
Evaluating the Use of AOP and MDA in Web

Service Development

Guadalupe Ortiz

Quercus Software Engineering Group

Centro Universitario de Mérida, UEX

Mérida, Spain

gobellot@unex.es

Behzad Bordbar

School of Computer Science

University of Birmingham

Edgbaston, Birmingham, UK
B.Bordbar@cs.bham.ac.uk

Juan Hernández

Quercus Software Engineering Group

Escuela Politécnica, UEX

Cáceres, Spain

juanher@unex.es

Abstract— Model-Driven Architecture (MDA) is introduced to

shorten the software development time, produce better quality of

code and promote the reuse of software artifacts. On the other

hand, Aspect-Oriented Programming (AOP) is motivated by the

need to create decoupled systems, which are easier to maintain.

As a result, it can be argued that adopting AOP and MDA side-

by-side will provide advantages from both sets of techniques.

However, adapting a new technology often entails extra cost and

effort, including cost associated with training and support for the

software tool. Therefore, it is crucial to evaluate the usefulness of

applying such techniques. This paper presents a quantitative

approach to evaluate the use of MDA and AOP in service-

oriented environments. We shall start by presenting an outline of

a method of implementation and maintenance of Web services,

based on both MDA and AOP. Then, with the help of a case study

we shall evaluate the advantages and disadvantages of applying

the method, achieved by comparing two implementations of a

prototype University Administration system; the first

implementation is based on ad-hoc methods of Web service

development, whereas the second implementation is carried out

by applying MDA and AOP. We shall use various metrics to

report on the maintainability, performance, percentage of

generated and reused code resulting from the use of MDA and

AOP.

Keywords: Aspect-Oriented Techniques, Web Services, Model-

driven Development, Extra-Functional Property

I. INTRODUCTION

Modern businesses are increasingly adopting Service-Oriented
Architecture (SOA) to become responsive to the rapid changes
in the market. When adapting a service-oriented infrastructure
to support business ideas, speed is of crucial importance. As a
result, the application of techniques which aim at developing
better quality software in a faster development time, whilst
being easy to maintain, such as Model-Driven Architecture
(MDA) and Aspect-Oriented Programming (AOP) have
received considerable attention [4, 8, 12].
MDA [27] aims to promote the role of models in software

development processes. Models in MDA are captured in MOF-
compliant languages such as UML [26]. Central to MDA is the
use of model transformation frameworks [1, 23], which allow
the automatic generation of various software artefacts, such as
code. Applying MDA techniques results in better quality of
code created via automated techniques and reuse of software
artefacts. This is expected to result in shorter development
cycles and reduction of costs [12, 20].

During multiple development cycles, functionalities such as
creating log files, encryption or login by users, are often
incorporated to complement the original system functionality.
We refer to such properties as Extra-Functional Properties
(EFPs) [14, 15]. Implementing EFPs is a programming-
intensive task with high maintenance cost, which often requires
integrating related code into the system code for each property.
Aspect-oriented programming can alleviate the burden of EFP
implementation by allowing encapsulation and modularization
of EFPs as aspects and by weaving them into the original
implementation. Thus, using AOP is expected to improve the
low coupling of service systems and reduce maintenance costs
[10].
Considering the advantages of using AOP and MDA, it is

expected that the use of both methods simultaneously will
benefit from the two approaches. This paper adopts a numerical
approach to the evaluation of the effect of using them in the
implementation when implementing EFPs for Web services.
We shall report on a case study of a Web service application
development using MDA and AOP and we shall compare the
result with conventional development methods. To do so, we
have applied the method introduced by Ortiz prototype [14] in
order to integrate EFPs in Web service-based systems. By
applying performance analysis techniques and well-know
metrics [7, 11, 22], the advantages and disadvantages of MDA
and AOP are explored. We shall report on our case study to
confirm that using AOP in conjunction with MDA may result
in over 45% automated generated code which is well structured
and modularized.
The paper is organised as follows. Section 2 provides an

introduction to EFP in Web service development, MDA and
AOP. In this section we shall also describe the outline of the
method adopted in the development and maintenance of Web
services based on [14]. Section 3 states the problem to be
addressed in this paper. Then, we shall describe our case study
in Section 4. Section 5 introduces the evaluation methodology,
which has been followed in order to get the results shown in
Section 6. Section 7 discusses the presented evaluation,
whereas conclusions are summarized in Section 8.

II. PRELIMINARIES

Our research brings together three transversal areas of software
engineering: extra-functional properties in Web service
development, MDA and AOP. In this section we shall briefly

review these three, followed by an outline of a method for
implementing EFPs with MDA and AOP [14].

A. Extra-functional properties in Web service development

In this paper, we are dealing with the modification of Web
service implementations [5, 6] to incorporate extra-functional
properties. The term “extra-functional”, also called “"on-
functional” is used in various contexts [2, 3, 9, 18]. The term
“non-functional” can be slightly confusing, as it can be argued
that non-functional properties, such as security, are indeed
related to the system functionality. In this paper, extra-
functional properties describe properties which are
implemented as pieces of code to complement the main system
functionality. For example, consider an online banking system:
its main functionality is to provide a portal in which customers
can manage their accounts. In this case, security is an EFP, as it
complements the system’s main functionality. Notice that an
EFP such as security can be essential for the system; however
in the case of a banking system encrypting the invocations is
not the main functionality.
EFPs are sometimes referred to as functional aspects;

however in order to avoid a possible misunderstanding between
the functional aspect (the property itself) and aspect
implementation (an option for property implementation with
AOP) we avoid using the term functional properties in our
approach. EFPS are sometimes called policies; we have
decided against using this term to avoid confusion between the
whole property and the property description by using WS-
Policy.

B. Model-Driven Architecture

Model-driven development promotes the role of models,
allowing us to focus on the essential aspects of the system,
delaying the decision of the implementation technology for a
later step. In model-driven development multiple models are
used, where each will address one concern, independently of
the remaining issues involved in the system’s development;
thus allowing the separation of the final implementation
technology from the business logic achieved by the system.
MDA [27] models are generally divided into three categories:
Platform-Independent Models (PIM) representing the system
without coupling it to any specific platform or language,
Platform-Specific Models (PSM) expressing the system based
on a specific platform, technology and programming
languages, and finally, Code Layer provides the final
application as code. A set of transformation rules may also be
created in order to transform PIMs into PSMs and the latter
into the final application code automatically [12, 20, 27].

C. Aspect-Oriented Programming

In many systems we may find it impossible to model several
concerns into a structured decomposition of units by only using
the Object-Oriented Programming (OOP) paradigm. For
instance, in a system for the representation of geometric
figures, we may have two different concerns: representing the
type of figure and tracking its movement. AOP allows us to
modularise these crosscutting concerns by encapsulating them
into meaningful independent units called Aspects [13].
Afterwards, a method to weave the aspect code with the
original one is applied [10].

D. Applying MDA and AOP to the implementation of EFPs

Figure 1 depicts the outline of the methodology presented by
Ortiz [14] for integrating extra-functional properties into Web
service model-driven development. “Model of the system”
represents the platform-independent model of our system.
Using an UML profile [17], EFPs such as security can be
expressed as PIMs, denoted in Figure 1 by EFP1, EFP2, etc.
The overall model consists of the original PIM “Model of the
system” and a few models representing the EFPs.
Code creation involves three stages:

1. Generation of the code corresponding to the main
functionality of the system, as depicted by a vertical arrow
from the “Model of the system” to the “code of the
system”. This involves definition of model transformations
from the PIM to PSM and then, from the PSM to code.
After defining the model transformations, an MDA model
transformation framework can execute the transformation
to generate the final code.

2. Creation of snippets of code corresponding to extra-
functional properties. This is represented in the Figure by
several arrows from “EFPi” to the “code for EFPi”. Similar
to step 1, this transformation process is also conducted
through the use of the MDA framework.

3. Finally, once the “code for the system” and the “code for
EFPs” are available, we shall use an aspect compiler, such
as AspectJ, in order to weave them [16].

Figure 1. Using MDA and AOP for implanting EFPs

Implementation: As explained in details in Ortiz [14], a UML
profile was used in order to model extra-functional properties.
Each property is represented as a UML stereotype in the
platform-independent model and can be used to stereotype the
service interfaces or operations to which the property should be
applied. We have used JAX-RPC metamodel for platform-
specific modelling for the services. Moreover, an aspect-
oriented metamodel and a policy-based one are supplied in
order to model, at PSM level, the functionality provided by the
properties and their description, respectively. Finally, A SOAP
tag-based platform-specific metamodel is provided in order to
model the new tags to be included in the SOAP messages for
properties which require additional information to be supplied
transparently, respectively. Platform-specific models are
obtained automatically by the application of the provided PIM-
PSM transformation rules to the platform-independent model.

An additional set of transformation rules allows us to obtain
automatically the service skeleton code on the one hand, and,
on the other, the AspectJ for the implementation of the property
functionality, WS-Policy [2] code for property description and
Java code to implement a SOAP handler. This handler affords
the inclusion of new tags in the SOAP message headers in the
client side, or provides the code which allows the tags to be
checked in the service side. For further information we refer
the reader to previous work on the matter [14, 15, 16, 17].

III. DESCRIPTION OF THE PROBLEM

The assessment process involves evaluating the use of both
MDA and AOP techniques. To the best of our knowledge there
is no experimental evaluation used for MDA. There are various
approaches [7, 11, 22] to the evaluation of the use and
application of aspect-oriented techniques in different types of
system. However, none of them are applied to model-driven
Web service-based systems. We aim to study the following:

• The structure of the system’s code and the dependences of
EFPs’ code from the main functionality one will be
evaluated to ensure better system maintenance and
evolution.

• The percentage of generated code, to evaluate the
effectiveness of using MDA techniques.

• The performance of the automated generated code.

IV. UNIVERSITY ADMINISTRATION SERVICES: A
CASE STUDY

Our case study consists of five Web services, which can be
used in an ordinary Spanish University, such as the Centro
Universitario de Mérida by students and course administrators:
PreregistrationService, RegistrationService,
ExamOpportunityService, AcademicResultsService and
TeacherService. We have also designed a user-friendly
interface for students to access these services. Both services
and client are described in detail in [14]. The case study aims to
integrate the following properties into the above services:

• log: producing log files is essential to ensure the possibility
of tracking all the relevant invocations in the system. As a

result, this property has been applied to the interface

offered by the registration service and to the operation

bringForwardExam in the ExamOpportunity service.

• detailedInfo: used in case a user requires extra information.
For example, user may require to bring forward the date of
an examination via ExamOpportunityService. He may also
wish to get additional information on the exam room. In
such a case, a detailedInfo-type EFP must be incorporated.

• decryption: security is an important EFP. In our case study,
we considered it and, as a result, invocations to sendPDF
will have to be encrypted compulsorily.
For the client side, the following must be taken into account:

• First of all, requests for the pre-registration pdf file to be re-
sent in preregistrationService need to be encrypted.

• Secondly, the detailedInfo application is optional, so it may
or may not be selected by the client. Our client will select
the property to be applied on his ExamOpportunityService
invocations to bring forward an exam.

• Finally, since the log property is client-independent, it does
not have to be taken into account in the client side.

V. ADOPTED METHODOLOGY FOR THE EVALUATION

To evaluate the use of MDA and AOP we have applied the
method described in section 2.4 in order to create an
implementation of the case study EFPs using MDA and AOP.
We have also created a hard-coded implementation of the
system directly by including the implementation of each EFP
into the system code. For example, to implement the EFP for
log, we have included the relevant code in every single place of
the system code where log is required. Therefore we have
introduced the property code, which was encapsulated in the
aspect, within the original main functionality code; the process
to be followed for the remaining properties would be
analogous. Then, the two created systems are compared.
In our model-driven development we are generating three

types of code: the aspect-oriented one, the policy one and the
SOAP tag-based one. Then we have to determine what type of
evaluation is necessary:

• Concerning the policy code, we are simply generating XML
code to describe the properties according to a proposed
standard. It is known that XML is being used to provide a
homogeneous and neutral description for Web services,
therefore there is no question as to why to use XML instead
of other possible description types at code level.

• Regarding the handlers created to add new SOAP tags to
the message header in the client side and check their value
in the service side, they are implemented in Java, since this
is the final implementation of the system. Thus, there is no
need to evaluate the code itself; moreover, as previously
mentioned, the use of the SOAP header to provide
information related to EFPs or to services’ management is
common practice [14, 19, 21], particularly if we intend not
to include any intrusive code in the main functionality one
[16].

• However, aspect-oriented programming may lead to some
overhead in the applications’ performance. This belief is
probably originated by the first AOP proposals;
nevertheless, AOP weavers, and specifically AspectJ ones,
have evolved considerably and the latter community’s aims
for the performance of their implementation of AspectJ to
be on par with the same functionality hand-coded in Java.
In spite of this assertion, we are going to measure the
performance of our aspect-oriented code to show how it
does not suppose an overhead for the system. Furthermore,
modularity, coupling and some more aspect-related
properties of the system will also be measured.
To evaluate the use of MDA, we must measure how much

code is generated automatically and how much is still
necessary to complete the system’s behaviour. This way, we
are able to measure how much effort we have saved the system
developer by some of the code being generated automatically.
Hence, to make a comparison, we have to consider both the
effect of using MDA and AOP techniques. Tables 1 and 2
describe the metrics that we have used to conduct the
comparison. We have classified the measurement criteria in the
tables into the following categories:

• Separation of concerns metrics (CDC, CDO, CDLOC)
measure the degree to which a single concern is fulfilled in
the system components (classes and aspects), operations
(methods and advices), and lines of code. A low value for
this metric indicates better system modularization.

• Coupling (CIM) measures the strength of dependences
between the elements in the system. Lower coupling values
imply better system modularization.

• Crosscutting degree of aspects (CDA) measures how
much the aspect-oriented implementation encapsulates a
functionality which may affect modules of the system.

• Software size is an essential measurement criterion. LOC
will be used to obtain the total number of lines in both
methods of implementation.

• The ciclomatic complexity number will be used to
measure whether the aspect-oriented implementation
increases or decreases the complexity of our system.

• Performance is used to evaluate the response time of the
system to see whether it is affected by the aspect-oriented
implementation in the performance or not.

TABLE 1. METRIC USED TO EVALUATE IMPLEMENTATION OF EFPS

VIA ASPECTS.

Metric Description

Concern Diffusion over

Components (CDC)

Number of components in which there is

code related to the implementation of the

concern in question [11].

Concern Diffusion over

Operations (CDO)

Number of operations in which there is code

related to the implementation of the concern

in question [11].

Concern Diffusion over
Lines of Code (CDLOC)

Number of switches of concern through the
lines of code [11].

Coupling on Intercepted
Modules (CIM)

Number of modules named in the pointcut
of a specific aspect [7].

Crosscutting Degree of

Aspects (CDA)

Number of modules which may be affected

by an aspect [7].

Lines of code (LOC) Lines of code in the system’s

implementation [7, 11].

Ciclomatic Complexity

Number (CCN)

Possible execution paths to be followed

caused by control flow statements [22].

Performance Response time of the system [22].

TABLE 2. CRITERIA FOR EVALUATING THE USE OF MDA FOR
ASPECTS GENERATION.

Metric Description

Percentage of automated
service implementation

Measure the percentage of code generated
for services implementation.

Percentage of automated
property implementation

Measure the percentage of code generated
for property functionality implementation.

Percentage of automated
property description

Measure the percentage of code generated
for property description.

Percentage of automated

property selection

Measure the percentage of code generated

for optional property selection or when
additional information is required.

We classified the measurement criteria in the tables into the

following categories:

• Separation of concerns metrics (CDC, CDO, CDLOC)
measure the degree to which a single concern is fulfilled in
the system components (classes and aspects), operations
(methods and advices), and lines of code. A smaller number
of elements affected by a concern implies better system
modularization.

• Coupling (CIM) measures the strength of dependences
between the elements in the system. Lower coupling values
imply better modularized of the system.

• Crosscutting degree of aspects (CDA) measures how
much the aspect-oriented implementation encapsulates a
functionality which may affect various modules in our
system.

• Software size is an essential measurement criterion. LOC
will be used to obtain the total number of lines of both
approaches.

• Ciclomatic complexity number will be used to measure
whether the aspect-oriented implementation increases or
decreases the complexity of our system.

• Performance is used to evaluate the response time of the
system to see whether it is affected by the aspect-oriented
implementation in the performance or not.

0

1

2

3

Log(Inter f ace) Log Detai l edInf o Decr ypt i on E ncr ypt i on

C r o s s cu t t in g De g r e e o f A s p e cts

CIM CDA

Figure 3. Crosscutting degree representation.

0

1

2

3

4

5

6

Lo g (Int er f ace) Lo g D et ai led Inf o D ecryp t io n Encryp t io n

S e pa ra tion of Conc e rns M e tr ic s

CDC(OOP) CDC(A OP) CDO(OOP) CDO(A OP) CDLOC(OOP) CDLOC(A OP)

Figure 2. Separation of concerns representation.

VI. MEASUREMENT RESULTS FOR THE CASE STUDY

This section presents the outcome of the case study; all
measurements are done via JavaNCSS [24] and JDepend [25].

A. Aspect-Oriented Metrics

• Separation of Concerns. Figure 2 depicts the separation of
concerns metrics comparing the values for the adhoc and
aspect-oriented implementations of the case study. It can be
seen that concern diffusions are higher in the hardcoded
implementation compared to the implementation according
to our method. Specifically, diffusion over classes,
operations and lines of code is slower when using AOP (i.e.
Log concern appears in 2 classes in the adhoc
implementation compared to 1 class in the AOP). This is
because properties are encapsulated, avoiding references
from the main implementation class of the service to the
side classes which implement the EOP. Therefore, our
measurement confirms that using an AOP implementation
provides a better separation of concerns.

• Coupling and Crosscutting Degree. Figure 3 depicts the
results related to crosscutting in the aspect-oriented
implementation. The results related to coupling, which are
not presented due to space limitations, are the same in both
implementations. This is because a pointcut implies
coupling to the target method (CAE). However, although
coupling is the same for both AOP and OOP
implementations, its direction is different: the main system
functionality is dependent on the extra-functional property
in the OOP implementation; however, when using AOP, the
dependence source is in the property itself, therefore
avoiding any intrusive code mixed with the system’s main
functionality. Furthermore, the measurements in Figure 3
show that coupling to intercepted modules is very low (one
per aspect). This implies low coupling of the aspect
regarding the application and therefore high aspect code
reusability. Moreover, CDA measurements indicate that the
aspects in the system indirectly affect a few more classes
than those referred to in the pointcuts. Therefore, with
regard to coupling we can conclude that low CIM values
and higher CDA values show low coupling and good
crosscutting modularization of the system.

• Software Size. Our measurement has revealed that both
implementations produce roughly the same size systems.
The property code is located in the aspect in the AOP
implementation, while scattered over the application.

• Ciclomatic Complexity. This metric measurement
maintains its value for both implementations in the case of
decryption, encryption and the interface log. However its
value is lower in the aspect-oriented implementation when
detailedInfo is applied. This is due to the optional nature of
the property. If no aspects are included, optional properties
will result in additional complexity. Since complexity
remains in the aspect in the AOP implementation, the
system’s main code remains unchanged.

• Performance. To establish the existence of any overhead
attributed to the adoption of aspects, we have measured the
invocations to the operations in registrationService (Log),
to bringForwardExam in OpportunityExamService (Log
and detailedInfo) and to sendPDF in
preRegistrationService (the invocation is encrypted in the

client and decrypted in the service). Measurements are
carried out on an Intel Pentium Processor at 1.5 GHz with
1GHz RAM. The services have been deployed on the
machine, which also contains the SQL database server and
the client. All invocations have been made through the
localhost. This will not affect our result, as we can assume
that the effect of the net would reduce the difference
between response times in both implementations. The
invocations to services have been made from 1000 to 10000
times, in intervals of 1000. The average response time for
one invocation to each service is calculated as the weighted
arithmetic of all obtained response times –in thousands-
from 1000 to 10000 executions as shown in Table 3.

TABLE 3. AVERAGE RESPONSE TIME (MS).

(Average) log
(Interface)

log +
detailedInfo

encryption+
Decryption

OO 46.64 6041.26 33.27

AO 43.51 6384.98 32.28

AOP Penalty (%) -6.7 5 -0.97

In order to measure response times for RegistrationService,
we have taken into account the three operations in the interface
since Log is applied to all of them. Hence, every measured time
corresponds to one invocation for each service operation. As
shown in the last row of Table 3 the aspect-oriented
implementation improves the average response time by 6.7%.
The differences between the execution rates in the object-
oriented implementation and the aspect-oriented one are below
10%, which in general can be regarded as insignificant [11].

B. Model-Driven Development Measurements
We have also measured the percentage of automatically

generated code to implement various properties on the services.
The percentage of generated code for the services fluctuates
around 40%. We need to take into account that this percentage
of generated code includes the configuration, compiling and
deployment files; thus for larger services the percentage might
decrease. We have also measured the number of code lines of
property implementation and description (not shown due to
space restrictions) separately. In the case of Log we have 100%
of code generation, due to the fact that it is a well-known
property to the system and we can generate the full code from
the properties repository. For detailedInfo we also get a high
percentage of generated code (28.57%); however for
decryption we obtain a low rate (14.8%). For every property
the aspect skeleton is generated.
Regarding the policy description the percentage of generated

code is very high in all cases. This will also depend on the
complexity of the property: domain-specific properties may not
require too many specific data to show and thus these are the
ones where we get a higher rate of generated code. On the
contrary, common properties for which established description
standards are provided (such as encryption) may imply a more
detailed and complex description. In this regard, the more
complex the information to be provided is, the lower rate of
generated code we will get in the policy description.
Finally, 100% of the code necessary to include optional

properties in the client, plus the one that checks whether
optional properties are included in the service are generated, as
well as 100% of code needed to add new information to the
client SOAP header or to retrieve it from the service.

VII. DISCUSSION

The main focus of this paper is to use numerical metrics to
evaluate AOP and MDA. Further advantages of using AOP and
MDA that we come across are as follows.

• Modularity: using the approach outlined in section 2.4, the
implementation of various properties remains separated
from the implementation of the main functionality.

• Encapsulation: as a consequence of the system’s
modularity, various properties are implemented in an
encapsulated way, enhancing re-usability.

• Traceability: also a consequence of the previous
characteristics, systems traceability is maintained along the
development process since any property located in a
stereotype in the PIM is accurately located in an aspect in
the aspect-oriented PSM, in a policy in the policy-based
PSM and in a SOAP tag in the SOAP-tag-based PSM, when
necessary. Moreover, these PSM elements are totally
located in an AspectJ aspect, a WS-Policy description and a
Java SOAP handler in the code, respectively. This process
path can also be followed reversely, from code to PIM.
Therefore our properties are completely traceable through
all stages of the development process.

• Simplicity: in our experience, the transformation in the
model-driven development is simpler if the properties are
not mixed with the main services, since independent
elements can be generated separately.

• Maintainability: since properties are separated from the
main functionality, it is easier to add a new one or to delete
or modify existing ones without affecting the main service
functionality at all.
There are additional metrics regarding AOP which could

have been used, such as Coupling Between Components
(CBC), Deep of Inheritance Tree (DIT) or Lack of Cohesion in
Operations (LCOO) [7, 11, 22]. These metrics have not been
considered in this paper, since they are not relevant to the
implementation of EFPs in the Web services scope.

VIII. CONCLUSIONS AND FUTURE WORK

This paper reports on a case study for evaluating the use of
MDA and AOP techniques in the implementation of extra-
functional properties for Web services. The aim of the paper is
to show the advantages of such techniques by using well-
established measurement metrics. The results obtained with the
applied metrics have provided us with the information required
in the problem statement: the measurements indicate that using
AOP results in better separation of concerns and coupling,
while the decline in the performance of the generated code
resulted from the use of aspects is negligible. Using MDA
techniques results in substantial saving of resources and a
noticeable percentage of automated generated code. In this
sense, we have observed that the system generated by using
AOP and MDA techniques is modular, encapsulated and
traceable. Moreover, using aspects also results in simpler MDA
transformations, as the latter are defined on sub-modules of the
system which are simpler in structure.
It is part of our future goals to generate the full code for a

set of predefined properties, so that no functionality code
would need to be added by the developer and better evaluation
would be obtained from the MDA perspective. Another area

for future work is to include properties dynamically in order to
provide the possibility of adding properties to a deployed
system. This would imply using dynamic aspect-oriented
techniques and therefore an additional evaluation for
performance would be necessary.

IX. ACKNOWLEDGEMENTS

This work has been developed thanks to the support of
MEC under contract TIN2005-09405-C02-02.

REFERENCES

[1] Akehurst, D.H. Boardbar, B., Evans, M., Howells, W.G.J., McDonald-
Maier, K.D. SiTra: Simple Transformations in Java .Proc. ACM/IEEE I.C.

on Model Driven Engineering Languages and Systems, 2006

[2] Bajaj, S., Box, D., Chappeli, D., et al.. Web Services Policy Framework
(WS-Policy), ftp://www6.software.ibm.com/

software/developer/library/ws-policy.pdf, September 2004.

[3] Baresi, L. Guinea, S. Plebani, P. WS-Policy for Service Monitoring.
VLDB Workshop on Technologies for E-Services, Norway, 2005.

[4] Bézivin, J., Hammoudi, S., Lopes, D. et al. An Experiment in Mapping
Web Services to Implementation Platforms. N.R.I. o. Computers: 26, 2004

[5] Cauldwell, P., Chawla, R., Chopra, V., Damschen, G., Dix, et al.: XML

Web Services. Wrox Press (2001)
[6] Alonso, G., Casati, F. Kuno, H. and. Machiraju, V, Web services-

Concepts, Architectures and Applications, Springer-Verlag, 2004

[7] Ceccato M., Tonella, P. Measuring the Effects of Software Aspectization.
Workshop on Aspect Reverse Engineering at the Working Conference on

Reverse Engineering Delft, The Netherlands, November 2004.
[8] Charfi, A., Mezini, M., Using Aspects for Security Engineering of Web
Service Compositions, I.C. on Web Services, Orlando, Florida,, 2005.

[9] Duclos, F., Estublier, J., Morat, P.: Describing and using non functional

aspects in component based applications. I. C. on Aspect-oriented software
development, ACM Press, Enschede, The Netherlands (2002)

[10] Elrad, T., Aksit, M., Kitzales, G., Lieberherr, K., Ossher, H.: Discussing

Aspects of AOP. Communications of the ACM, V44 No. 10, October 2001
[11] García, A., Sant ‘Anna C, Figuereido E.m Uirá K., Lucena, C., von Staa

A.. Modularizing Design Patterns with Aspects: A Quantitative

Study.Transactions on AOSD I. LNCS 3880 pp 36-74, 2006.
[12] Grønmo, R. Skogan, D. Solheim, I. Oldevik, Jon Model-driven Web

Services Development. 2004 IEEE International Conference on e-

Technology, e-Commerce and e-Service (EEE-04), Taipei, Taiwan 2004
[13] Kiczales, G. Aspect-Oriented Programming, ECOOP’97 Conference

proceedings, LNCS 1241, June 1997.

[14] Ortiz G. Integrating Extra-Functional Properties in Model-Driven Web
Service Development. PhD Thesis, University of Extremadura, April 2007.

[15] Ortiz, G. Hernández, J. Clemente, P.J.: How to Deal with Non-Functional

Properties in Web Service Development, I.C. on Web Engineering,
Sydney, Australia, 2005.

[16] Ortiz, G., Leymann, Ff. Combining WS-Policy and Aspect-Oriented

Programming. I.C. on Internet and Web Applications and Services. IEEE
Computer Society Press 0-7695-2522-9/06 2006.

[17] Ortiz, G., Hernandez J. Toward UML profiles for Web Services and their

Extra-Functional Properties. IEEE I C on Web Services, Chicago, 2006.
[18] Röttger, S. Zschaler, S. Model-Driven Development for Non-functional

Properties: Refinement through Model Transformation. LNCS 3273, 2004.

[19]Saltz R., XML.com 2002,
http://www.xml.com/pub/a/ws/2002/07/17/salz.html.

[20] Smith, M., Friese, T. Freisbelen, B. Model Driven Development of

Service-Oriented Grid Applications. I.C. on Internet and Web Applications
and Services. IEEE Computer Society Press 0-7695-2522-9/06 2006.

[21] Verheecke, B., Vanderperren, W, Jonckers, V. Unraveling Crosscutting

Concersn in Web Services Middleware. IEEE Software, V 23 Iss. 1, 2006.
[22] Zhang C. Hans-Arno, J. Quantifying aspects in middleware platforms. I.

C. on Aspect-Oriented Software Development. Boston, 2003.

[23] ATL http://www.inria.fr/rapportsactivite/RA2006/atlas/uid15.html
[24] JavaNCSS http://www.kclee.de/clemens/java/javancss/

[25] JDepend http://www.clarkware.com/software/JDepend.html

[26] Meta-Object Facility http://www.omg.org/mof/

[27] Model Driven Architecture. http://www.omg.org/mda

