
On Querying UML data models with OCL

D.H.Akehurst and B.Bordbar

University of Kent at Canterbury,
Canterbury, Kent, CT2 7NF

{D.H.Akehurst, B.Bordbar}@ukc.ac.uk

Abstract.
UML is the de-facto standard language for Object-Oriented analysis and design
of information systems. Persistent storage and extraction of data in such
systems is supported by databases and query languages. UML sustains many
aspects of software engineering; however, it does not provide explicit facility
for writing queries. It is crucial for any such query language to have, at least,
the expressive power of Relational Algebra, which serves as a benchmark for
evaluating its expressiveness. The combination of UML and OCL can form
queries with the required expressive power. However, certain extensions to
OCL are essential if it is to be used effectively as a Query Language. The
adoption of the ideas presented in this paper will enable query expressions to be
written using OCL, that are elegant and ideally suited for use in conjunction
with UML data models. This technique is illustrated by expressing the UML
equivalent of an example Relational data model and associated query
expressions.

1 Introduction

There is a long-standing approach to data modelling, based on the mathematical
concept of relations. This approach is supported by Entity Relationship diagrams [6]
[21] as a specification language; by relational databases [9] as a means to provide
persistence; and the Standard Query Language (SQL [17]) for querying the data.

More recently the Object-Oriented approach to data modelling has been developed.
Similarly, this is supported by the Unified Modelling Language (UML [1]), OO-
databases [3] [10] and the Object Query Language (OQL [5]).

UML is the OMG's standard for object oriented modelling and has quickly become
the de facto standard for specifying OO systems. A UML diagram (such as a Class
Diagram) is typically not sufficient to define all aspects of the specification.
Therefore, UML provides a textual Object Constraint Language (OCL [1] [23]),
which can be used to express detailed aspects about the modelled system.

OCL was originally designed specifically for expressing constraints about a UML
model. However, its ability to navigate the model and form collections of objects has
lead to attempts to use it as query language [18] [19] [14] [16].

It is well known that in the case of relational databases, in order for a query
language to be useful, it must have the expressive power of a relational algebra [9]
[22]. Hence, it follows that the same must be true for OO databases and their

respective query languages. In this respect, the authors of [16] discuss the expressive
power of OCL, and infer that OCL in isolation is not as expressive as a relational
algebra.

Building upon their approach, this paper makes use of the detailed semantics of
UML and OCL to present an indirect method of forming query expressions. We show
that this method leads to a technique for forming expressions that are as expressive as
those formed using a relational algebra.

The proposed method requires extra UML classes to be added to the model; this
can be cumbersome and resource consuming. Since the UML reference model is
currently undergoing a major revision [2] [8], the final part of the paper takes the
opportunity to propose extensions to OCL, which enable OCL to be used as an ideal
Object-Oriented Query Language.

The rest of this paper is organised as follows: Section 2 discusses the relational
approach to data modelling and provides a definition of a relational algebra (RA).
Section 3 defines the example used throughout the paper. Section 4 discusses the
problems of constructing queries using OCL. Section 5 illustrates a method by which
UML and OCL in conjunction can provide all the functionality required by a query
language. Section 6 proposes some extensions to the OCL core that would enable
OCL query expression to be much more easily formed. Finally, the paper concludes in
section 7 by summarising the work presented.

2 Relational Data Modelling

A long standing technique for modelling data in information systems is to represent
data using a set of tables and relationships between tables. This approach is supported
using Relational Database Management Systems (RDBMS), which manage
computerised implementation of the data, tables and relationships.

One of the major features of an RDMBS is the provision of extensive support for
the manipulation of data. The standard language for expressing the required
manipulations (or queries) is called SQL [17]. The principle behind such query
languages, giving them a sound mathematical foundation, is called Relational Algebra
[9] [22].

A relational algebra (RA) is a set of operators that take relations as their operands
and return a relation as their result. There are eight main operators (defined in [9]),
called: Select; Project; Intersect; Difference; Join; Divide; Union; and Product.
However, these eight are not independent and three (Intersect, Join and Divide) can be
defined in terms of the other five, which are called primitive operators (see [9]).
Consequently, in order for a query language to be considered fully expressive, it must
support as a minimum, the primitive operators [7]: Union, Difference; Product;
Project; and Select. A definition of a relation and these five operators (taken from [9])
is given below:

Relation: Is a mathematical term for table, which is a set of tuples; a relation
with arity k is a set of k-tuples.

Union: Returns a relation containing all tuples that appear in either or both
of two specified relations.

Difference: Returns a relation containing all tuples that appear in the first and
not the second of two specified relations.

Product: Returns a relation containing all possible tuples that are a
combination of two tuples, one from each of two specified relations.

Project: Returns a relation containing all (sub) tuples that remain in a
specified relation after specified attributes have been removed.

Select: Returns a relation containing all tuples from a specified relation that
satisfy a specified condition.

The interested reader is referred to [9] and [22] for further details on relational
algebras.

3 Example

As an example, we use through out the paper a data-model that could form part of a
database used by an educational institution. The model records information regarding
students, courses and teachers, and additionally it relates each student to the courses
they study and each course to the teachers who teach the courses. The model can be
specified in UML as shown in Fig. 1.

Student
name : String
address : String

Course
title : String
code : Integer
details : String

Teacher
name : String
salary : Real

membership teaches
*

* *
*

Fig. 1. Example specified in UML

The data-model shown in Fig. 1 can be mapped to a Relational Database (RDB)
using the technique suggested in [3]. The mapping is formed such that each Class and
each Association forms a Table definition and the tables are related by including the
appropriate foreign keys, as shown in Fig. 2. The keys for each of the tables Student,
Course, and Teacher are respectively named stu_id, crs_id and tch_id.

stu_id name address

Student

stu_id crs_id
membership

crs_id title code details
Course

tch_id name salary

Teacher
crs_id tch_id

teaches

Fig. 2. Example expressed as an RDB

Using this model, assume that there is a requirement to provide a list that shows
which students are taught by which teachers, irrespective of which course.

With respect to the RDB definition, the required list of teachers and students can
be generated using an SQL statement as follows:

SELECT DISTINCT s.name, t.name
FROM Student s, Teachers t, membership m, teaches ts
WHERE t.tch_id = ts.tch_id
AND ts.crs_id = m.crs_id
AND m.stu_id = s.stu_id;

(1)

This Query produces a table showing the names of each teacher and student pair. If
we subsequently required more information regarding either the teacher or student in
any particular pairing, the SQL statement would need to be changed to include the
additional information.

Ideally, we would like the list to contain the pairs of teacher and student objects,
rather than just a list containing pairs of their names. Thus, any requirement for
additional information (about teachers or students) can be navigated to, from the
results of the query, rather than having to alter the specification of the query to return
the additional information.

4 OCL as a Query Language (QL)

Integrating OO models of data into RDBMS is state of the art in software
development. While SQL serves as a query language in RDBMS, OQL [5], the most
famous query language for object databases, does not have a precise semantics.
Although there are many variations, there is no fully accepted equivalent to SQL for
querying an OO data model.

Blaha and Premerlani [3] introduce the Object Navigation Notation (ONN) for
navigation of OMT [20] models (a predecessor to UML). UML has instead OCL,
which in addition to being useful as a navigation and constraint language poses a
natural choice for use in making queries on the model.

Work such as [11] shows how OCL, when used to specify integrity constraints
(well-formedness rules) on the model, can be mapped to the equivalent SQL for the
specification of integrity constraints on the tables of an RDB. Their work shows how
each OCL language construct can be mapped to an equivalent declarative SQL
statement. Their continuing work in [12] discusses the provision of tool support for
their approach.

In order for OCL to be considered a fully expressive QL, we must be able to
translate any SQL statement into an equivalent OCL expression.

The authors of [14] point out certain obstacles regarding the use of OCL as a QL.
In particular they recognise that most Object-Oriented modelling environments that
include a QL, provide as a basic type a facility for structured aggregation (such as a
tuple or “struct”) and give as examples [4], [13] and [15]. As it stands, OCL does not
provide such a feature.

Mandel and Cengarle’s work [16] explicitly addresses the expressiveness of OCL
in the context of its use as a query language. They conclude that OCL is not
expressive enough to define all of the operations required by a relational algebra and
hence it does not form an adequate query language.

As it stands, OCL supports three out of the five required RA operations. Union,
Difference, and Select are all supported directly by operations defined on the OCL
collection types. However, the operations Product (or Cartesian Product) and Project
are not supported, and cannot be supported as they directly require a facility for
structured aggregation or a notion of tuples (see [14]).

5 UML and OCL as a Query Language

Based on the semantics of UML, in this section we demonstrate the UML and OCL
together can form expressions with the functionality of the RA operators. The key is
to provide the concept of a tuple.

 The following subsections start by explaining a way of supporting the notion of an
n-tuple using the UML concept of AssociationClass and n-ary Association. This is
followed by an explanation of how to use the concept to provide the functionality of
the Product and Project operations. The section concludes by illustrating that the
approach enables the expression of our example query.

5.1 LinkObjects as Tuples

As illustrated by an extract of the UML meta-model [1] shown in Fig. 3. An instance
of an Association is called a Link and is defined by the UML standard to be a tuple of
object references. Dually, the instance of an AssociationClass is called a LinkObject.
The object references are modelled within the UML meta-model as LinkEnds and
each Link contains an ordered list of LinkEnds.

Object

Class

Association

Link
*

+association1

*
LinkEnd2..*1

+connection

2..*
{ordered}

1

AssociationEnd2..*1

+connection
2..*

{ordered}
1

1

*

+associationEnd 1

*

Classifier1*

+type

1*

Instance1*
+instance

1*

1..*

*

+classifier 1..*

*

LinkObject

AssociationClass

Fig. 3. Extract from the UML meta-model showing AssociationClass and LinkObject

Given this definition of the meta-model, the concept of a LinkObject can be used
to represent a tuple of other objects. The relationship between the elements
(coordinates) of the tuple is expressed by the Link and the object representing the
tuple, is the connected LinkObject. Fig. 4a illustrates an object diagram showing three
objects – a, b and c – that are involved in the tuple (a,b,c).

a

b

c

(a,b,c)

A

B

C

ABC

(a) (b)

*
*

*

Fig. 4. Class and instance specification of a tuple.

The appropriate class specification defining a type for the tuple object can be given
using an AssociationClass as shown in Fig. 4b. The multiplicity of the
AssociationEnds is defined as ‘*’ to allow each involved object to partake in any
number of tuples.

 The above describes support for 3-tuples; the approach is extensible, supporting n-
tuples with n-ary associations for any n.

An issue to consider at this point, is how to determine the ordering of a tuple; for
example, is the first co-ordinate of the tuple of type A, B or C? There is nothing
within the notation for n-ary associations that indicates the ordering of its ends, even
though the UML meta-model does define that the ends are ordered. Generally, this is
not a problem as each end is uniquely named and these names are used within OCL
expressions to navigate to the co-ordinate objects rather than an index number.

5.2 Cartesian Product using UM L and OCL

The above approach describes how to support tuples using the UML concept of a
Link. In this subsection, we present an indirect method for providing the functionality
of the Product operator over three sets. In a similar way, one can support the operation
over n sets for any value of n.

By definition, the product of three sets S, T and U is the set of all tuples (s,t,u) such
that s is in S, t is in T and u is in U.

Since OCL is a side effect free language an OCL expression cannot create new
objects. Thus, the result of the Product operation must be formed by selecting
appropriate tuples from a set in which they already exist.

The only way to ensure that such a set exists is to constrain the model as a whole.
For the model shown in Fig. 4b, containing classes A, B, C and ABC, the following
constraint is sufficient:

context ABC inv:

ABC.allInstances->size = A.allInstances->size *
B.allInstances->size *
C.allInstances->size

(2)

Strictly speaking, this constraint could be placed anywhere inside the UML model,
it constrains the instantiation of the model as a whole, rather than specifically
constraining the class ABC; however, we use class ABC as a convenient placeholder.
It should be noted that, since we are dealing with models of data, at any fixed point in
time there are a finite number of instances of each class, and hence the numerical
values in constraint (2) are finite.

The semantics of UML and this constraint result in a model definition, for which
the instances of class ABC correspond to the Cartesian Product of the instances of A,
B and C; i.e.:

ABC.allInstances = A.allInstances x
B.allInstances x
C.allinstances

(3)

To see this, notice that the Left Hand Side (LHS) of (3) is a subset of its Right
Hand Side (RHS). Each ABC object is a LinkObject connecting A, B and C objects
and we have proposed (in the previous subsection) that a Link Object is equivalent to
a tuple, so it follows that the LHS ⊂ RHS.

The UML standard [1, p2-94] states that “There are not two Links of the same
Association which connects the same set of Instances in the same way.” Due to
constraint (2) the LHS and RHS have the same finite number of elements. Since there
cannot be two identical instances of ABC the LHS = RHS in equation (3).

A Cartesian Product between two arbitrary Sets of objects can be formed by
selecting appropriate instances from the Set of allInstances of an AssociationClass
defined in this way.

5.3 Project using UML and OCL

The previous section explained our method for the creation of Cartesian Products. We
now build on this to define a method of support for the Project operation. Again, we
explain our approach for three classes and projection over 3-tuples, but it is extensible
to the general case for n-tuples.

As defined in [16], for a Binary Association (Pair or 2-tuple), the project function
must return either the first or second co-ordinates, by simple navigation. The difficult
issue with Project occurs when we consider tuples with more than two co-ordinates.

Consider three classes A, B, C and the Cartesian Product of their instances as
represented by AssociationClass ABC (Fig. 4b). Formally, a projection, proj1,3 maps a
tuple (a,b,c) into a 2-tuple (a,c). To implement the operation proj1,3 there are two
issues to address:

1. The AssociationClass that provides a type for the tuple (a,c), and whose
instances represent the Cartesian Product of A and C.

2. The specification of the function that maps (a,b,c) onto (a,c).
Following the method defined in the previous section, we must add the

AssociaitonClass AC to the model, relating classes A and C, as shown in Fig. 5.

A

B

C

ABC

*
*

*

AC

**

Fig. 5. Extended class specification

The project operation can be subsequently defined as follows:
context tuple : ABC

tuple->project_a_c : AC
pre: OclType.allInstances->exists(t | t = AC)
post: result = AC.allInstances->select(tup |

tup.a = tuple.a and tup.c = tuple.c))

(4)

The pre condition of the operation ensures that the class AC has been defined. The
post condition defines the result to be the tuple of type AC that has its co-ordinates ‘a’
and ‘c’ equal to the ‘a’ and ‘c’ co-ordinates of this tuple. (Remember that the
elements of a LinkObject, the tuple, are navigated to via the rolenames of the
Association, rather than by their index value.)

This explains a method for indirectly supporting a project function that maps 3-
tuples of type ABC onto 2-tuples consisting of the first and third co-ordinates. In a
similar way, we can support creation of proj2,3 and proj1,2, which involve associating
B to C and A to B respectively.

There are also project functions, proj1, proj2 and proj3, which project a tuple to its
individual co-ordinates. These do not require the creation of new links and are
supported simply by the navigation semantics of the OCL ‘.’ operator.

Performing a project operation over a set of tuples can be easily supported by
making use of the collect operation defined for OCL collections.

5.4 Solution to the Example Problem

Our example of section 3 requires an expression that results in a list, relating teachers
to their pupils. In this subsection, we use our method to specify the query expression
corresponding to the SQL statement (1).

To achieve such an expression, we first modify the original data model (Fig. 1) to
include a new class, TeacherxStudent, as shown in Fig. 6.

TeacherxStudent

*
*

inv: TeacherxStudent.allInstances->size =
 Teacher.allInstances->size * Student.allInstances->size

Student
name : String
address : String

Course
title : String
code : Integer
details : String

Teacher
name : String
salary : Real

membership teaches
*

* *
*

Fig. 6. Extensions to example data model

This AssociationClass specifies a class for tuples of teacher and student objects and
defines each member of the Cartesian Product of Student and Teacher objects.

The required list of (teacher, student) pairs can be subsequently specified using an
OCL expression as follows:

Teacher.allInstances->collect(t |
t.course.student->collect(s |
TeacherxStudent.allInstances->select(ts |
ts.teacher = t and
ts.student = s)))->asSet

(5)

The expression defines two nested collect operations, which iterate over each
required pair of teacher and student objects. These are used to select the appropriate
tuple object from the instances of TeacherxStudent.

This OCL query provides a collection (list) of student and teacher pairs, rather than
the pairing of name strings provided by the SQL statement defined earlier. Although
it has some complexity, it is functionally similar to the SQL, and we do not need to
explicitly state how the data items are joined.

However, the complexity of the model rises as a result of defining additional
classes within the UML specification. Ideally, a mechanism should be provided which
enables queries to be specified that do not require additional model elements to be
defined. The following section proposes essential extensions to the OCL language and
pre-defined types that will enable such query expressions to be formed.

6 Extending OCL to be a fully expressive Query Language

In the previous section, we presented our indirect method for using OCL as a query
language. However the method requires new components to be added to the original
data model; this is cumbersome and undesirable. The approach relies heavily on the
use of the allInstances operation, which is expensive to implement and controversial
with respect to its use on classes such as String and Integer.

To be able to form OCL query expressions that are more seamlessly useable within
the context of a UML model, a Tuple type needs to be added to the pre-defined types
of the OCL language. This can be easily achieved in a similar manner to the
Collection classes.

The following subsections define an appropriate Tuple type and show how
instances can be defined as part of an OCL expression. This is in line with the current
language semantics, which does allow new instances of collection classes to be
specified.

Based on this new OCL Tuple type, the operations Product and Project are defined
as operations on (respectively) the Collection and Tuple types. Finally, we show how
the provision of this type enables the example query to be easily written as an OCL
expression.

6.1 Creating Tuples in OCL

 A generic type for tuple objects can be provided using a ParameterisedClass, in a
very similar way to the Collection types (Set, Sequence and Bag) already defined. A
simple Tuple Class could be defined such that its co-ordinate members are all of the
root type OclAny; all tuples would thus belong to the set of allInstances of that class.

It would be useful to enable a distinction to be made between tuples of different
sizes and between tuples with co-ordinate members of differing types. The concept of
a ParameterisedClass can be used to provide a type for tuples that enables this
distinction to be made. Fig. 7 illustrates a UML definition of this Tuple Class.

Tuple
types : Sequence(OclType)

OclAny
2..*

coordinates

{ordered}

Fig. 7. Definition of a Generic Tuple Class

To support the Project and Product operators, it is necessary to be able to create
tuple objects within an OCL expression. Unfortunately, this directly contravenes the
OCL policy of no side effects. However, an OCL expression can include the explicit
creation of a Collection object. This is not only described as possible in the UML
version 1.3 standard, it is also used as part of the definition of the OCL collection
classes, for example, as taken from the definition of subSequence :

Sequence{lower..upper}->forAll(index | ... (6)

Thus, we propose that the semantics should support the creation of Tuple objects in
a similar manner, as follows:

Tuple { a, b, c } (7)

Semantically, the types for each of the co-ordinate members of a Tuple created in
this way, can be deduced from the types of the objects used to instantiate it. Thus, the
tuple instantiated in equation (7) can be deduced to be an instance of a specific tuple
type Tuple(Sequence(A,B,C)), assuming that objects a, b and c are instances of
classes A, B and C.

6.2 Definition of a Product Operation

Given the provision of this Tuple type, providing a Product operation is an easy
addition to the Collection classes, defined as follows:

context c1:Collection(T1)

c1->product(c2:Collection(T2))
: Collection(Tuple(Sequence{T1,T2}))

post: result = c1->collect(t1 |
c2-> collect(t2 |
Tuple {t1,t2}))

(8)

The Cartesian Product between more than two sets can be formed from multiple
nested products of two sets. Semantically, an extension to the product operation could
be defined, which flattens out nested 2-Tuples into appropriate n-Tuples. For
example, given three sets S, T and U, the product:

S.product(T).product(U) (9)

gives 3-tuples of the form ((s,t), u). The extension proposes that this be flattened to
a tuple of the form (s, t, u).

6.3 Definition of a Project operat ion

The Project operator can be supported by providing appropriate operations on the
Tuple class itself. The Project operation extracts specific elements from its target
tuple. Extraction of single elements should result in that element and extraction of
multiple elements should result in another tuple, containing the required elements.

This functionality is provided as two separate project operations, defined as
follows:

context tuple : Tuple(types : Sequence(OclType))

tuple->project(index : Integer) : types->at(index)
post: result = tuple.coordinates.at(index)

tuple->project(indices: Sequence(Integer))
: Tuple(indices->collect(i|types.at(i)))

pre: indices->size > 1
post: result =

Tuple { indices->collect(i| tuple.project(i)) }

(10)

The first of these operations takes a single index value as a parameter and returns
the object contained at the co-ordinate position of the requested index. The second
takes a sequence of indices as a parameter and returns a new Tuple that is formed
from the combination of objects at the co-ordinate position of each index in the
parameter.

6.4 Ideal solution for Example Problem

If we provide OCL with the above extension, adding the concept of tuple and the
related operation definitions of product and project, then we can easily write powerful
and concise OCL query expressions.

For example, considering the example of section 3, the required collection of pairs
indicating which students are taught by which teachers, can be formed using the
following OCL expression:

Teacher.allInstances->collect(t |
(Set{t}).product(t.course.student))

(11)

The resulting collection contains the set of tuples formed by collecting the union1,
for each teacher, of all products of a teacher and the student objects navigable to from
it.

This gives the ideal solution of pairs of student and teacher objects. An expression
equivalent to the SQL, giving a collection of pairs of teacher and student names is
specified as follows:

Teacher.allInstances->collect(t |
(Set{t.name}).product(t.course.student.name))

(12)

7 Conclusion

In this paper, we have shown that for OCL to be effectively and elegantly used as a
Query Language, certain extensions are required – primarily the addition of a Tuple
type.

Using as a benchmark the five primitive operators of Relational Algebra, this paper
has shown that the combination of UML and OCL are expressive enough to form
expressions functionally equivalent to those formed using Relational Algebra.

However, since OCL was not originally designed to be a query language, it lacks
certain technical concepts required for writing query expressions, which can be
provided by extending the underlying UML model.

Adding extra components to the underlying model is cumbersome and undesirable
in the context of a query language. To avoid such measures, this paper has proposed
and demonstrated the use of some extensions to OCL that are essential, if it is to be
effectively used as a query language.

 These extensions, which are in line with the existing semantics of OCL, enable us
to write concise queries without modifying the underlying UML model.

Acknowledgement

We would like to thank Stuart Kent and Nigel Dalgliesh for their valuable
comments. The second author wishes to acknowledge the generous support of the
EPSRC project (GR/M69500).

1 Due to the flattening semantics of collect.

References

1. Object Management Group; Unified Modelling Language Specification, version 1.3;
OMG ad/99-06-08 (June 1999); http://www.omg.org.

2. Object Management Group; UML 2.0 RFI; OMG Document ad/99-08-08 (August
1999); http://www.omg.org.

3. M.Blaha, W.Premerlani; Object-Oriented Modeling and Design for Database
Applications; Prentice Hall Inc., ISBN: 0-13-123829-9 (1998).

4. P. Butterworth, A. Otis, J. Stein; The GemStone Object Database Management System;
Communications of the ACM, 34(10) (1991) pp 64 - 77.

5. R. G. G. Cattell; The Object Database Standard: ODMG 2.0; Morgan Kaufmann
Publishers, Inc. (1997).

6. P. P. Chen; The Entity-Relationship Model - Toward a Unified View of Data; ACM
Transactions on Database Systems, 1(1) (1976).

7. E. F. Code; Relational completeness of database sub-languages; In Data Base Systems,
R.Rustin, Ed., Prentice Hall, Englewood Cliffs (1972) pp 65 - 98.

8. S. Cook, A. Kleppe, R.Mitchell, B.Rumpe, J.Warmer, A.Wills; The Amsterdam
Manifesto on OCL; (December 1999); http://www.trireme.com/amsterdam/.

9. C. J. Date; An Introduction to Database Systems (Introduction to Database Systems, 7th
Ed); Addison Wesley Publishing Company, ISBN: 0201385902 (August 1999).

10. C. J. Date, H. Darwin; Foundation for Object/Relational Databases: The Third
Manifesto; Addison Wesley Publishing Company, ISBN: 0201309785 (June 1998).

11. B. Demuth, H. Hussmann; Using UML/OCL Constraints for Relational Database
Design; Proceedings of «UML» ‘99 - The Unified Modelling Language: Beyond the
Standard (October 1999) pp 598 - 613.

12. H. Hussmann, B. Demuth, F. Finger; Modular Architecture for a Toolset Supporting
OCL; Proceedings of «UML» 2000 – The Unified Modeling Language: Advancing the
Standard (October 2000) pp 278 - 293.

13. O. Deux; The O2 System; Communications of the ACM, 34(10) (1991) pp 34-48.
14. M.Gogolla, M.Richters; On Constraints and Queries in UML; Proc. UML'97 Workshop

`The Unified Modeling Language - Technical Aspects and Applications' (1997).
15. C. Lamb, G. Landis, J. Orenstein, D. Weinreib; The ObjectStore Database System.

Communications of the ACM, 34(10) (1991) pp 50 - 63.
16. L. Mandel, M. V. Cengarle; On the Expressive Power of OCL; FM'99 - Formal

Methods, World Congress on Formal Methods in the Development of Computing
Systems, Toulouse, France, Springer LNCS 1708 (September 1999) pp 854 - 874.

17. J. Melton, A. R. Simon; Understanding the New SQL: A Complete Guide; Morgan
Kaufmann Publishers, Inc., ISBN: 1558602453 (1994).

18. Jan Nordén; Bold Executable Model Architecture; (June 2000);
http://www.boldsoft.com/products/whitepapers/index.htm.

19. ModelRun; Boldsoft modelling tool; http://www.boldsoft.com/products/modelrun/.
20. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen; Object-oriented

Modeling and Design; Prentice Hall International Paperback Editions, ISBN:
0136300545 (March 1991).

21. B. Thalheim; Fundamentals of Entity-relationship Modeling; Springer-Verlag Berlin
and Heidelberg GmbH & Co. KG, ISBN: 3540654704 (December 1999).

22. J. D. Ullman; Principles of Database Systems; Pitman Publishing Ltd, ISBN:
0273084763 (1980).

23. J. B. Warmer, A. G. Kleppe; The Object Constraint Language: Precise Modeling With
Uml (Addison-Wesley Object Technology Series); Addison Wesley Publishing
Company; ISBN: 0201379406 (October 1998).

