R., Rayside, D., Jackson, D.: Automating commutativity anal-
ysis at the design level. In: ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, ACM Press (2004) 165–
174

10. Richters, M.: A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, Universitaet Bremen (2002) Logos Verlag, Berlin, BISS Mono-
graphs, No. 14.



15

11. Bordbar, B., Anastasakis, K.: UML2Alloy: A tool for lightweight modelling of
Discrete Event Systems. In Guimarães, N., Isáıas, P., eds.: IADIS International
Conference in Applied Computing 2005. Volume 1., Algarve, Portugal, IADIS Press
(February 2005) 209–216

12. Bordbar, B., Anastasakis, K.: MDA and Analysis of Web Applications. In: Trends
in Enterprise Application Architecture (TEAA) 2005. Volume 3888 of Lecture notes
in Computer Science., Trondheim, Norway (2005) 44–55

13. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture–Practice and Promise. The Addison-Wesley Object Technology Se-
ries. Addison-Wesley (2003)

14. OMG: MOF Core v. 2.0 Document Id: formal/06-01-01. http://www.omg.org.
15. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier,

K.D.: SiTra: Simple transformations in java. In Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G., eds.: Model Driven Engineering Languages and Systems, 9th Inter-
national Conference, MoDELS 2006. Volume 4199 of Lecture Notes in Computer
Science., Genova, Italy, Springer (2006) 351–364

16. OMG: UML: Superstructure. Version 2.0 Document id: formal/05-07-04.
http://www.omg.org.

17. OMG: OCL Version 2.0 Document id: formal/06-05-01. http://www.omg.org.
18. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.

Addison Wesley (1986)
19. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In Bruel,

J.M., ed.: MoDELS Satellite Events. Volume 3844 of Lecture Notes in Computer
Science., Springer (2006) 159–168

20. TLSWG: SSL 3.0 specification (1996) http://wp.netscape.com/eng/ssl3.
21. Georg, G., Anastasakis, K., Bordbar, B., Houmb, S.H., Ray, I., Toahchoodee, M.:

Verification and trade-off analysis of security properties in UML system models.
Transactions In Software Engineering. Special Issue on Security. Submitted.

22. Jackson, D.: A Comparison of Object Modelling Notations: Alloy, UML and Z.
Available at: http://sdg.lcs.mit.edu/publications.html (August 1999)

23. Vaziri, M., Jackson, D.: Some Shortcomings of OCL, the Object Constraint
Language of UML. In: Technology of Object-Oriented Languages and Systems
(TOOLS 34’00), Santa Barbara, California (2000) 555–562

24. Gogolla, M., Richters, M.: Transformation rules for UML class diagrams. In:
“UML”: ’98: Selected papers from the First International Workshop on The Unified
Modeling Language “UML”: ’98, London, UK, Springer-Verlag (1999) 92–106

25. Wallace, C.: Using Alloy in process modelling. Information and Software Technol-
ogy 45(15) (December 2003) 1031–1043 Publisher: Elsevier Science.

26. Zito, A., Diskin, Z., Dingel, J.: Package Merge in UML 2: Practice vs. Theory? In:
Model Driven Engineering Languages and Systems, 9th International Conference,
MoDELS 2006. Volume 4199 of Lecture Notes in Computer Science. (2006) 185–199

27. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall, Upper Saddle River, NJ, USA (1996)

28. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA (1996)

29. He, Y.: Comparison of the modeling languages Alloy and UML. In Arabnia,
H.R., Reza, H., eds.: Software Engineering Research and Practice, SERP 2006.
Volume 2., Las Vegas, Nevada, USA (2006) 671–677

30. Negri, M., Pelagatti, G., Sbattella, L.: Formal semantics of SQL queries. ACM
Transactions on Database Systems (TODS) 16(3) (1991) 513–534


