
Integrated Model-Based Software Development,

Data Access, and Data Migration?

Behzad Bordbar1, Dirk Draheim2

Matthias Horn3, Ina Schulz3, and Gerald Weber4

1 School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK, B.Bordbar@cs.bham.ac.uk

2 Institute of Computer Science, Freie Universität Berlin
Takustr. 9, 14195 Berlin, Germany, draheim@acm.org

3 IMIS Projekt, Condat AG
Alt-Moabit 91d, 10559 Berlin, Germany, {horn,schulz}@condat.de
4 Department of Computer Science, The University of Auckland
38 Princes Street, Auckland 1020, NZ, g.weber@cs.auckland.ac.nz

Abstract. In this paper we describe a framework for robust system
maintenance that addresses specific challenges of data-centric applica-
tions. We show that for data-centric applications, classical simultaneous
roundtrip engineering approaches are not sufficient. Instead we propose
an architecture that is an integrated model-based approach for software
development, database access and data migration. We explain the canon-
ical development process to exploit its features. We explain how the
approach fits into the model-driven architecture vision. We report on ex-
periences with the approach in the IMIS environmental mass database
project.

1 Introduction

It is well-known that the cost of maintenance is the largest share of software
expenditure [6]. Generally, the development of a software product does not fin-
ish by the deployment of the system at the customer site. Far from it, changing
functional/non-functional requirements and discovery of bugs enforce changes
in the system and often leads to restructuring of the initial version of the de-
ployed product. Software development process models tend to underemphasize
the importance of maintenance [33], and only recently, are targeting the ease of
maintenance. One of the seriously overlooked software maintenance issues is the
data migration.

In general, Model Driven Architecture (MDA) [1,?,?] combined with round
trip engineering can assist the maintenance of the system. However, in data-
centric applications, classical simultaneous roundtrip engineering approaches is
not sufficient. This is due to the fact that, the data which is gathered during the
lifetime of the system, must be transported from the old version of the system
to newer versions, i.e. dealing with database reorganization [29].
? Partially granted by the German Research Foundation DFG.

2 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber

Currently, vendors are integrating database mapping facilities into CASE
tools and Integrated Development Environments (IDE) [31]. Such IDEs, al-
though facilitate easier model-based development, but they fail to solve the data
migration problem. Indeed, the data migration is mostly done by hand-coding
the SQL scripts. It is nave to assume that data migration problem is caused as a
result of the use of relational databases. In fact, even the advanced features
of object-relational database management systems [32] for altering database
schemas is not capable of solving the data migration problem. From practi-
cal point of view, relational database technology is here to stay [7]. Moreover,
hand-coding SQL scripts for data migration is tedious and error-prone. In a
model-based scenario with object-relational mapping, there is a further layer of
complexity, as the developer has to understand all details of the object-relational
mapping. Therefore, there is a clear scope for creating a well-defined object-
relational mapping mechanism which allows easier automated upgrade of the
system.

This paper adopts model driven approach to addressing the problem of
combining software maintenance with data migration by integrating a model-
based approach to (i) object-oriented software development and simultaneous
roundtrip engineering, (ii) transparent database access and (iii) data migration.
This results in an architecture that adds a transparent database accessing layer
between application logic and backend. The code for the layers on the backend
side is maintained completely automatically by code generation from the UML
models.

Round trip engineering is carried out at model level, i.e. level L1 of the four-
layered MOF [13] architecture. However, database reorganiusation has to be
carried out at both level L1 and its instance; the database metadata belong to
the model level and the persistent data belong to Level L0. As a result, from the
standpoint of the MDA the paper addresses a highly non-trivial problem. More-
over, we shall introduce novel features like automatic model change detection,
and data migration API generation into our model transformations.

The framework incorporates technology that tightly integrates from scratch
model evolution, programming language type evolution, database schema evolu-
tion and customer data migration [9, 14].

The described framework basically consists of a generator for data migration
APIs. For each combination of a current model and an intended new model a
specialized data migration API is generated. On the one hand the generated
data migration API is intended to be as complete as possible with respect to
automatically inferring a schema mapping from the two models under consider-
ation, on the other hand it provides as many hooks as needed to fully customize
the data migration. With this approach guidance for the implementation of the
data migration is provided, furthermore the customizations can be done on the
level of transparent database access.

We give an outline of our paper now. Our framework realizes a persistent
object-oriented programming environment. Although relational database tech-
nology is employed in the back end, our framework enables us to discuss problems

Model-Based Data Migration 3

of schema evolution and migration of customer data solely on the level of the
object-oriented system model: changes in the object model have a defined foot-
print in the database schema, and existing data is transformed into the new
system accordingly. In Sect.2 we discuss an introductory example of model evo-
lution with respect to persistent data. We describe how we achieved our goals
in Sect. 3. In this paper we take for granted the advantages of transparent
database access and do not delve into a discussion under which circumstances
transparent database access may infringe the best practice of data independency
as provided by mature modern database technology, with, for example, respect
to performance tuning. Actually, our approach of lifting data migration to the
transparent database access level has proven in the IMIS project to stabilize
the development and speed up the development cycles. We report on the IMIS
project and its experiences with our approach in Sect. 4. The paper finishes with
a discussion of related work and a short conclusion in Sects. 5 and 6.

2 The Model Evolution Problem

Figure 1 shows the model evolution of a Company class with an address attribute
and some further attributes. The modified model has a new Address class with
a new street attribute, city attribute and zip attribute. The address attribute
is removed from the Company class. Furthermore there exists an association
between the Company class and the Address class. This way the schema migra-
tion is uniquely defined. However the data migration is more complicated and
depends on the semantics of the changes. In the current example new objects
of Address type have to be created and linked to the correct Company objects,
whereas their attributes have to be computed properly from the old address
attributes.

In a working framework solution the developer must have the capability to
define the data migration based on his or her semantic knowledge about the
information base. However, at the same time the developer should be supported
with respect to canonically given parts of data migration, which can be gen-
erated. In our simple example the framework can assume that the remaining
attributes of the Company class, i.e. the non-address attributes, are intended to
have the same semantics in the new model as in the old model. Based on this as-
sumption the data migration is conceptually just a copying for these attributes.
Of course an elaborated approach has to provide a means to override the default
behavior of such simple data migration parts, too.

3 The Proposed Integrated Approach

3.1 The Solution Framework

In our approach applications are developed by simultaneous roundtrip engineer-
ing of Java programs and UML diagrams. The approach provides transparent

4 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber

address:

“207 Lake Bvd,

Minneapolis,

MN 55455-0436“

···

address:

“205 Hill Street,

Boulder,

CO 80309-0178“

···

aCompany

aCompany

street: “205 Hill Street“

city: “Boulder“

zip: “CO 80309-0178“

street: “207 Lake Bvd“

city: “Minneapolis“

zip: “MN 55455-0436“

aCompany

aCompany

database

reorganisation

Company

address:String
···

Company

···

Address

street:String

city:String

zip:String

model

evolution

anAddress

anAddress

···

···

Fig. 1. Non-trivial data migration.

database access to a relational database and support for data migration. Fig-
ure 2 shows the components of the approach and their interplay. The solution
consists of the following new components, which we have implemented in the
IMIS project – see Sect. 4.1 – and which encompass a total of 90 kLOC of
documented Java code:

– Extensions to the case tool Together:
• Modules for model annotations. The new model annotations allow for

specifying the persistent classes of the model and the typical customiza-
tions needed for object-relational mapping [28].

• Model generator. The so-called model generator creates a model represen-

tation of the annotated UML model that is appropriate as input for the
generic database adaptor and upgrader generator, which are explained
below. In our implementation model representations consists of serial-
ized Java objects. These are stored in files named model.dat in Fig. 2.

– Generic database adaptor. For each concrete model this generic compo-
nent [14] realizes the transparent database access layer for the application.
It exploits the information in the model representation by inspection and
generates the necessary SQL queries.

– Arbitrary SQL query API. Note that our approach offers full-fledge support
of typical mapping tools, i.e., the developer is able to formulate arbitrary
SQL queries to the database that go beyond the canonically generated access
methods. Our approach offers an API for this purpose.

– Upgrader generator. The upgrader generator takes an old model representa-
tion, a new model representation, and an auxiliary property file. It generates
an upgrader program API. Next we explain, how database reorganization is
supported with the upgrader generator mechanism.

Model-Based Data Migration 5

If database reorganization becomes necessary, three steps are undertaken in
our approach: (i) database cloning, (ii) schema evolution, and (iii) data migra-
tion. Please consider the middle tier of Fig. 2:

(i) Database cloning. First a complete copy of the old database is done. This
clone has to be adopted by schema evolution and data migration to fit the new
model.

(ii) Schema evolution. Then the schema of the clone is changed so that it
fits to new model with respect to object-relational mapping. For this purpose
the upgrader generator compares the new model with the old model and detects
changes. This means that the upgrader generator constructs a schema morphism
along the lines of a defined set of rules. For example classes with same name are
identified in both models. Based on that, the upgrader generator can detect,
for example, new attributes of a class. Of course, entirely new classes can be
detected as well as deleted classes. Sometimes the default mechanism must be
customized. This can be done by the developer via property files, where he or she
partly defines an own schema morphism that overrides the default morphism.
For example, the developer can define the renaming of a class or attribute. From
the detected and defined changes the upgrader generator generates SQL code
that can modify the database appropriately.

(iii) Data migration. Finally, the data of the old database has to be migrated
to the new database. Now cloning the database earlier pays off. For all classes
that are not affected by the model evolution step data migration is already
completed. For each of the other classes the upgrader generator creates an update
class. All the generated upgrade classes form the upgrader API mentioned above.
For some of the affected classes the upgrader generator cannot generate the
correct default data creation – here the property file mechanism comes into play
again: the developer can, for example, specify the movement of classes in the
class hierarchy, or the movement of an attribute from one class to another. The
generated data migration code reads necessary data in the old database via the
old database adaptor. It sends data for the new database via RMI5 to an inserter
component that writes the data via the new database adaptor into the new
database. The developer can override all generated default data migration code.
In cases, where the upgrader generator cannot guess a solution, data migration
code must be implemented by the developer. Consider our example in Sect. 2: the
upgrade API does not possess default behavior for the creation of new Address
objects – the Address class is entirely new and the splitting of the old address
attribute into the new attributes street, city, and zip is not trivial and must be
provided by the developer.

Our approach targets two objectives with respect to database reorganization:
(i) development speed and robustness and (ii) technical speed:

(i) Development Speed and Robustness. A major part of canonically given
data migration is generated automatically. The developers have to customize
only those parts, for which there semantic knowledge is required. This speeds

5 The chosen RMI mechanism is a technical detail that prevents name conflicts by
employing two different JVMs for the old and the new system.

6 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber

application layer

database adaptor

model

model.dat

Together

database adaptor

old database

upgrader

generator

model.dat

property

files
SQL for

schema

modification

upgrader

inserter

database adaptor

upgrader API

+ extra annotation modules

+ model-generator

�

new system

data migration

old system

new application

�

�

RMI

c
lo

n
in

g

Fig. 2. The proposed integrated approach. Developer activity is denoted by a little
icon. Developers work with a simultaneous round trip engineering tool. If database
reorganization becomes necessary they are supported by the upgrader generator that
compares the new model and the old model, detects changes and generates a data
migration program with customizable hooks – the upgrader API. The developer can
influence the upgrader generator with property files.

Model-Based Data Migration 7

up the development needed and therefore stabilizes the database reorganization
process. Furthermore, the customizations are done on the level of transparent

database access, i.e., on the application programming level, and the developers
don’t have to be aware of the details of the underlying object-relational mapping
all the time during data migration customization.

(ii) Technical Speed. The first step in the database reorganization process is
the schema migration and there would several ways to do it. One way would be
the creation of a new and empty schema. This could be done easily by generating
DDL statements from the object model. But creating an empty schema implies
that a lot of unchanged data has to be moved from the old to the new schema.
The more efficient way is to keep the data in the original schema. The schema is
to be modified step by step until the structure fits the new model requirements
by dropping, adding and modifying tables or columns etc. Only tables with
relations to model changes are touched. However, modifying the existing data
has also its pitfalls. Some object transformation processes may need information
of other objects and these objects may be subject to change, too. With a copy
it is not necessary to take dependencies into account, because every information
is still accessible in the old schema. The most efficient and easiest way is to
duplicate the database – our tests have shown that it is at least twenty times
faster as an SQL based transport solution.

In the past, all constraints and indices were deactivated during evolution.
This step was necessary in order to avoid that the evolution process is infringed
while it is processing the objects class by class. Since most of the tables and
therewith most of the constraints and indices are not involved in the evolution
process, a more sophisticated treatment of constraints and indices was developed.
This way, in the future it will be possible to deactivate only the few constraints
that really interfere with the upgrade process.

IMIS

original

dump

original

dump

current

baseline

dump

A

B

C

domain data application data

current

baseline

evolution

current

baseline

evolution

database

dumps

development

database

schemas

integration of

model changes

into baseline

evolution

A

evolution

B

developer

workspace

setup

imp

Fig. 3. Development process.

8 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber

3.2 The Development Process

At regular intervals, in particular after each installation, the database is dumped
from the productive system for all used schemas – consider Fig. 3. The dumps
are used as a basis for database schema setup during development. During de-
velopment the same evolution mechanism is used that is used for installing a
new software version on the productive system. Upgrader code always has to be
integrated into the project workspace together with the appropriate model and
code changes. This way, the consistency of model, application code and evolu-
tion code is enforced. To allow faster setup times, the number of data records is
reduced in the dumps that are used during development.

During integration of model changes into the project workspace the com-
monly used database schema is setup with the new upgrader. During setup of
a developer workspace the schema is not affected. In order to prevent that the
work of other developers is interfered during setup of a new schema, a second
database instance is used for the new schema. Developers can decide on there
own when to switch to the new schema.

The developer schemas (developers A and B) are set up using the evolution
that corresponds to the model changes the developer has done so far. If no model
changes have been done by a developer (developer C) a dump of repository data
that has already passed through the evolution in the current project workspace is
used for developer workspace setup. This way, most of the developers can setup
there workspace by importing a database dump. As soon as a developer inte-
grates a model change of the repository data model into the project workspace
the current workspace dump is updated using the evolution code just integrated.

At customer site two systems are installed – see Fig. 4. The productive system
is accompanied by a so called reference system which is used for testing purposes.
The evolution process is used in two cases: (i) installation of a new release for
testing onto the reference system; and (ii) installation of a new release onto
the productive system. In addition to the target database, the evolution process
always uses a second database as source for the upgrader.

productive

data base

test

data base

evolution

copy

evolution

test system

installation

productive

installation

Fig. 4. Installation at the customer site

Model-Based Data Migration 9

3.3 On the Integrated Approach and Model Driven Architecture

IMIS draws on the vision promoted by the MDA [30]. In the MDA, the platform
independent model (PIM), which is a high-level abstraction independent of any
technology and platform specific model (PSM), which is the transformation of
the PIM into a specific platform. In our approach, the PIM is captured as a
UML model in Together CASE tool, which is transferred by the model generator
component to a model.dat file, which is just another way of representing the PIM.
This file is transformed into code consisting of Java, SQL DDL and eventually
SQL DML.

Our approach is based on marking PIMs and direct transformation to code –
see Sects. 3.5. and 3.7 of the MDA Guide [21]. However, it is noticeable that the
transformation in our approach takes a special shape. Simultaneous roundtrip
engineering keeps the model and the code in synch by continuous tool support.
Furthermore, the transformation explicitly makes use of an old PIM (and for
technical speed even of an old implementation), because there are parts in the
generated code, i.e., schema manipulating SQL code and customized Java data
migration code, that depends on a notion of PIM model difference. As a result,
the transformation takes into account the information layer, i.e., existing data,
on a conceptual level.

There are different forms of model transformation in the MDA [8, 16]. Round
trip engineering points out an important class of transformations, too. There
are two main advantages in using this kind of transformations. Firstly, code
may include platform specific information added by the developer. In particular,
it may include part of the code that cannot be created automatically. A rigid
following of an ad-hoc MDA scenario would imply that either we have to discard
such information, i.e., we (i) have to re-include them into the code generated
from the new model – which is wasteful and error-prone – or (ii) we have to
reverse engineer [5] the entire code to create a system which mirrors the old
system – which is impractical and can create possible inconsistencies.

In our approach, it is particularly important that the new and the old system
share persistent data. The model goes through evolution, but the persistent data
is cloned and adopted under the umbrella of a defined model transformation. A
conventional MDA model transformation remains far from data, even if it trans-
fers the DB schema across. There is no defined coupling between the persistent
data and the evolution from the old model to the new one.

4 Experiences with the Integrated Approach

4.1 The IMIS System

Following the nuclear accident in Chernobyl the German federal government
established a program targeting radiation protection and precaution in 1986.
By the end of 1986 the respective federal law StrVG (Strahlenschutz Vorsorge
Gesetz) was adopted. Besides other rules the StrVG contains guidelines for the

10 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber

installation of an information system for monitoring and prediction of radioac-
tivity in the environment. The first version of IMIS was developed between 1989
and 1993 and it has been in use till March 2005. In this paper we describe the
entirely new IMIS system, which has been developed by Condat AG in Berlin,
Germany. IMIS gathers environmental data, for example, from air, sea, lakes,
ground water, plants, soil, food, feed, sewage, waste. IMIS has the following
characteristics:

– 2000 measurement stations;
– more than 160 deployed clients;
– 60 client locations;
– 7 days and 24 hours operation.

From the end user’s viewpoint the IMIS system has to be understood as
a collection of rather loosely coupled client applications that together provide
a broad range of features: data collection (automatic and manual), data ex-
port, data import (in particular from the forecast system PARK), data analysis
(browsing with different views, domain specific visualization capabilities), doc-
ument generation (automatic and manual), document retrieval.

The IMIS Data. The IMIS database consists of four schemas, i.e. IMIS, a
repository schema, IMISGEO and PARK. The schema IMIS consists of approxi-
mately 150 tables and basically contains the radioactivity data, master data with
references to radioactivity data and data about samples. A sample is a portion
of material that has been collected for radiological measurements. A sample is
described by various attributes, e.g. the kind of collected material. The loca-
tion from where a sample has been taken can be specified by coordinates or by
an administrative district. Each sample is used for a number of measurements
using various methods, e.g. alpha spectrometry. A measurement result consists
of a number of readings, e.g. nuclides U-234 or U-235. The repository schema
consists of approximately 300 tables and contains configuration and setting data
as well as dynamic data not related directly to radioactivity data. The configu-
ration data is used to customize the various functions of IMIS, e.g. the selection
and representation component. For instance, stored messages or journals of auto-
matic processes belong to the dynamic data stored in the repository schema. The
schema IMISGEO contains geographical data, e.g. maps for spatial evaluations.
This schema is not covered by the evolution mechanism described in this paper.
The schema PARK contains prognosis data computed by the external forecast
system PARK. The PARK subsystem is only used in emergency mode. PARK
prognosis data has a comparatively short lifetime, therefore data migration is
not necessary for this schema. It can be emptied prior to schema evolution.

System Architecture and Configuration. The system architecture of the IMIS
system is depicted in Figure 5. A central Oracle9i database stores the data for
evaluation and further processing. Configuration data for the different functions
of IMIS is stored in the same database instance. It is running on a Sun V880
high availability cluster server consisting of two nodes. For data storage two Sun
T3 storage subsystems are used. Server and communication processes are hosted

Model-Based Data Migration 11

server

application

logic

document

management

system

job

batch

processing

client tier

application server cluster

PARK

system

PARK

controller

database cluster

FTP

server

measurement stations

Fig. 5. The IMIS Integrated Measurement and Information System.

on four Sun Fire 280 application servers. They are redundant and can replace
each other in case of failure. All servers are located at the German federal office
for radiation protection BfS (Bundesamt für Strahlenschutz) in Munich. PCs are
used as client systems. The client software follows a straightforward fat client
approach. While most of the clients are connected via ISDN to the server LAN,
the clients located on site in Munich are connected directly via Ethernet. Most of
the new data that is stored into the IMIS database stems from the measurement
stations. These provide data by uploading it to an ftp server. From there the
data is written by bulk data transfers, in normal operation mode on a daily basis
and on a two hour basis in emergency operation mode. Further data is stored
into the database by the external PARK system through the PARK controller.
Further few data is entered manually by the user. Up to exceptions all the data
stored in the IMIS system is long-lived, almost all the data stays unchanged.
There is no heavy transaction load on the IMIS system. IMIS is estimated to
store data about approximately one million measurements per year - this is
equivalent to several million records. This leads to a forecast of approximately
50 GB measurement data after 10 years – if certain data transforms become
necessary due to changing requirements, e.g. for reasons of analytical processing,
the actual needed database size has to be reestimated.

4.2 Usage of the Integrated Approach in the IMIS Project

The new IMIS has been installed in a preliminary version in October 2003 and
was used for continuous test operation until November 2004. At this point in
time the system was upgraded to the final version using the upgrade technique
described here for the first time in an productive environment. In February 2005

12 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber

an improved and optimized update was installed, which officially substituted
the old IMIS system on April 1st 2005. The data stock has continuously evolved
during the test period from October 2003 till February 2005 and was migrated
to each new version with the evolution technique described here.

Figure 6 shows some key figures for both major evolution steps. For each
installation the total number of data records in the database, the number of
model changes and the quantity of objects that were actually affected by data
migration are given.

IMIS

repository

14.1M

8.5M

20.8M

20.1M 29.3M

classes created/deleted 28 9

attributes/associations created/deleted 69 23

objects updated/inserted ~ 4700 ~ 3600

associations updated/inserted ~ 270 ~ 1300

total number of data records

model changes (oo)

data modifications

11-22-04 02-26-05

number of tables

IMIS

repository

134

278 280

152

279

152

tables created/deleted 32 5

columns created/deleted/modified 87 33

model changes (relational)

6.0M

Fig. 6. Results of IMIS tool support for data migration.

Besides these figures we gained the following experiences:

– The actual evolution step, which is copying objects between the old and
the new database, takes only three to five minutes on our target hardware.
Therefore the mechanisms that has been implemented to reduce the necessity
of object copying can be considered as working.

– The usage of evolution code during development leads to a reliable data
migration at customer site. We encountered no data corruption or misses
caused by evolution.

– Both uses of the evolution technique performed on the real system has shown
that auxiliary steps that accompany the actual evolution are much more time
consuming.

• Dump importing was rather costly and took up to three hours. Currently
we change the database cloning step to use the data backup and restore
routines of the Oracle recovery manager to copy the old content between
the databases.

Model-Based Data Migration 13

– Most of the model changes are more or less trivial like attribute insertion
or deletion. Changes that require one of the more sophisticated evolution
techniques offered by our framework are rather seldom.

– However, the offered sophisticated techniques are particularly useful for com-
plex model changes. For example, during the last installation a new table
was created that normalizes a set of three columns that were contained in
two other tables before. The new table was filled and the attribute columns
were replaced by foreign keys.

5 Related Work

ORION [15, 4] is an object-oriented database. It provides a solution to data mi-
gration based on dynamic schema evolution that targets the physical level. It is
possible to change the schema in a deployed instance of the ORION database.
The ORION data migration mechanism is adaptional. This means, that data and
application code is adopted to a new model in the evolution cycle. The TSE [25]
solution never deletes parts of the defining model. Schema versioning is based
on a view mechanism and all changes, i.e., in particular deletes, are recorded
in view changes. Schema versioning [27] is combined with an adaptional mech-
anism in the O2 [12] system. O2 minimizes needed application reconstructions.
OTGen [18] is based on a generator for data migration programs. Input to the
generator is a declarative definition of an object-relational mapping. The succes-
sor of OTGen is the Tess [17] system. The Tess generator also takes into account
an existing old schema so that it can generate an initial schema mapping itself.
Clio [23, 22] is an exemplary system for automatic schema matching [26], which
is supported by a correspondence engine. The mapping generator of Clio gets
source and target schemas as input.

The analysis in [20] clarifies the relationship between data migration and
model evolution, given a scenario with a relational schema and a semantic data
model. The approach in [3] succeeds in representing relational views in OCL,
whereas [19] discusses extensions to UML for database design taking into account
the object-relational features of modern database technology. [2] proves that the
UML has the expressive power of the relational algebra and it is possible to
use OCL as a query language. The approach in [24] shows that it is possible to
specify consistencies for legacy data sources in OCL.

6 Conclusion

A round-trip engineering can play the role of an integrated development en-
vironment. If cohesion in work product management is the goal [11] support
for object-relational mapping should be integrated into each CASE tool that
is used in a typical multi-tier setting. Providing a transparent database access
layer clearly falls into the area of generative programming and has to deal with
the intrinsic questions of this domain like generator type safety [10]. Improving

14 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber

schema evolution and data migration with respect to an object-relational map-
ping has subtle issues, because object-relational mapping is a practical challenge
on its own.

If an MDA tool does not support data migration it stops supporting the
developer of a data-centric application adequately after the first version of the
system has been deployed at the customer site.

References

1.

2. David H. Akehurst and B. Bordbar. On querying UML data models with OCL.
In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools. 4th International Conference,
Toronto, Canada, October 2001, Proceedings, volume 2185 of LNCS, pages 91–103.
Springer, 2001.

3. Herman Balsters. Modelling Database Views with Derived Classes in the
UML/OCL-Framework. In UML, pages 295–309, 2003.

4. Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Semantics and Im-
plementation of Schema Evolution in Object-Oriented Databases. ACM SIGMOD
Record, 15(4), February 1987.

5. Elliot J. Chikofsky and James H. Cross. Reverse Engineering and Design Recovery:
A Taxonomy. IEEE Software, pages 13–17, January 1990.

6. Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using Metrics to Evalu-
ate Software System Maintainability. IEEE Computer, 27(8):44–49, August 1994.

7. Graham Colleen. DBMS Software Market: Flat but Not Calm, Dataquest Alert.
Gartner Group, May 2002.

8. Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation
Approaches. In 2nd OOPSLA Workshop on Generative Techniques in the context
of Model Driven Architecture, 2003.

9. Dirk Draheim, Matthias Horn, and Ina Schulz. The Schema Evolution and Data
Migration Framework of the Environmental Mass Database IMIS. In Proceedings of
SSDBM 2004 - 16th International Conference on Scientific and Statistical Database
Management. IEEE Press, 2004.

10. Dirk Draheim, Christof Lutteroth, and Gerald Weber. Generative Programming
for C#. ACM SIGPLAN Notices, to appear.

11. Dirk Draheim and Gerald Weber. Form-Oriented Analysis - A New Methodology
to Model Form-Based Applications. Springer, October 2004.

12. Fabrizio Ferrandina and Sven-Eric Lautermann. An Integrated Approach to
Schema Evolution for Object Databases. In 3rd International Conference on
Object-Oriented Information Systems, pages 280–294. Springer, December 1996.

13. Linda Heaton. Meta Object Facility (MOF) Specification 1.4. Technical Report
formal/02-04-03, Object Managment Group, 2003.

14. M. Horn, V. Triestram, and J. van Nouhuys. Data Evaluation Using the Generic
Selection Component of the New IMIS System. In EnviroInfo 2003 - 17th Inter-
national Conference Informatics for Environmental Protection. Metropolis, 2003.

15. J.Banerjee, H. Chou, J.Garza, W.Kim, D.Woelk, and N.Ballou. Data Model Issues
for Object-Oriented Applications. ACM Transactions on Information Systems,
5(1), January 1987.

Model-Based Data Migration 15

16. I. Kurtev and K. van den Berg. Unifying Approach for Model Transformations in
the MOF Metamodeling Architecture. In 1st European MDA Workshop. University
of Twente, March 2004.

17. Barbara Staudt Lerner. A Model for Compound Type Changes Encountered in
Schema Evolution. ACM Transactions on Database Systems, 25(1):83–127, 2000.

18. Barbara Staudt Lerner and A. Nico Habermann. Beyond Schema Evolution to
Database Reorganization. SIGPLAN Notices, 25(10):67–76, 1990.

19. Esperanza Marcos, Belén Vela, and José Maŕıa Cavero. Extending uml for object-
relational database design. In UML, pages 225–239, 2001.

20. Victor M. Markowitz and Johann A. Makowsky. Incremental Reorganization of
Relational Databases. In 13th International Conference on Very Large Data Bases,
pages 127–135. Morgan Kaufmann, 1987.

21. J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Technical Report omg/2003-
06-01, Object Managment Group, 2003.

22. R. J. Miller, L. M. Haas, and M. Hernandez. Schema Mapping as Query Discovery.
In Proceedings of the International Conference on Very Large Data Bases, pages
77–88. Morgan Kaufmann, 2000.

23. Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Lingling Yan,
C. T. Howard Ho, Ronald Fagin, and Lucian Popa. The Clio Project: Manag-
ing Heterogeneity. SIGMOD Record (ACM Special Interest Group on Management
of Data), 30(1):78–83, 2001.

24. Jan Pettersen Nytun and Christian S. Jensen. Modeling and Testing Legacy Data
Consistency Requirements. In UML, pages 341–355, 2003.

25. Young-Gook Ra and Elke A. Rundensteiner. A Transparent Object-Oriented
Schema Change Approach Using View Evolution. In 11th IEEE International
Conference on Data Engineering. IEEE Press, 1995.

26. Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal: Very Large Data Bases, 10:334–350, 2001.

27. J. Roddick. A Survey of Schema Versioning Issues for Database Systems. Infor-
mation and Software Technology, 37(7):383–393, 1995.

28. Devang Shah and Sandra Slaughter. Transforming uml class diagrams into rela-
tional data models. pages 217–236, 2003.

29. Gary H. Sockut and Robert P. Goldberg. Database Reorganization - Principles
and Practice. ACM Computing Surveys, 11(4):371–395, 1979.

30. Richard Soley. Model Driven Archtitecture, white paper formal/02-04-03, draft
3.2. Object Managment Group, November 2003.

31. Ruth Sterto. White Paper: Persistent Data Development Tools Validate the Model
Driven Architecture Approach. Technical report, Progress Software Corporation,
2004.

32. Can Türker. Schema Evolution in SQL-99 and Commercial (Object-)Relational
DBMS. In 9th International Workshop on Foundations of Models and Languages
for Data and Objects - Database Schema Evolution and Meta-Modeling, volume
2065 of LNCS. Springer, 2000.

33. Edmond VanDoren. Maintenance of Operational Systems - An Overview. In
Software technology Roadmap. Carnegie Mellon Software Engineering Institute,
1997.

