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Abstract

This paper is concerned with Quality of Service (QoS) specification in distributed system
design. The specification and implementation of QoS is increasingly important in distributed
systems due to the need to address questions of performance, particularly for systems in-
volving multimedia. To ensure correct implementation of QoS requirements, statements of
QoS need to be introduced early in the design process, and in terms of design we consider
the use of the Unified Modelling Language (UML), which has quickly become the de facto
standard for object-based designs.

The framework we use for distributed system construction is that provided by the Open
Distributed Processing reference model, and we focus in particular on its computational
viewpoint. The aim of this paper is to construct a UML model of the computational view-
point focusing on the description of QoS within that viewpoint. To specify the QoS aspects
of computational objects in the UML model, we use a real-time logic called QL. In order to
express further constraints on the UML model of the computational viewpoint, we use the
Object Constraint Language (OCL) to express invariants that each instance of our model
must satisfy. The purpose of our UML model of the computational viewpoint is to act as a
template via which specific distributed system designs can be constructed and we illustrate
this with the specification of a lip synchronisation mechanism.

Keywords: Open Distributed Processing; Computational Viewpoint; Quality of Service;
Specification; UML; Object Constraint Language.

1 Introduction

The design of distributed systems is non-trivial and the advent of multimedia systems has in-
creased their complexity. One aspect of this complexity is the central role that questions of
performance play in the specification and implementation of such systems. However, traditional
systems engineering methodologies do not focus on the development of distributed systems, par-
ticularly with respect to issues of performance and their associated Quality of Service (QoS)
constraints.

Therefore, because modern distributed systems are object-based, there has been considerable
interest in the use of the Unified Modelling Language (UML) [36] for the design of complex
distributed systems. Indeed, UML has quickly become a de facto standard for visualising, spec-
ifying, designing, and documenting object-oriented systems, and has emerged as the standard
object-oriented analysis and design notation. However, because it attempts to provide notations



for most aspects of object-oriented design, users can select from a rich variety of design diagrams
in UML and there are few guidelines on how precisely the design is defined.

The purpose of this paper is to present one approach to the specification of QoS requirements us-
ing UML. The framework in which we present these ideas is that offered by the Open Distributed
Processing (ODP) architecture. Open Distributed Processing [16] is a joint ITU/ISO standardis-
ation framework for constructing distributed systems in a multi-vendor environment. Significant
features of ODP include object based specification and programming, use of transparencies to
hide aspects of distribution and its use of viewpoints.

ODP viewpoints are used to help partition the complexity in distributed systems design. Each
viewpoint considers the specification of a distributed system from a particular perspective, and
of particular relevance to QoS specification is the computational viewpoint. This viewpoint is
concerned with the algorithms and data flows which provide the distributed system function.
It represents the system and its environment in terms of objects which interact by transfer of
information via interfaces. This does not necessarily imply that the computational objects will be
realized in the eventual system by separate distributed components, but indicates the candidate
objects from which components can be chosen.

QoS is central to the ODP architecture, and impacts across all viewpoints. In terms of the
computational description QoS is specified in a contractual approach which describes both the
QoS required by a computational object and the QoS provided by that object. This approach
is taken so that the overall QoS requirement can be broken down into appropriate dependencies
between groups of computational objects.

In order to be able to clearly express these dependencies, QoS specification needs to be considered
along with aspects of the functional description, and here we consider how UML can be used to
support this. There has been considerable interest in the use of UML in distributed systems design
in general and ODP in particular (see for example [2, 9, 20, 35, 31]). But they do not elaborate on
specifying the QoS aspects of the underlying model of the distributed system. To enable design
to include appropriate QoS specification, we provide a UML metamodel of the computational
viewpoint with QoS annotation given as attributes of the interface to each metaclass. In order to
express further constraints on the metaclass, we use OCL [37] expressions in the form of invariants
that each instance of our model must satisfy. For each specific domain of application, we shall
create an instance of the metamodel of the computational viewpoint, which is a class diagram
capturing its static aspects. Such a class diagram acts as a template from which object diagrams
of an application can be instantiated. Such object diagrams, which are static models of each
application, embody details of the components of the distributed system, their relationship and
QoS details associated to each component.

The purpose of such a UML model is to act as a template via which specific distributed system
designs can be constructed, and to illustrate this we show how the UML model can be used to
produce an object diagram for a particular design (here part of a lip synchronisation mechanism
for audio and video channels).

The structure of the paper is as follows. In Section 2 we provide a brief overview of ODP. Section
3 considers the role of QoS and introduces our running example along with the language QL via
which we will specify QoS constraints. UML and OCL are discussed in Section 4 and Section
5 describes how the computational viewpoint is modelled in UML. The example is re-visited in
Section 5. Section 6 discusses some related work and we conclude the paper in Section 7.



2 Open Distributed Processing

Open Distributed Processing is a joint ITU/ISO standardisation framework for constructing dis-
tributed systems in a multi-vendor environment. The Reference Model for Open Distributed
Processing (RM-ODP), which has recently progressed to become an international standard [16],
describes an architecture for building open distributed systems [23, 28]. Its scope is broad, includ-
ing support for all types of traditional data processing systems, networked personal computers,
real-time systems and multimedia systems.

One of the major problems in open distributed processing is the wide scope and inherent com-
plexity of the domain. This is reflected in the large amount of information required to produce a
complete specification of a distributed system. RM-ODP addresses this problem by introducing
the concept of viewpoints which are used to partition a system specification into a number of
partial descriptions, each targeted towards a particular audience. The reference model defines
five viewpoints, namely:

e Enterprise viewpoint: The enterprise viewpoint specifies the scope and objectives of the
system and considers the role of the distributed system within the context of an enterprise.
For example, this viewpoint deals with contracts expressing the obligations of various parties
involved in the distributed system.

e Information viewpoint: The information viewpoint is concerned with information modelling.
By factoring an information model out of the individual components, it provides a common
view which can be referenced by the specifications of information sources and sinks and the
information flows between them.

e Computational viewpoint: The computational viewpoint is the main focus for functional
design, and considers the logical partitioning of the distributed system into a series of
interacting entities often referred to as objects. Therefore, in this viewpoint an application
is decomposed into a number of objects each offering one or more interfaces through which
they interact.

e Engineering viewpoint: The engineering viewpoint presents the mechanisms which support
various actions and interactions in the computational viewpoint specification, by defining
a set of abstract concepts required to model communication and system resources.

e Technology viewpoint: The technology viewpoint considers the development of a distributed
system from the perspective of the identification, procurement and installation of particular
hardware or software technologies. In particular, this viewpoint explains the overall design
of the model in terms of realisable technology.

Further information regarding both the reference model and its approach to using viewpoints can
be found in [16, 28, 23]. In this paper we are concerned mainly with the expression of QoS in
the computational viewpoint, and in the rest of this section we sketch the key elements of the
computational viewpoint that we need based upon the reference model [16] and ideas presented
by Blair and Stefani [6].

2.1 Objects and Interfaces

Based on an object-oriented (OO) approach, an essential feature of ODP is that all interacting
entities are uniformly encapsulated as objects. The word ”object”, in common with other OO
methodologies, is also a reserved word in UML. In UML, concepts of the real world are modelled



via classes. Objects are instantiations of classes. To be specific in our usage of the word object
in the context of computational viewpoint of ODP, we use the term computational object, or
compobj for short.

To perform a service in a distributed environment, the computational objects involved need
to access one another, through (possibly multiple) interfaces. In this model interfaces, which
provide abstract views of an object, can be added and removed dynamically. Multiple interfaces
partition the external behaviour associated with computational objects into logically distinct
categories enabling a computational object to interact with more than one other object. For
example in a CCTV system, a camera can have two interfaces, one interface for transferring
the video frames to the monitor screen and the other to operate the camera, i.e., switch on/off,
zoom, tilt etc. To communicate with other computational objects, an interface is known to its
environment by its interface reference.

The computational viewpoint contains three types of interfaces: operational, stream and signal.
Operational interfaces support invocation of operations on potentially remote computational
objects. A classical example of an operational interface is an interface offered by a computational
object for a Remote Procedure Call (RPC) [11]. Operations are either interrogations (two way
operations, comprising an invocation, followed by a termination carrying results or exceptions),
or announcements, which are one way operations (only an invocation). To facilitate interactions
involving continuous media such as audio and video flow, the reference model introduces the idea
of a stream interface. A stream interface represents a continuous flow and is modelled by the type
of media which it handles, together with the direction of the flow (producer or consumer) and its
name. An example of a stream interface might be a produced audio flow representing the output
of a microphone object. A signal is an atomic action resulting in a one-way communication from
an initiating object to a responding object. In an abstract sense, streams and operations can
be defined in term of signals. This enables signal interfaces to be used as a basis for explaining
multi-part, end-to-end quality of service characteristics and compound bindings between different
kinds of interfaces (e.g. stream to operation interface bindings).

2.2 Trading and Binding

In order for interactions between objects to occur, the interfaces of the relevant objects are
associated by the formation of a binding. These bindings can be implicit or explicit. In an implicit
binding the objects involved are simply linked together and there is no term for expressing the
binding action. Additional information needed can be supplied in an explicit binding in which the
binding itself is encapsulated as an object which provides the infrastructure resources supporting
the communication [6, 16].

Each distributed environment contains some form of trading service, which records the relevant
interface references and acts as a broker between computational objects. An oversimplified outline
of how computational objects access each other in order to provide a service is as follows. A
computational object wishing to offer a service passes its interface to the trading service. When
another computational object wishes to use the service, it sends its own interface to the trading
service to locate a suitable computational object. The trading service then creates an implicit
binding between the interfaces of the two computational objects.

An example of a computational description involving the use of objects, interfaces and bindings is
given in Section 3.2 below. This will consider the lip synchronisation of audio and video channels
and introduces computational objects for the video camera, microphone and speaker (along with
others). An explicit audio stream binding connects the microphone and speaker objects via
stream interfaces representing the flow of audio signals from the microphone to the speaker.



3 Quality of Service

Quality of Service is a rather general term used to differentiate between performance aspects
and functional aspects of distributed systems. In general, since the functions that computational
objects provide are subject to delay, error, etc,..., the service provided by the overall system is
affected by the quality of provision of such functions. Such attributes (e.g. delay) are referred to
as QoS, and in the context of distributed multimedia applications, we shall be interested in the
following categories [6]:

e Timeliness dimension: This category includes issues related to the end-to-end delay of
continuous or discrete media. For example, latency which is the amount of time required
from generation of a media frame to its eventual display, and jitter which is the variation
in nominal latency suffered by successive frames of the same message, are important QoS
properties.

e Volume related dimension: This category covers the throughput of data and includes, for
example, the total number of frames delivered per second in a video stream or the number
of bytes delivered per second in a discrete interaction.

In order that a distributed system meets its required performance, statements of the desired QoS
must be made. There are a number of different types of QoS requirements that can be considered.
For example, requirements can either have a precise value or range of values or be probabilistic
or stochastic in nature. Here we shall concentrate on the former requirements, e.g. those giving
precise bounds on the acceptable latency in a system.

In order to meet such QoS requirements, the specification and design of a distributed system must
include appropriate QoS constraints and guarantees. In terms of ODP such QoS specifications
are relevant to all viewpoints, but clearly the role of the computational viewpoint is central. The
QoS associated with a computational object then consists of two clauses: the QoS provided to the
environment by the computational object and the QoS required by the object from its environment
[6]. A computational object guarantees to supply the provided QoS to the environment only if
it receives the required QoS from the environment. This approach is known as a contractual
approach to QoS. We will model this invariant on any computational object as an implication
between the required QoS and the provided QoS.

3.1 Signal interfaces and Reactive objects

In order to model the process of ensuring that the required QoS is met, the RM-ODP introduces
the idea of a signal interface. Signal interfaces, which represent low level support for implementa-
tion of real-time synchronisation, are used within real-time controllers (referred to as the reactive
object in [6]) which are introduced to ensure QoS constraints can be realised. For example, to
achieve lip synchronisation [32] a control mechanism is obligatory in order to tune the received
video and audio flows. Such control mechanisms interact with both the audio and video channels
in real-time via signal interfaces.

Real-time controllers are modelled as objects called reactive objects. A reactive object accepts
events from the outside world and reacts instantaneously by emitting signals back. Similar to
any other object in the computational model, a reactive object interacts with its environment
through interfaces, and because of the nature of a reactive object, all its interfaces are signal
interfaces.



As in the computational viewpoint QoS, requirements in a reactive object need to be specified,
and such behaviour could, for example, be described using ESTEREL [4] or LOTOS [3, 34]. The
details of how such constraints are implemented are expressed within the engineering viewpoint,
however, the reactive object in the computational viewpoint demands a level of commitment from
engineering layer that the constraints are satisfied.

3.2 Example

As an example, consider the synchronisation of video and audio channels used to achieve lip
synchronisation (see Fig. 1)'.

QoS Manager
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for Video Stream
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Figure 1: Lip Synchronisation of audio and video stream channels

A specification in the computational viewpoint decomposes the video channel into a video camera
and a video window. The video flow stream is carried from video camera into video window via
a video stream binding.

In order to achieve lip synchronisation it is necessary to specify appropriate QoS constraints, for
example, we require the following of the video flow stream:

e a latency between 40 and 60 ms,

e a maximum jitter of £10 ms, and

e a throughput of at least 25 frames per second.
To satisfy the above QoS constraints, a reactive object called QoS Manager for Video Stream

is provided which interacts with the video stream binding through a signal binding called QoS
Binding for Video Stream. In case of a failure of the binding, a signal is emitted to indicate

1This is based on an example in [6].



violation of the QoS. The audio channel is defined similarly. The QoS for the audio stream is as
follows

e a latency between 40 and 60 ms,
e a maximum jitter of £200 ms, and

e a throughput of at least 5 packets per second.

To synchronise the audio and video channels a reactive object called Reactive Object to Synchro-
nise is created which interacts via signal bindings with the audio and video channels. These
bindings are denoted Binding to Audio Channel and Binding to Video Channel in Fig. 1.

3.3 The language QL

Clearly there needs to be an appropriate way to specify the types of QoS clauses we have just
considered in the example above. There are a number of approaches that can be taken, for
example [6, 22, 5]. As an example we will consider the use of QL [6], a first order real-time logic
based on RTL [18].

QL allows one to specify QoS requirements as predicates involving the timing of permissible
events. Events correspond to signals in the computational viewpoint. In particular, each event
in the model is written as the concatenation of an interface name, a signal name and a causality.
The causality, which is either a consumer or a producer, is denoted by SR (signal received) and
SE (signal emission). For example, VidCamOut.VidOut.SR refers to signal received with the
name of VidOut in the interface VidCamQOut.

QoS is intimately tied up with time, and so QL introduces a date function 7 to denote the time of
occurrence of events. For example, for a natural number n, the expression 7(VidCamOut.VidOut.SR,n)
refers to the date of occurrence of the nth signal VidCamOut.VidOut.SR. Predicates can then

be constructed using quantifiers V and 3 and inequalities such as <,<,> and >, in order to
express a large group of QoS clauses. For example, to say that a camera sends out 25 frames in

a given second can be written (with time given in ms) as:

Vn, 7(VidCamOut.VidOut.SE,n + 24) < 7(VidCamOut.VidOut.SE,n) + 1000

To enable formal analysis, it is necessary to impose a certain style of QL formulae [6]. The style
is as follows:

Rule 1: All basic formulae should have the form
T(er,n+ j1) +0 < 7(e2,n + j2)

where €; and €2 are concatenations of an interface name, a signal name and a causality, as ex-
plained above. n,j; and j; are non-negative integers variables and § is a constant integer.

Rule 2: An overall formula can then have the general form:

where 3 is a conjunction of the basic formulae defined by Rule 1.



Definition 1 We shall refer to the set of all conjunctions and disjunctions of formulae created
via the above Rules as the set of all QL clauses, denoted by @QLclause.

QL clauses can be used to express latency. Latency in a stream interaction, measured in millisec-
onds, is defined as the time taken from generation of a media frame to its eventual display. For
example, assume that €, and €; are two events corresponding to sending and receiving of video
frames in the stream video channel of Fig. 1. Then to express the latency of 15 ms, we can write

Vn, |r(es,n) —7(er,n)| <15

which says that for all values of n the variation in time of the nth occurrence of €, and €5 must
not exceed 15 ms.

QL clauses can also express jitter and throughput. Jitter, measured in milliseconds is defined as
the variation in overall nominal latency suffered by individual messages in the same stream. For
example assume that €, and eg correspond to sending and receiving video frames of a stream
video over the channel of Fig. 1. To express the jitter bounded by 20 ms and 30 ms [6], we can
write

Vn, 20 < |7(es,n) — 7(er,n)| < 30.

Similarly, for the throughput, we can write

vn, |r(er,m+5) —7(er,n)| < 20.

to express the requirement that we wish to receive at least 5 frames every 20 ms.

Although QL can specify a large number of QoS requirements, it has several limitations. For
example, QL does not support probabilistic and stochastic properties. However, our approach
is entirely independent of the choice of the language specifying the QoS requirements. The
main reason for choosing QL is its simplicity which helps us to avoid being distracted by the
details of specifying a complex language for QoS and enables us to concentrate on explaining the
methodology of our modelling approach.

4 Unified Modelling Language and OCL

Object-oriented (OO) concepts are crucial in software design and analysis because they address
fundamental issues of adaptation and evolution. Furthermore, most modern distributed sys-
tems, and their architectural frameworks, are object-based and call for the use of OO design
methodologies for their construction.

The Unified Modelling Language (UML) [8, 36], which combines a number of approaches [7, 17,
27, 19], has become the de facto standard for OO design. UML aims to take the designer through
the whole design life cycle, and tries to ensure convergence and clarity in design by prescribing a
set of steps starting from the description provided by users or experts down to the final software
product. Whether or not this has been successful, UML has gained a certain prominence because
it provides engineers with a common format by which designs can be communicated, and in this
respect its importance cannot be ignored.

In broad terms, a UML design involves the creation of a series of graphs or charts and the
generation of an evolving model of the system. The UML standard recognises nine main diagrams
which fall into three categories. Use case diagrams deal with the graphical representation of
functional requirements of the system in term of interaction between different users and actors.



Static aspect diagrams are used to define the classes of objects, describe their attributes, specify
the operations on the classes, describe their relationship or association with other objects, and
describe how they are instantiated and interconnected. Dynamic aspect diagrams are used to
describe the behaviour of the objects in terms of the sequences of operations they perform and
the way in which they interact with other connected objects (or components).

This paper is particularly concerned with static aspects of the computational viewpoint of RM-
ODP, and in particular we aim to define a template given as a class diagram which will act as a
starting point for a distributed system design involving QoS.

Creation of a UML model often starts with recognising different key agents of the system, known
as objects in UML terminology. Considering common features of key agents, objects are extrapo-
lated into collections called classes. Classes are depicted by rectangular boxes consisting of two or
three segments. The top segment holds the name of the class; the middle segment accommodates
a list of attributes of the class and the bottom segment contains a list of methods (operations)
related to the class.

For example, Fig. 2 depicts a class called Windows which models the class of all video windows.
The class Windows has four attributes. Name which is a string giving the name of each object
instantiating Windows. InfNames is a set of strings (here modelling names of interfaces of an
instance of Windows). ReqQoS and ProQoS denote the required and provided QoS, respectively,
which both are QL clauses, as discussed in Section 3.3.

Windows

Name : String
InfNames:Set(String)
ReqQoS: QLclause
ProQoS: QLclause

Figure 2: Example of a class

Attributes in our UML diagrams are always typed. Such type attributes can be predefined types,
e.g., Boolean, Integer, Real, Set, Sequence ..., with their obvious intended meaning. We also need
to use additional types which provide further structure, for example, we use a type QLclause as
the type of ReqQoS and ProQoS. The main purpose of including types in UML models is to be
able to use OCL expressions to describe constraints on classes and their behaviour, as will be
described in Section 5.2.

Classes can be organised into a graph (or a collection of graphs), to build a class diagram. This
describes their static relationship, the classes are linked together by association (a structural
relationship that specifies the connection between one or more members of the classes) or gener-
alisation (a relationship between a general class and a derived class which inherits its properties).
Associations are depicted by simple lines. In order to denote how many instances of a class are
related to an instance of the other class, at the end of the association the multiplicity of the
association is included. Generalisations are depicted by directed lines with closed arrow heads.

For example, Fig. 3 denotes a class diagram comprising the class Windows and a second class
of interfaces (Infs) which models the interfaces of an instance object from Windows. Instances
of Infs, which are interfaces, have three attributes. Name is a string denoting the name of the
interface. InfType is an enumeration. The type enumeration, denoted by enum, is an OCL
type (see Section 5.2 below) which is used for attributes within UML models. The syntax of
enum is defined as enum = {valuel, value2, value3} within the UML model. As a result, InfType
determines if the interface is an operational interface OpInf, a stream interface Strinf or a signal



interface SigInf. The third attribute of Infs is the causality of the interface which is either a
consumer cons or a producer prod. Two classes are connected together via an association which
simply assigns an instance of Windows to one or more interfaces.

Windows Infs

Name : String 1 L. Name : String

InfNames : Set(String) InfType: enum{OplInf, StrInf, SigInf}
ReqQoS: QLclause Causality:enum {prod, cons}

ProQoS: QLclause

Figure 3: Example of a class diagram

A class diagram is like a template that demonstrates the static relationship between the system
parts at a high level of abstraction. For example, suppose that a class diagram has been defined
for a system which describes its components and relationships between them in general terms.
Then, for a given example of a system, one can instantiate objects from the class diagram to
create a model of the particular components and parts for the example. The relationship between
classes from which objects are instantiated, is depicted in the class diagram. Subsequently, the
relation between the components of the particular example automatically follows the pattern of
the relationship between corresponding classes in the class diagram (see [36]). This results in a
graph of instantiated objects and their connection patterns. The UML terminology for such an
instantiated graph of objects is the object diagram.

For example, the class diagram of Fig. 3 has the pattern that a class Windows is connected to one
or more instances of the class Infs denoting the interfaces. Now, consider a specific application
containing a video window, an instance of the class Windows with the name VidWin which
provides two interfaces to the distributed environment as follows. The first interface, called
VidWinlIn, is for a video input to the video window which receives the video frames created
via some object (for example a camera) and transfered through a stream channel. The second
interface, called VidWinStat is a signal interface representing the state of arrival of the video
frames by emitting signals that the frame has arrived. Both above interfaces are instances of the
class of interfaces Infs in the class diagram of Fig. 3.

The object diagram of Fig. 4 is instantiated from the class diagram of Fig. 3. To see this, note
that we need to instantiate one object from the class Windows for VidWin. We also need to
instantiate two objects VidWinIn and Vid WinStat from the class Infs. VidWinln is a stream
interface supporting a video stream called VidIn. VidWinStat is a signal interface which supports
two signals with signatures VidPres and VidIn, see the QL clause for provided QoS (ProQoS).
VidPres is emitted to the environment when a video frame is presented from the VidWin. The
interface VidIn could be used for further development of the model. For example, it could bind
into a QoS manager to safeguard the QoS. On arrival of a video frame in VidWin, the interface
VidWinStat receives a signal VidIn. Naturally the pattern of relations between the Video Window
class and the Infs class follows and results in the creation of the object diagram of Fig. 4.

The object VidWin, instantiating Video Window, has a set of interface names and provided re-
quired QoS denoted by ProQoS and ReqQoS, respectively. The provided QoS is specified to
provide, firstly, a throughput of at least 25 frames per ms into the interface VidWinStat and, sec-
ondly, there will be a maximum delay of 10 ms between the arrival of a frame and its subsequent
presentation. For example, we shall explain

V1 (VidWinStat.VidPres.SE,n) < 7(VidWinStat.VidIn.SR,n) + 10

which referes to maximum delay of 10 ms. There are signals VidPres and VidIn assigned
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: Windows
Name = VidWin
InfNames = { VidWinln,
- Infs VidWinStat} : Infs
_xr AN ProQoS = N Au
Name = VidWinIn \1?, © (VidWinStat. VidPres.SE, n + 24) Name = VidWinStat
[nfType = #StrInf InfType = #SigInf

. < 1 (VidWinStat.VidPres.SE, n) + 1000 .
Causality = #cons N Causality = #prod

Vn, t (VidWinStat.VidPres.SE, n )

< 1 (VidWinStat.VidIn.SR, n) + 10
ReqQoS =

Vn, © (VidWinIn.VidIn.SR, n + 24)

< 7 (VidWinIn.VidIn.SR, n) + 1000

Figure 4: Example of an object diagram

to the interface VidWinStat. VidPres is emitted when a video frame is presented. Hence,
7(VidWinStat.VidPres.SE,n) denotes the time of presentation of the nth frame. The signal
VidIn marks arrival of frames in the window to be displayed. Hence, 7(VidWinStat.VidIn.SR,n)
denotes the time of arrival of the nth video. Consequently, the above QL clause reads as, the
time of presentation of the nth frame is at most 10 ms after its arrival. In a similar way, we can
see the required QoS for the object VidWin. VidWin requires a throughput of at least 25 frames
per ms from its environment. In the UML, to distinguish between class diagrams and object
diagrams, every object is underlined. For example in Fig. 4 (: Windows) denotes an object in
instantiated from the class Windows.

In addition to the structural aspects of a specification (e.g., class and object diagrams), UML also
provides notations to describe the behavioural aspect of the system under consideration. Such
dynamic aspect diagrams come in a number of forms, and include state machines, use cases and
collaboration diagrams [36].

Although the main thrust of this paper is to describe an approach to defining the static aspects
of a system, as an illustration of the dynamic aspects Section 5.5 below models the dynamics of
one of the components in our multi-media example.

4.1 Using OCL constraints

Although UML diagrams give a comprehensive account for many static and dynamic aspects
of a systems design, there is often additional information that needs to be described in a class
or object diagram for which UML on its own is not sufficient. However, many of these aspects
can be described by using the Object Constraint Language (OCL) [37, 36], which is a textual
notation for expressing constraints in UML diagrams. We will use OCL to describe a number of
aspects including the types of attributes and the required relationships between QoS clauses.

The basic building blocks for OCL expression are objects and object properties which are instan-
tiated from classes. In OCL, each object, attribute and operation has a type. Types in OCL are
either predefined types or user-defined types. Predefined types are either a basic type, like Integer,
Real, String, and Boolean or a collection type like Collection, Set, Bag and Sequences. Details
regarding predefined types can be found in [36] and [37]. User-defined types are defined by UML
models. For example, a class defines a new type. All instances of such a class are of its type. In
fact, each class, interface, or type in a UML model is automatically a type in OCL.
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One of the features of our work is the introduction of QLclause as a type for specifying required
and provided QoS of computational objects or binding objects. This enables us to express the
QoS aspects related to interaction of such objects with their environments.

In terms of constraints there are three types in OCL: preconditions, postconditions and invariants.
Preconditions and postconditions deal with the behaviour of an operation in terms of its before
and after states. In addition to these behavioural aspects there are sometimes certain constraints
on the components of the system which can not be expressed in the class diagram. For example,
we wish to express the relationship between the required and provided QoS on computational
objects as part of our model of the computational viewpoint. OCL can be used to formalise such
constraints in terms of invariants on the class diagram.

As the name suggests, invariants must be true at all times, and each invariant is declared by the
keyword inv and has a context which refers to the class that the invariant must be applied to.
For example, the expression

context SomeClass inv :SomeOCLEzxpression

simply says on a class called SomeClass the expression SomeOCLFExpression, which is written
in OCL, must be valid for all instances. To refer to instances of a class, OCL uses the keyword
self. For example, if the class SomeOCLEzpression in the above example has an attribute
SomeAttribute, then self.SomeAttribute refers to the attribute SomeAttribute of all instances
of the class SomeClass. For further information regarding the syntax and semantics of OCL, we
refer the reader to [37] and [36].

Naturally, restrictions created by an OCL invariant are carried through to any instantiation of
the class diagram into an object diagram.

5 A UML model of the computational viewpoint

The architecture of the UML [36] is based on a four layered structure of user object, model, meta-
model and metametamodel. The metametamodel defines the language for specifying metamodel
structure. A metamodel, which is an instance of the metametamodel, defines the language for
specifying the model. Models, which are instances of metamodel, define the language to describe
an information domain from which user objects, describing a specific application domain, are
specified. In this paper we shall only be dealing with the three bottom layers user object, models
and metamodels of the UML architecture.

Being inspired by the three layered structure user object, model and metamodel of UML, Fig.
5 depicts the analogy between UML architecture, computational viewpoint of RM-ODP and
our UML model of the computational viewpoint. The left hand side column of Fig. 5 denotes
the three layers of architecture as just discussed. The arrow between the layers denotes the
direction of instantiation of one layer to the next. The middle column depicts the ODP approach.
The upper layer “Computational viewpoint of RM-ODP” describes the computational aspects
of the architecture for building open distributed systems. Such descriptions result in templates
specifying the domain of application which basically models the computational aspects of group of
applications with some common features. The “computational specification of a specific domain
of application” can be specified with the help of the corresponding template. The arrow denotes
the direction of moving from one stage to the next. The sign = reflects upon similarity between
the corresponding layer in the UML and RM-ODP analogy.

The right hand side column of Fig. 5 depicts our UML model that captures the static aspects
of the ODP computational viewpoint. From the top row, we start by presenting a metamodel
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Figure 5: Different layers of modelling

diagram of the ODP computational viewpoint, which for the purpose of brevity we shall refer
to as the Computational Metamodel Diagram (CMD). The computational metamodel diagram
includes meta-level classes in correspondence to different computational entities such as compu-
tational objects (compobyj), bindings (bindobj), interfaces and reactive objects. The CMD also
demonstrates the way that instances of such classes interact with one another.

The most important advantage of the CMD is that it provides a consistent method of modelling
the QoS aspects in a computational viewpoint of a distributed system. In other words to model the
static properties of the computational viewpoint of a given distributed system, one can instantiate
the CMD to create a class diagram for a specific domain of distributed system that we shall refer to
as the Computational Class Diagram (CCD). The computational class diagram is an instantiation
of the CMD of the computational viewpoint of the corresponding distributed system. The CCD
serves as a template for modelling static aspects of the computational viewpoint of applications
which belong to the specific application domain that corresponds to the CCD. As a result by
instantiating from the CCD, for each specific application, which belongs to the corresponding
domain of application, an object diagram called the Computational Object Diagram (COD) is
created which models the static aspects of the computational viewpoint of such application.

The CMD only describes the classes and their mutual relationship, as a result it is not capable
of imposing conditions such as requirements for primitive bindings or the way that the requested
and provided QoS of the components interact and the QoS of other parts of the system. Hence
our model will include a set of OCL expressions to impose suitable restrictions on the CMD.
Such restrictions naturally carry through to the instantiated CCD and COD of each distributed
system domain and application.

The reminder of this section consists of four parts. First, we shall introduce the computational
metamodel diagram. The second part includes OCL expressions imposed on the computational
metamodel diagram. The third part introduces the computational class diagram and presents a
heuristic for the construction a CCD for a specific domain of application from the CMD. The
third part also includes an example of instantiating the CMD to create the CCD for an specific
domain of application involving a video stream channel. The final part explains the creation of
the COD model for the specific video stream example.
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5.1 Computational Metamodel Diagram

The computational metamodel diagram, shown in Fig. 6, introduces meta-level classes (meta-
classes) to represent computational objects, binding objects and reactive objects together with
their associated interfaces.

The metaclass SystemComponent embodies classes of computational objects and binding objects.
Similarly, the metaclass ReactiveObject represents the class of all reactive objects. The meta-
class Infs represents interfaces to computational or binding objects, and the metaclass RSigInfs
represents interfaces to the class of all reactive objects which is always a signal interface.

Between the metaclasses in the CMD there are a number of associations, and each association
models the relationship between the classes that it connects. For example, the association be-
tween SystemComponent and Infs models interfaces assigned to computational or binding objects.
Similarly, the association between ReactiveObject and RSigInfs models the signal interfaces of the
reactive objects.

Each metaclass in the diagram has a name (e.g. SystemComponent) and a number of attributes.
Consider, for example, the SystemComponent class. This class has five attributes. The attribute
Name to identify the SystemComponent. The attribute Role is used to differentiate between
computational objects (compobj) and binding objects (bindobj). The attribute Role is of type
enumeration (enum) which lists the set of possible values. In order to use one of the values in an
OCL expression, we have to prefix it with the # symbol.

Within the metaclass SystemComponent, the names of the interfaces of each computational or
binding object are listed by the attribute InfNames. Finally, the attributes ReqQoS and ProQoS,
which are clauses written in QL, correspond to required and provided QoS of a SystemComponent
object as defined in Section 3.3.

UML objects are categorised according to the role that they play in the application. Interfaces
in a distributed system are key ingredients as all interactions between objects are carried in the
interfaces. As a result, in order to model interfaces, we represent an interface to a computational
or binding object as a separate class Infs (along the lines of [15]). Each interface contains an
attribute Name which gives the name of the interface and an attribute InfType which clarifies if
it is an operational interface OplInf, a signal interface SigInf or a stream interface Strinf.

Each interface is in fact one of three types, and in the CMD this is represented by the use of three
subclasses OplInfs, StrInfs and SigInfs corresponding to operational interfaces, stream interfaces
and signal interfaces in the computational model, respectively. Thus, in UML terminology, the
class Infs is a generalisation of classes Oplnfs, Strinfs and SigInfs.

We start by explaining the metaclass OpInfs of operational interfaces. The RM-ODP [16] specifies
that

An operation interface signature comprises a set of announcement and interrogations
signatures as appropriate, one for each operation type in the interface together with
an indication of the causality (client or server, but not both) for the interface as a
whole, with respect to the object which instantiates the template. Clause 7.1.12.

The metaclass OpInfs models the above by including a list of names of operational interface sig-
natures (OpInfSig), and the causality of the interface (Causality). Assigned to each operational
interface (OpInfs) there are metaclasses Announcements and Interrogations each one containing
the attribute NamesOfInv which lists names of invocations as a set of strings. Such names by the
clause 7.2.1 are “identifiers” of the corresponding signatures. Associations called Ann and Inter

14



depict the correspondence between operational interfaces and their corresponding Announce-
ments and Interrogations.

Now, we shall deal with the metaclass Announcements. The RM-ODP [16] explains

FEach announcement signature is an action template containing both the names of the
invocations and the number and names and types of its parameters. Clause 7.1.12.

This is modelled as a metaclass Announcements which contains the name of the invocations
(NamesOfInv) which are identifiers of announcements by the clause 7.1.12. The metaclass Invo-
cations has an attribute Name as an identifier and captures attributes of each involving invocation
by including the number of parameters (NumberOfPar) and names of parameters (NamesOfPar).
By clause 7.2.1 of [16], such names are identifiers for parameters in the context of each instantia-
tion of such metaclass. Types of such parameters are instantiated from the metaclass Parameters
which include the attribute Type of type InfType, which refers to the type of the parameters in the
system. For example, in an application involving stream interactions InfType can be instantiated
to include audio, video and animation referring to possible types of a parameter representing a
stream interaction.

To explain the part of CMD dealing with Interrogations we cite part of the RM-ODP [16]:

Each interrogation signature comprises an action template with the following ele-
ments:

— the name of the invocations

— the number, names and types of its parameters,

— a finite, non-empty set of action templates, one for each possible termination type
of an invocation, each containing both the name of the terminations and the number,
names and types of its parameters. Clause 7.1.12.

As a result to model interrogations, we start by the metaclass Interrogations which contains
names of all invocations (NamesOfInv). Each such invocation is instantiated from the metaclass
Invocations which is identical to the metaclass Invocations of the metaclass Announcements. In
this case, for each invocation there are a finite number of terminations, each one instantiated from
the metaclass Terminations, which includes names of terminations (NamesOfTerms) as identifiers,
see clause 7.2.1 of [16]. Each termination is instantiated from the metaclass ATermination which
contains the name Name of the termination, the number of parameters (NumberOfPar) and the
names of parameters (NamesOfPar).

In a similar way, the metaclass Strinfs corresponding to stream interfaces contains attributes
StrInfSig and Causality. StrInfSig lists names of stream interface signatures which are “identi-
fiers” of corresponding signatures. For each stream interface listed, there is an instance of the
metaclass Streams with attributes Name, NumberOfPar and NamesOfPar referring to the num-
bers and names of the parameters. The metaclass Parameters models parameters and in fact is
identical to the metaclass Parameters discussed earlier above.

The submetaclass SiglInfs models signal interfaces. The RM-ODP [16] explains signal interfaces
as follows.

A signal interface signature comprises a finite set of action templates, one for each
signal type in the interface. Each action template comprises the name for the signal,
the number, names and types of its parameters and an indication of causality (ini-
tiating or responding, but not both) with respect to the object which initiates the
template. Clause 7.1.12.
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This is modelled as a metaclass SigInfs of signal interfaces which contains signal interface sig-
natures (SigInfSig) expressed as a set of names of signals which by clause 7.2.1 are identifiers of
such signatures. Each signal interface is instantiated from the metaclass Signals which includes
the name (Name)of the signal, the number of parameters (NumberOfPar), names of parameters
(NamesOfPar) and causality (Causality) of the signal.

The main difference between signal interfaces and operational and stream interfaces is that, in
the case of signal interfaces, the causality applies to each one of the (possibly many) signals
of an interface, while the RM-ODP defines the causality as a whole for operational and stream
interfaces. As a result, Causality appears as an attribute in metaclass OpInfs and Strinfs while in
case of signals the attribute Causality appears in the metaclass Signals which models individual
signals of a signal interface.

The metaclass ReactiveObject in the CMD embodies all reactive objects. A reactive object in
the computational viewpoint can only have signal interfaces. Hence, the only attribute of the
metaclass ReactiveObject are names (Name) of the reactive objects and a list of signal interfaces
SigInfNames. Each such interfaces is instantiated from the metaclass RSigInfs containing the
names of signals (SigInfSig) which are identifiers for the signals. Each signal is instantiated from
the metaclass Signals which was explained earlier.

The RM-ODP [16] introduces two types of binding, compound binding and primitive binding. The
compound binding action of the RM-ODP is performed by a binding object. As discussed earlier,
in the CMD the compound binding object is an instantiation of the class SystemComponent with
the role of bindobj. A primitive binding action allows binding of two interfaces of the same or
different computational objects. The primitive binding between interfaces (Infs) is denoted by
the self association called PB on the metaclass Infs. Similarly, to model the primitive binding
between signal interfaces of the reactive object, RSigInfs, and the corresponding signal interface
of the system that the reactive object is to be bound to, an association between metaclasses
RSigInfs and SigInfs is created and is referred to as Rsigbind.

5.2 OCL constraints on the class diagram

As mentioned above, a number of constraints need to be placed over the metaclass diagram. We
discuss these in turn now.

In the CMD model of Fig. 6, the primitive binding actions instantiate the association from class
Infs into itself. The RM-ODP requires a primitive binding to be between interfaces of the same
type and with complementary causality. To represent this we impose the following OCL invariant
on the CMD.

context Infs
inv : self.PB.InfType = self.InfType
inv : self.PB.Causality <> self.Causality

As discussed earlier the computational viewpoint adopts a contractual approach to the issue of
QoS. In particular, each object can provide the specified QoS only if it receives its required QoS
from its environment. We shall impose this as an invariant on the SystemComponent metaclass
in the CCD as follows.

context  SystemComponent
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Figure 6: The Computational Metamodel Diagram
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inv : if self.ReqQoS = true then self.ProQoS = true
else self.ProQoS = false
endif

The RM-ODP states that operations are either announcements or interrogations, but not both.
The following implements this restriction with two invariants, the first one states that the set
of all operational interface signatures (self.OplnfSig) is the union of the set of corresponding an-
nouncements self.Ann.NamesOflnv and interrogations self.Inter.NamesOflnv. The second invariant
states that the above sets of announcements and interrogations are disjoint.

context  Oplnfs
inv: self.OplInfSig = (self.Ann.NamesOflnv — union(self.Inter.NamesOflnv))

inv:  self.Ann.NamesOflnv — intersection(self.Inter.NamesOflnv) — isEmpty.

The attribute NamesOfInv of the class Announcements lists the names of all invocations. We
need to instantiate exactly those invocations which belong to the set of names of invocations
NamesOfInv of the class Announcements. The following OCL invariant states that the set of
all NamesOfInv listed under Announcements is identical to the set of names of all instantiated
invocations (self.Inv.Name).

context Announcements

inv : self.NamesOflnv = self.Inv.Name.

We need to include similar OCL constraints in context of classes Interrogations, Terminations,
Strinfs, SigInfs and RSigInfs.

The class Invocations which models invocations includes the names of parameters (NamesOfPa-
rameters) as an attribute. Each parameter is instantiated from a class Parameters. We need to
instantiate exactly as the same Parameters object as declared in its corresponding Invocations
object. This is explained by the following invariant.

context Invocations

inv : self.NamesOfPar = self.P.Name.

In a similar way we must write invariants on all other classes which are linked to the class
Parameters, for example Invocations, Atermination and Streams.

5.3 Computational Class Diagram

This section deals with creation of the Computational Class Diagram (CCD), a UML class dia-
gram, which captures the static aspects of the computational viewpoint of a Specific Domain of
Application (SDoA). As depicted in Fig. 5, the CCD of a specific domain of application firstly
must be instantiated from the CMD and, secondly, must present a model of the computational
viewpoint of its corresponding domain of application. Finally, it must provide us with a template
from which all possible applications satisfying the description of such a SDoA can be instantiated
into an object diagram.
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For example, consider video stream channels a necessary component of the lip synchronisation
mechanism as a specific domain of application. This SDoA normally consists of one or more
cameras for capturing images to be transfered over stream bindings into one or more display
windows and there are various control mechanisms to operate the components and safeguard the
QoS. Now, an application consisting of one fixed camera with no control for movement or zoom,
one window and a binding which provides a degree of QoS, is an instance of such SDoA. Examples
of instances of this SDoA also include the following;:

1. An application consisting of a camera with an operating mechanism to rotate, zoom and
tilt which also imposes a more demanding set of QoS restrictions.

2. An application consisting a number of cameras capturing pictures from different parts of an
area whose outputs are presented via different windows, say in a Closed Circuit TV system.

The purpose of the CCD corresponding the above SDoA is to act as a template from which all
the above instantiated examples (which can be modelled as object diagrams) can be created.

At this stage we explain a heuristic for the creation of the CCD of a SDoA from the CMD of Fig.
6. In what follows the word metaclass refers to the CMD of Fig. 6.

1. Start by instantiating classes from the metaclass SystemComponent. In doing so, new
attributes and operations related to each class are included to specialise each class as a
template model of a specific part of the system. The main criterion in creating a new class
is whether we need to include new attributes in the class which are not pertinent to the
existing classes.

2. Each class created in the previous step must be connected to an instance of an interface
metaclass Infs which also can include new attributes. According to the SDoA that we
are trying to model, we might need to instantiate one or more interface classes. This is
obviously a matter of modelling practice and can be judged by whether there are enough
distinguishing attributes of operations that result in creation of new interface classes.

3. Subclasses of each interface class must be instantiated from the corresponding subclass of
the metaclass Infs.

4. Different control mechanisms are modelled as reactive object classes instantiated from the
metaclass ReactiveObject including the required attributes and operations related to the
SDoA.

5. Following the pattern in the CMD, for each instantiated ReactiveObject class, one or more
signal interface classes (which are instantiated from the class RSigInfs) are created. In each
case associations between metaclasses are instantiated to connect suitable classes.

6. In the same spirit as the third step of the heuristic, subclasses of all created instances in
the previous step must be created and suitably connected to instantiate the corresponding
association.

Fig. 7 denotes the CCD of the SDoA of the video stream channels as discussed above. Following
the above heuristic, in this SDoA there are four distinguishable classes Cameras, Windows and
StreamBinding instantiated from the metaclass SystemComponent and QoSBindings, which is
instantiated from the metaclass ReactiveObject. At this stage specific necessary attributes and
operations are added. For example, the attributes panDegree, tiltDegree and zoomFactor, which
are integer valued attributes referring to degrees of pan, tilt and zoom of each camera are included.
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Figure 7: The CCD of the video stream channels
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Also, attributes related to the maximum and the minimum of pan degrees, tilt degrees and zoom
factors are added to the class Camera. Attributes Width and Height of window displays are added
to the class Windows.

The next stage is the instantiation of interface classes from the metaclass Infs. In this SDoA,
there is no ground for the instantiation of more than one class from the metaclass Infs and we
don’t consider any new attributes or operations to be added. As a result, there is only one
class Infs. Similarly, submetaclasses of the metaclass Infs are instantiated to the corresponding
subclasses of the newly created class Infs identically. In order to simplify the model we have
included only one type of reactive object.

5.4 Computational Object Diagram of a video stream

As the final step in our modelling method, in this section we shall deal with the creation of
Computational Object Diagram (COD) from the Computational Class Diagram of a Specific
Domain of Application. A COD, which is a UML object diagram, depicts the static aspects
of the computational viewpoint of an application which satisfies the description of a SDoA. As
depicted in Fig. 5 each COD is instantiated from the corresponding class diagram.

QoS violation ‘ QoS manager

QoS management
é binding

video camera

control video window

/\/

video camera video stream binding

Figure 8: Video stream channel

For example, consider the video stream channel of Fig. 8 comprising of a video camera which
produces audio frames to be carried over a video stream binding into a video window. The video
camera is controlled and operated by a video camera control mechanism and the QoS of the
stream binding is safeguarded by a QoS manager which interacts with the video stream binding
through a signal binding of QoS management bindings. In case of violation of QoS, the interface
QoS violation emits suitable signals to alert the environment.

The current example obviously complies with the description of the SDoA of the previous section,
which is modelled via the CCD of Fig. 7. The CCD of Fig. 7 acts as a template for creation of
the COD of our example. The heuristic for the generation of the COD is as follows, in which the
word class refers to the CCD of Fig. 7.

1. Start by instantiating computational objects from the classes with the role compobj.

2. Instantiate all reactive objects, from the classes ReactiveObject.

3. For each object created in steps 1 and 2 create object interfaces by instantiating objects
from the classes Infs.

4. For each created interface in step 3, instantiate all its associated objects. For example,
consider an object which instantiates a stream interface class (StrInfs). Such object includes
stream signature names under the attribute StrInfSig. For each such signature we need
to create an object instantiated from the class Streams, which must be connected to the
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Strinfs object. Subsequently, for each instantiated object Streams, we must also instantiate
parameter objects from Parameters classes to model parameters.

5. In order to model primitive bindings, which allows binding of two interfaces, connect cor-
responding interface objects via associations and mark them with PB.

6. When there are primitive bindings between interfaces (associations which are marked with
PB) we need to clarify which parameters of one interface map into which parameters of
the other interface. Connect corresponding parameter objects via an association and mark
them with map to denote that they map together.

Applying the above heuristic to the example of Fig. 8 produces the COD of Fig. 9. As a result,
there are five main objects with Name attributes of Cameral, VidWin, VidBind, QoSManBind
and QoSManger instantiated from the classes Cameras, Windows, StreamBinding, QoSBinding
and ReactiveObject, respectively (see Fig. 7). Each of the above objects has the corresponding
attributes of the class that it is instantiated from and we shall only explain the QL clauses
stating the required and provided QoS of each object. The object Cameral which models the
video camera of Fig. 8 requires no degree of QoS from the environment, while it can provide
at least 25 frames per second. The Cameral object also includes a list of attributes such as the
panDegree which is declared as 35 degree. For the purpose of brevity we have elided some of the
attributes.

The object VidWin models the video window and requires to receive at least 25 frames per second,
but it provides no QoS to the environment. The video stream binding is modelled via the object
VidBind which provides a throughput of 25 frames per second and a delay of between 40 and 60
ms. Also, VidBind guarantees that the monitoring signal will be emitted through the QoSCtrl
interface at the time of the occurrence of the monitored signal. The VidBind object requires that
it receives at least 25 frames per second from the producer. The QoS of management binding
of Fig. 8 is modelled as the object QoSManBind instantiated from QoSBindings. QoSManBind
needs no QoS from the environment and it can guarantee a maximum delay of 5 ms for the
transition of signals across the binding.

The object Cameral has two interfaces listed under the attribute InfNames as VidCamOut and
CamCtrl which refer to the stream output interface into video stream binding and the interface
for controlling and manipulating of the video camera, respectively. The interface object Camer-
aCtrl embodies the operational interface signatures start, stop, pan, tilt and zoom referring to the
corresponding actions of the camera object. These five operations are all announcements as a
result they are embodied in the object :Announcements. The operation start being an announce-
ment has an invocation which is modelled as a object called start which has no parameters. The
operation pan is also modelled as an invocation object called pan. It has one parameter called
panDegree which denotes the degree of pan that we would like to achieve by invoking the action
pan. panDegree as a parameter is modelled via an object :Parameters embodying its name and
type and is connected to the object pan via an association. The other three operations (stop, tilt
and zoom) can be explained similarly.

The interface that video camera offers for binding to the video stream binding is modelled via
the object VidCamOQut which is a stream interface type StrInf and support a stream with the
interface signature VidOut which is modelled as an object called VidOut. This object which is
instantiated from the class Streams has one parameter called videol. The parameter videol is
modelled as a :Parameters object which includes its name videol and its type video.

The interface VidCamOut of the object Cameral binds to the interface VidBindIn of the video
stream binding. To model the primitive binding an association marked, as “PB”, is used to
connect VidCamOut and VidBindIn.
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Figure 9: Computational Object Diagram for the video stream
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There is also a primitive binding between the QoS management binding object and the video
stream binding object which is modelled as an association between objects QoSBindIn and QoSC-
trl. As there is more than one signal in each of these interfaces, corresponding parameter objects
(:Parameters) are connected together via associations marked by the word “map”.

The Computational Object Diagram of Fig. 9 specifies required and provided QoS statements of
the components. There is a global requirement (expressed by an OCL constraint of section 5.2)
that each of the components can provide its specified provided QoS as long as its required QoS
is satisfied. We must emphasis that, we do not assume the QoS required by an object A from
another object B is always identical with the QoS offered by B to A. We assume a more complex
specification pattern that the QoS provided by A implies the QoS required by B. Therefore, if
QoS required and provided by different objects don’t match, we can see inconsistencies within
the specification of the system.

We have now completed the production of our object model for this particular example, which
models the static aspects of the system. The UML also provides a set of diagrams for the
specification of the dynamic aspects of systems. One of the dynamic aspects of the above example
is the implementation of the QoS aspects, which models the behaviour of the reactive object
QoSManager in the COD. The next section shows how the behaviour of the reactive object could
be described.

5.5 Modelling the behaviour

In order to specify the behavioural aspects of the reactive object QoS Manager of Fig. 8, we shall
use the UML State Machine Diagrams [36]. The UML state machine diagram is an object-based
variant of Harel’s Statecharts [19], and we shall refer to that simply as statecharts.

Assume that the QoS manager of Fig. 8 modelled as the object QoSManager in Fig. 9 requires
that the reactive object check for the following behaviour

e a throughput of at least 25 frames per sec and

e a latency of between 40 and 60 ms.

Moreover assume, in case of violation of any of the above requirements, the QoSManager alerts
the system by emitting a QoS Violation signal.

The statechart of Fig. 10 depicts the above behaviour. It consists of two statecharts A and B.
We shall explain statecharts A, B and the implication of the dotted line separating them in order.

The statechart A deals with the implementation of the throughput of at least 25 frames per sec.
The two rectangular nodes marked by Begin and Wait are called states of the statechart A. The
state Begin, which marks the start of the cycle of behaviour of A, is referred to as an initial state.
Initial states are recognisable from other states by the distinctive sign of a black dot which is
attached to them via an arrow.

There are several other arrows between states of A, which depict the way that states of A alter
between Begin and Wait. Such arrows are called transitions and when state changes we say the
corresponding transition has been fired. There are pieces of text assigned to transitions which
includes both conditions and consequences of firing the transition. Such text is often of the
form Name:Event[Guard]/Action. Name is a string denoting the name of the transition, and
is merely a label intended for the individual statechart. FEwvent is a specification of observable
behaviour, for example, observing a signal. Events are triggered by the environment, and might
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Figure 10: The statechart expressing the dynamic behaviour of QoS manager

include associated conditions. For example, the event TimeStamp = 61 requires the value of
the clock TimeStamp to be 61 for the behaviour to be enabled. Guard is a Boolean expression.
Whenever Event is observed and, at the same time, Guard evaluates to true, the transition must
fire immediately. Firing of a transition causes both a change of state and also an occurrence of all
actions listed in Action. Actions consists of a list of events that will be triggered, and optionally
assignment to the variables.

For example, in A, the transition from Begin to Waitis marked by Start: VidDelivered/TimeStamp1
== 0& Counter == 1. As a result, the transition Start can fire as soon as the signal VidDeliv-
ered, marking the delivery of a single frame, is observed. In this case if Start fires, apart from a
change of state from Begin to Wait, a clock TimeStamp1 starts and is set to zero. Also, a counter
Counter, which is an integer value variable, starts by assigning its value to 1. We assume that
clocks are ticking at the rate of 1 ms and the type of a clock value is referred to as simply by
TIME, hence TimeStampl is of type TIME.

Firing of the transition Start changes the state of A to Wait. We will use this state to idle
for 1 second to see if the rest of the 24 frames are delivered, i.e. the throughput is 25 frames
all together. While in state Wait, if the time increments to 1000 ms, TimeStampl = 1000,
then the transition Violate of A will immediately fire. This results in the emission of the action
QoSViolation, a change of state to Begin and a start of a new cycle of behaviour of A. However,
while A is in the state Wait and the time has not passed beyond 1000 ms ( TimeStampl < 1000)
and a frame is delivered i.e., VidDelivered occurs, then the transition Repeat of A can fire. When
Repeat fires, the counter is incremented by one (Counter + +) to keep a record of how many
frames are delivered.

At this point there are two possible scenarios. The first scenario is that the number of delivered
frames is 24, i.e. the guard [Counter = 24] is true, which says that within the last 1 second after
the delivery of the first frame 24 frames are delivered and the system is complying to the condition
of a throughput of 25 frames per second. In this case, the state changes to Begin which marks the
start of a new cycle of behaviour. The second scenario is that the number of the delivered frames
is less than 24 and we need to return back to state Wait and wait for the delivery of the rest of
the frames. The diamond shape node which depicts the above two scenarios of the behaviour of
the transition Repeat is called a conditional connector.

The statechart B deals with the issue of latency. To have a latency between 40 and 60 ms, as
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soon as the first frame is sent, observing VidSent, the state of B changes from the initial state
Begin to the state Before40Oms. In addition, a clock called TimeStamp?2 is reset to zero. The
state remains in Before40Oms as long as TimeStamp2 is less than or equal 40 ms. Within this time
interval if another frame is sent, observing VidSent again, then the latency condition is violated
and the transition Violate! fires. This results in an emission of the signal QoSViolation and
resets TimeStamp2 to zero. While in state Before/0ms, if no VidSent occurs, the time progresses
to 40 ms (TimeStamp2 = 40) which results in firing of the transition Enter and arrival in the
state After/Oms. In the this state, while TimeStamp2 < 60, if VidSent is observed, then no
latency condition is violated and the transition Repeat fires immediately. Firing Repeat resets the
TimeStamp2 to zero to deal with the latency associated with the new frame. However, assume
that while in After40Oms, the time progresses to 61 ms and no VidSent occur. Then within the
interval time of 40 and 60 ms of the occurrence of the last VidSent no frame is sent, which is
a violation of the latency condition. Consequently, Violate2 fires immediately and this emits a
QoSViolation and resets the TimeStamp?2 to zero. In this case, if VidSent is observed we return
back to the state Before/0ms to start a new cycle of behaviour related to the observed VidSent
and if VidSent is not observed, we return back to Begin and wait for the occurrence of the next
VidSent.

The statecharts A and B have disjoint sets of events, clocks and counters. As a result firing of
transitions in one of them does not effect the behaviour of the other one. As a result, A and B are
executed independently and not concurrently. This type of independent parallelism is denoted
by placing the two statements side by side, separated by a dotted line, as Fig. 10 illustrates.

A full description of the behaviour of the video stream mechanism and of the full lip-synchronisation
system is beyond the scope of the paper, as is a description of use cases, collaboration diagrams or
other means of specifying the behaviour within the UML. Introduction to use cases, collaboration
diagram and other UML diagrams are contained in [36, 8, 15].

6 Related Work

One of the objectives of the current work is to present a UML based method of specification of
QoS constraints. Since the rise of UML, the World Wide Web Consortium [38] has proposed
several means such as the Resource Description Framework (RDF) [29] and Composite Capa-
bilities/Preferences Profiles CC/PP [10], which seem suitable for specifying QoS constraints on
the models. For example, one could imagine using RDF for developing the metamodel of section
5. RDF can easily be serialised in eXtensible Markup Language (XML) [39]. Instances of such
models could then directly be used by distributed systems for exchange, negotiation and config-
uration purpose. This can be a subject of further research, specially for the static aspects of the
model. However, our approach, using UML, enables us to model more complex structural and
behavioural interactions between objects.

Our approach to UML modelling of distributed multimedia systems is influenced by COMET
[15]. Concurrent Object Modelling and architectural design mETthod (COMET) is a UML
methodology which is tailored specifically for concurrent and distributed systems. COMET
introduces the notion of interface classes and objects encapsulating external interaction of the
components of the distributed system with the environment. We found the notion of interface
objects of COMET suitable for describing interfaces in the computational viewpoint of RM-ODP.

Various approaches which integrate the UML and RM-ODP have been described in the litera-
ture. Oldewick and Berre [35] introduce a methodology based on RM-ODP and UML aimed at
systems such as geographical information systems. Linington [24] uses UML to specify enterprise
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specifications of the RM-ODP. Steen and Derrick [31] present a metamodel UML core for the
enterprise viewpoint in the RM-ODP and also study the extent to which UML can be applied
for the specification of the enterprise viewpoints. Aagadel and Milosevic [2] discuss different
enterprise modelling concepts in terms of the UML and the way that enterprise viewpoints can
be used as a part of the software development cycle via the UML.

Some researchers have applied UML to revisit distributed applications which were originally mod-
elled based on the architecture of the ODP. Cornily and Belunde [9] define an ODP viewpoint
architecture of the process ITU-Recommendation G.851-01 [14] within the context of telecom-
munications management networking. Kande et al. [20] apply the UML notations to specify
service components of telecommunications management networking systems which are originally
modelled in the framework of RM-ODP.

The CMD of Fig. 6 introduces a metamodel for describing families of classes. The UML also
provides stereotypes as an extension mechanism to model a family of classes. A stereotypes [36]
is denoted by a text between guillemets. For example, to declare that a class is an interface we
can decorate it with << interface >>. Although introducing stereotypes to UML models seems a
convenient modelling practice, it can cause certain ambiguities. For example, the exact semantic
of the stereotype is not clear. Also, the issue that stereotypes are not modelling constructs
against which analysis can be performed is a controversial one. Recently, Pinet and Lbath [26]
have presented a semantic of stereotype for type specification. We have avoided using stereotypes,
which remain areas for future research.

In this paper we use the QL, which has proved to be a useful and strong language for specification
of QoS [12, 13, 30]. We have been able to to specify latency, jitter and throughput via QL. QL
is not the only language used for the specification of QoS. Aagadel [1] presents ODL-Q which is
based on TINA ODL [33] to specify the QoS characteristics of the underlying model. While this
work is valuable, [1] uses the OCL as a formal language, separate from UML, for extending TINA
ODL. As opposed to this, we specify QoS as attributes of objects in a UML model and use OCL
statements to impose constraints on diagrams. Using two different languages of QL and OCL
seems a bit inconvenient, and it would be desirable to make use only one of them. Unfortunately,
neither QL nor OCL is strong enough to replace the other. QL, which is a temporal logic, does
not have any mechanism for imposing constraints or navigating UML class diagrams. OCL, which
is designed to enable navigating UML class diagrams and imposing constraints on them, does not
have a time function to capture temporal aspects such as the time of occurrence of the events.

Extensions of QL have also been considered. For example, based on linear temporal logic, L.
Blair [5] introduces QTL (QoS Temporal Logic). To specify stochastic aspects of QoS such as the
bounded responsiveness property, QTL is extended to SQTL (Stochastic QoS Temporal Logic)
by Lakas et al. [22]. These are more expressive than QL. However, our purpose was to illustrate
the use of such a (real-time) logic within the UML diagrams, and it would be easy to extend the
work presented here by incorporating other similar logic or approaches to QoS specification.

7 Conclusion

In this paper, we have used UML to build up a metamodel for the computational viewpoint of
RM-ODP. We have incorporated QoS aspects of the model as attributes of metaclasses. Further
constraints on the metaclasses are imposed by a set of OCL invariants on the metamodel. For
example, one of our invariants imposes the contractual approach of the RM-ODP to QoS, which
states that a component of the model can provide the specified QoS only if it receives its required
QoS from the environment.
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The computational viewpoint of RM-ODP acts as a guideline for modelling computational as-
pects of a distributed system. In the same fashion, the metaclass diagram can be instantiated
to create a class diagram modelling static computational aspects related to a specific domain of
application. In such class diagrams we can add further attributes and methods. Class diagrams
act as templates from which objects diagrams modelling each individual application can be in-
stantiated. We have demonstrated our approach with the help of an example of a video stream
channel. In order to capture part of the dynamic of the video stream channel, we have modelled
the control mechanism that governs transmission and safeguards the delivery of the QoS of the
video frames as a statechart.

The RM-ODP has a broad scope, including support for all types of traditional data processing
systems, real-time systems and multimedia systems. In future, we would like to implement our
approach by modelling examples of such systems. Currently, our method only deals with the
computational viewpoint, we are planning to extend our approach to incorporate other view-
points of ODP in order to give a more refined model of the distributed system. Finally, there is
further work to be done on behavioural aspects and their relationship to the approach presented
here. Although, we briefly mentioned the specification of the associated behaviour in section
5.5, there is clearly scope for investigating how to link UML behavioural diagrams into the UML
static structure that we have presented here. Regardless of QoS issues, studying the relationship
between static and dynamic specification in UML models is an active area of research [21].
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