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Abstract. One of the main challenges of the design of object-based Dis-
tributed Multimedia Systems is to address the performance related issues
such as the Quality of Service (QoS). The specification of QoS is a cru-
cial part of architectural object-based methods such as Open Distributed
Processing (ODP). In the ODP, a QoS property assigned to an object is
modelled via two clauses of required and provided QoS statements, which
specify the level of QoS required/provided by an object from/to its envi-
ronment, respectively. An over-demanding QoS statement can be beyond
the physical limitation of the system and might result in inconsistencies.
In particular, to produce a correct design, it is crucial to study the effect
of QoS statements of components on the overall behaviour of the system
in earlier stages of the design.

This paper develops a theory for the verification of Timeliness QoS prop-
erties such as Jitter, Throughput and Latency. The approach adopted is
based on the idea of Test Automata. We shall present a formal defini-
tion of Timeliness QoS properties, which is used for the creation of Test
Automata. Such Test Automata, which we shall refer to as QoS Timed
Automata, can be used to verify the corresponding QoS Timeliness prop-
erty. The method is illustrated by the verification of Throughput in a
Video Player systems via the model checker UPPAAL.

Keywords : QoS, Network of Timed Automata, Real-time System, Verification,
Model checker UPPAAL

1 Introduction

Since modern Distributed Multimedia systems are object-based, functional be-
haviour of such systems is encapsulated within multiple components. Quality of
Service (QoS) properties, which can be seen as a set of contracts on the system,
are end-to-end issues, i.e. a QoS requirement is related to the systems as a whole.
As a result, a major challenge of the integration of QoS in the design process
of object-based distributed systems is to specify suitable QoS characteristics for
each component of the system such that; if the QoS characteristics of compo-
nents are satisfied, then the QoS requirement of the whole system is satisfied. In
particular, it is important to ensure that under the specification of the functional
behaviour of the system the QoS is achievable.
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The current paper builds on earlier works [1,11,12], which present a method
of specification of QoS in ODP [21] design of Distributed Multimedia Systems.
Our aim is to present a method of verification of Timeliness QoS statements
such a Jitter, Throughput and Latency, which are boolean functions on the set
of sequences of time of occurrence of events. The adopted approach is based
on the idea of Test Automata [2-4,16]. Assume that the functional behaviour
of the system is modelled via (a network of) Timed Automata [5,9] <. Start-
ing from a Timeliness property ¢ related to the time of occurrence of exter-
nal event e,...,ex of o/, we shall present a network of Timed Automata
QT A(¢,ei,...,ex), called QoS Timed Automata, which will be used to ver-
ify the property ¢ on &/. The QoS Timed Automata is such that & satisfies
the property ¢ if and only if QT A(¢,e1,...,ex) || & does not reach to a global
state with a coordinate failure, where the location failure of QT A(¢, 1, ..., ex)
represents the violation of ¢. In practice, using QTA transfers the problem of
verifying a QoS statement of a distributed system into a reachability analysis in
a network of Timed Automata, which can be carried out via model checkers. In
this paper, we shall use UPPAAL [6,9], which has been successfully applied to
the verification of real-time systems [8,14,18].

The paper is organised as follows. Section 2 presents a brief introduction to
Timed Automata and UPPAAL. Section 3, presents a formal definition for QoS
Timeliness properties and QoS Timed Automata (QTA). Theorem 1, the main
result of the paper, proves that a QTA is a Test Automata [2—-4,16]. Section 4
applies our approach to the verification of throughput in an example of a Video
Player system. Section 5 presents a proof for Theorem 1. The final two sections
discuss some related works and draw a conclusion.

2 Timed Automata with Data Variables and UPPAAL

In this section, we shall review a variation of Timed Automata model proposed by
Alur and Dill [5], which is used in UPPAAL [6,9, 16, 17], a tool for the verification
of behavioural properties of real-time systems.

Consider a set of Completed Actions, denoted by C A, which specify inter-
nal actions of a component of the system modelled via Timed Automata. In
the UPPAAL model, Timed Automata (components) communicate via simple
CCS [20] style point-to-point communication. As a result, consider a set of Half
Actions, HA = {z?,z! | x € CA}. Let A denotes the set of all actions of the
system consist of all half actions and complete actions, i.e. A = HA U CA.
x € C'A. Underlying actions are defined via the function |: A — A defined by
(&) = (2?7) =] () = z for all x € CA. If there is no fear of confusion, we shall
sometimes drop parentheses and write | z!,] z? or | . Moreover, for A C &,
LA={ly|yeA}.

Suppose that % is a set of clock variables, with values in R2? and 2 is a
set of data variables, with integer values. Let ¢(% U 2) denotes the conjunction
of boolean expressions over atomic formulae of the form £ ~ gor z —y ~ ¢
or i ~ n, where z,y € €, i € 9, q is a rational number, n € N = {0,1,...} a
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natural number and ~€ {<, >, =, <, >}. In what follows the term variable refers
to both data and clock variables.

A waluation (variable assignment) is a map v : ¢(¥ U 2) — RZ® UN, which
assigns to each clock a non-negative real-number and to a data variable a natural
number. For a valuation v, a delay d € R2?, which is denoted by v+d, is defined
as (v+d)(z) = v(z)+d, if z is a clock and (v+d)(¢) = v(4), if ¢ is a data variable.
In other words, all clocks operate with the same speed and data variables are
time-insensitive. If A # @ is a set of variables, i.,e. A C ¥ U 2, the set of
valuations on A is denoted by ¥ (A). For nonempty sets of variables A, B and
valuations v; € ¥ (A) and v € ¥(B) if v1(z) = va(z) for all z € AN B, we
define v; Uvy € (AU B) by v1 Uva(z) =1 () if z € A and v1 Uwva(y) = v2(y)
ifyeB.

The value of clock or data variable can be reset. A reset statement is of the
form x := e, where z is a clock or a data variable and e is an expression. In the
current version of UPPAAL, for a clock, e must be a natural number, and for
a data variable, e must be in the form of ¢y + ¢, where ¢ and ¢’ are constant
integer and y is a data variable. A set of reset statements is called a reset-set or
reset if each variable is assigned at most once. The result of applying a reset r
to a valuation v is denoted by the valuation r(v). If a variable z is such that no
assignment of 7 changes its value then v(z) = r(v)(z). Let #Z denotes the set of
all resets. If 71,72 € &£, then ry Ury € Z, if 1 UTo assigns at most one value to
each variable. A Timed Automaton & is a 6-tuple (L,lo,T,1I,C, D, A) such that

— L is a finite set of locations and Iy € L is a designated location called the
initial location.

—CC%,DC % and A C A are finite sets of clock variables, data variables
and actions, respectively.

— T CLxAxc(CUD)xZ x L is a transition relation. An element of T is of
the form of (I1,a, g,7,12), where l;,l5 € L are locations of Timed Automaton,
a € A is an action, g € ¢(C'UD) is called a guard, and r € Z is a set of reset
statement. We sometimes write [y 9.8 l> to depict that o/ evolves from a
location /; to a new location [a, if the guard g is evaluated true, the action
a is performed and clocks and data variables are reset according to 7.

—I:L — ¢(CUD) is a function that assigns to each location an invariant.
Intuitively, a timed automata can stay in a location while its invariants are
satisfied. The default invariant for a location is true (z > 0).

For each Timed Automaton ', we shall write Location (&), Clock(</), Data()
and Act(«) to denote the set of locations, clocks, data variables and actions of
& , respectively.

The semantics of Timed Automata can be interpreted over transition sys-
tems, i.e. triple (S, sg, =), where

— S C L x ¥ is the set of states, i.e. each state is a pair (I,v), where [ is a
location and v is a valuation

— sg € S is an initial state, and

— =C S x (Act(«) UR20) x S is a transition relation.
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A transitions can be either a discrete transitions, e.g. (s1,e,s2), where e €
Act(&f) or a time transitions, e.g. (s1,d, s2), where d € R>? and denotes the

passage of d time units. Transitions are written: s; = sy and s =d> S9, respec-
tively, and are defined according of the following inference rules:

L2 gv) VA <d I()(v+d)
(l,0) = (o, 7(v))  (1,0) 2 (v +d)

A direct results of the above definition is the Time Additivity Axiom [23].

di+d
L 1dd2

Time Additivity Axiom: For every s;,s, € S and d;,dy € RZ9, s
so if and only if there is a state s3 such that s; i& s3 and s3 % So.

To model concurrency and synchronisation between Timed Automaton, CCS
[20] style parallel composition operators are introduced, which synchronise over
half actions. Suppose that &, ..., «, are Timed Automata, the parallel compo-
sition & := A || D || --- || 9, is referred to as a network of Timed Automata
[6,9,16,17]. The semantics of a network of Timed Automata can be expressed
via a transition system (S,sg,=). A state s € S is of the form s = (I,v)
where | = (Iy,...,1,,), in which each [; is location of &% and v is a valuation
on U;(Clock(«%;) U Data()). so = (lg,ve) is the initial location, where lg is the
vector of initial location of the components and vy is the a valuation compatible
with the initial valuation of the components, i.e. ug |Ciock(ar)uData(a;) 1S the
initial valuation of the i-th component.

Let for a vector of location I = (ly,...,1,), I[l';/l;] denotes the vector of
location created by replacing I; with I’;, then = is defined via the following
inference rules:

— For a completed action a which belongs to a component &7, i.e. a € Act(o;)N
CA, (I,v) 2 (U's/L),ri(v)), if 1; 25 1'; and gi(v) ®
— Suppose that z! and z? are half actions of % and 7 where i # j. (I,v) =

(l[l'i/li,l'j/lj],TiU’f'j(U)), if ; mﬂn U;, lj w?,g_jy‘j llj, gi(v), gj(v) and riur; €
X.
— FordeR2, (L,v) % (1,v+d), if I(l;)(v +d) for all 4, and all d < d.

Presence of urgent channels and committed locations may overrule the above
transitions as follows. In a state where two components may synchronise of an
urgent channel, no further delay is allowed. If in a state, one of the components
is in a location labelled as being committed, no delay is allowed to occur and
any discrete transition must invoke. In this paper, we shall not use any urgent
action or committed state.

Assume that o7 is a network of Timed Automata. A run o of & is a fi-
nite/infinite sequence of transitions of the form sg g S1 é% S9 -+ where sq is
the initial state and )\; € Act(#/) UR>?. For each state s; of the run o, define

3 Note that g; is a function defined on valuations of the a component timed automata
;. As a result, g;(v) is an abbreviation for g;(v |ciock(sr; )uData(a;))-
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TimeStamp(o,s;) = YI_1{\i | A € R2%}. Similarly, for an action \; define
TimeStamp(o, ;) := TimeStamp(o, s;), which denotes the time of occurrence
of A;. We shall denote the set of all runs of & with Run(%/). Assume that oy and
oy € Run(&) are such that oy = s} 2 s! B gl... and gy =2 8 2 8 52...
We say o1 and os are identical if they have the same length, i.e. either both

are infinite length or both have the same length, and for each i, s} = s? and

1 1

\; = pi. However, by Time Additivity Axiom, two runs oy = sy = s1 = 9
and o9 1= sg 2N sa, although not identical, are equal. In this paper, two runs are
called equal, if they are equal up to Time Additivity Axiom, i.e. applying Time
Additivity Axiom to one of them results in an identical run with the other. If [
is a location of &, we say a run o € Run(%) meets the location [, if there is a
state s; = (I,v) in o.

3 Verification of QoS Timeliness Properties

Assume that e is an action of the system, a Timeliness property for e is defined
to be a property related to the time of occurrence of e [10]. For example, if
the action e marks the dispatch of frames from a communication channel, the
throughput of 25 frames per sec. can be seen as a property of the time sequence
{t1,12,...} of the time of the occurrence of e such that

Vn | tnt2s — tn |< 1000, (1)

where time is measured in msec.
In general, the sequence of time of occurrence of events are finite or infinite
sequences of non-decreasing, non-negative real numbers.

Definition 1. Forn € N, let I'™ = {{t;};_, |0 <t; <ty <--- < ty,}.
Let I' = |2, I U {0}, where ( is the empty set.

n=

Suppose that & is a a network of Timed Automata and o = s¢ 4.2
Sp---is a finite/infinite run of &7, where for each i, s; is a state and \; €
act(o/) URZO.

Definition 2. For each action e € Act(&), if e is an event occurring as {\;},
let Time(o,e,n) denotes the time of n-th occurrence of e in the run o, i.e.
Time(o,e,n) = TimeStamp(a,s;) = > 1_;{\i | \i € R2°}. Let the sequence
Time(o,e) := {Time(o,e,n) | n € N}.

Clearly, for each run ¢ and each action e € &, Time(o,e) € I'. In particular,
if e does not appear in o, then Time(c, e) = O(€ I') is the empty sequence. Now,
we shall present a formal definition of Timeliness properties as boolean functions
on the set of time sequences.

Definition 3. A Timeliness property of degree K > 1, is a function ¢ : 'K —
K

—
{T,F}, where ' =T'xI'x---xT.
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Ezxample 1. The throughput of 25 frames per sec. for e can be expressed via the
Timeliness property ¢ of degree 1, defined by

_ T Vn | tntos — tn |< 1000
(1) = { F otherwise )

As a result, throughput is a Timeliness property of degree 1. It can be seen
QoS statements such as various types of Jitter [13] are Timeliness properties of
degree 1, whereas latency is a Timeliness property of degree 2. In general, it
seems that, any property related to the relative time of occurrence of K events
can be evaluated via a Timeliness property function of degree K. Assume that the
functional behaviour of system is modelled via a network of Timed Automata.
For a property to satisfy, it must satisfy for all runs of the network of Timed
Automata.

Definition 4. Assume that & is a Timed Automaton such that e1,...,ex €
Act(B). Suppose that ¢ is a Timeliness property of the degree K. B satisfies ¢
forei, ... ex iff for each run o of B, ¢(Time(o,e1),...,Time(o,ex)) =T. In
this case, we say o satisfies ¢.

The main focus of this paper is on Timeliness properties which express QoS
statements. The outline of our approach is as follows. We start from a Timeliness
statement ¢ and create a network of Timed Automata such that all its runs that
do not meet a state called failure, satisfy ¢. Moreover, all runs of the network
of Timed Automata that meet failure violate ¢. This ensures that the network
of Timed Automata fully represents the property ¢.

Definition 5. Assume that ¢ is a Timeliness properties of degree K express-
ing a QoS statement on the set of actions e1,ea,...,ex. A QoS Timed Au-
tomaton corresponding to ¢ and ey, ...,ex is a network of Timed Automaton
o = QT A(¢p,e1,ea,...,ex) such that

1. o/ contains a distinct location failure;

2. for each run o of &, if o does not meet o failure state, i.e. a vector of
locations with at least one co-ordinate failure, o satisfies ¢.

3. for sequences, t',t%,....t5 € I' that satisfy ¢, there is a run o of &/ such
that
(a) o does not meet failure; and
(b) for each i Time(o,e;) = t;;

4. for finite sequences t',t2,... t& € I, if ¢ does not satisfy t',t2,...,t5, then
there is a finite run o of & such that o ends in failure and t' = Time(o, ;).

It poses as a question that which Timeliness properties correspond to QoS
Timed Automata (QTA). Since Timeliness properties are boolean functions on
I'K | the cardinality of the set of Timeliness properties is > 22", Notice, the
cardinality of I'K is the same as the cardinality of I", which is > 2%°. The cardi-
nality of the set of timed automata is 2¥¢ the majority of Timeliness properties
are not in correspondence with any QTA. The question of characterisation of
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all timeliness properties which can be translated to QTA is highly nontrivial.
[2-4] adapts a Temporal logic approach to characterise all properties which are
testable via timed automata. However, considering that the Timed Automata
model of [2-4] does not include data variables, further research is required to
characterise all Timeliness properties corresponding to QTA.

A Timeliness property ¢ deals with the time of occurrence of external events
e1,---€ex. Since actions are atomic, two consecutive external actions in a run o
have identical Timestamps. As a result, the order of occurrence of such events
has no effect on “o satisfies ¢,” when ¢ is of degree > 2, i.e. the property ¢
can not differentiate between two runs which are identical except the order of
consecutive actions with the same Timestamp. Consequently, it is important for
a QTA to include all permutations of such actions.

Definition 6. Suppose that &7 is a QTA corresponding to a Timeliness property
¢ and events ey, ...ex. & is called a Complete QTA if for each run o := sq Y
s1 & Sg+-- Ay Sn, of & with consecutive actions A;, \it1 € Act()N{e1,...ex},

A A by N A L
the run o' :=s9 =5 51 3 sp---8; = s = si01--- =3 sy, which is created from
changing the order of occurrence of \; and A\jy1, is also a run of &.

The next theorem which is the main result of the paper, uses parallel compo-
sition of a QTA and the network of Timed Automata representing the functional
behaviour of the system to verify Timeliness properties. In effect, the next the-
orem states that each QTA is a Test Automata [2—4].

Theorem 1. Assume that £ is a network of Timed Automaton such that
e1,...,ex € Act(B). Suppose that ¢ is a Timeliness property of the degree K,
for which a complete QTA &/ exists. B satisfies ¢ for e, ...,ex if and only if
no run of &' || B' meet the state failure, where &' = QT A(¢,e1,e2,...,eK)
[er?/e1,...,ex?/ex] and B' = Blei!/e1,...ex!/ek], created from o and B,
respectively, by replacing ey, ...,ex with half actions.

Proof: See section 5.

4 Verification of QoS for a Video Player System

In this section, we shall apply our results to verification of Timeliness QoS state-
ments on a model of a Video Player system. Fig. 1 depicts a process oriented
view of a Video Player system. The system consists of four components Video
Source, Buffer, Decoder and QoS Controller that can be explained as follows.
Video Source: models the application that produces streams of video packets.
The dispatch of each video packet is abstracted as the emission of a signal packet!.
Fig. 2 depicts the behaviour of the Video Source as a Timed Automaton, which
dispatches packet! signals with the periods Ty. The variable Rp, which models
the rate of the creation of the packets, is used by the QoS controller.

Buffer: (in Fig. 3) receives packet? signals and emits o_packet! signals in periods
of Ty. The number of packet? in the buffer is denoted by c. If ¢ is equal to L,
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packet! o_packet!

Fig. 1. A Process Oriented View of the Video Player System

the length of the buffer, the buffer is full and the next signal causes an overflow
of the buffer, which results an Ezception being thrown. One of the objectives of
the design of functional behaviour is to avoid an overflow of the buffer.
Decoder: (in Fig. 5) is used to convert arriving packets into video frames. For
the purpose of simplicity, we assume that each frame consists of a single packet.
On creation of a frame a half action frame! is emitted, which can be used to
synchronise with the display driver. It takes at most 77 unit of time and at
least Tp unit time to generate a frame from an arriving packet. The Decoder
also generates drop! signals, which mark failure of generation of a frame. The
emission of a drop! signal is controlled by two local variables r and p, and a
global variable P. The value of variable P represents the drop rate ratio. For
example for the drop rate of %, the value of P is equal to five, which denotes that
one out of five frames are dropped. In this case the Timed Automaton creates
one drop! in every five output signals.

The value of a global variable R, which shows the current rate of performance

of Decoder, is incremented to mark the creation of a frame. The value is also
periodically reset by QoS controller.
QoS controller: (in Fig. 4) controls the drop rate P of the Decoder. To syn-
thesise the controller, within each wunit time, the current rate of the system
performance R, and R, are compared. If R, — R. > 6y, the value of P is incre-
mented. If R, — R, > 61, the value of P is decremented. 6y and 6, are constant
threshold values.

One of the outputs of the above Video Player example is a signal frame!
representing the creation of a single frame. This signal is used to synchronise the
Video Player with a display drive. For a display drive to present a high quality
pictures, it is required that signals frame! are dispatched with a suitable through-
put. In general, the QoS characteristic throughput of an event e is referred to as
a lower bound or an upper bound time on the number of occurrences of the event
e [10]. For the rest of the current section, we shall demonstrate our approach by
an example of verification of the QoS Throughput. Formally, a Throughput of
k € N\{0} within Ty and T; unit of time (Ty < T') is defined by

Vn To < 1(e?,n+ K) —7(e?,n) < T, (2)
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Fig. 5. Decoder represented in TA
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where 7(e?,n) denotes the time of the n-th occurrence of the event e? in the
system.

Example 1 expresses the throughput of 25 frames per sec. as a Timeliness
property. Similarly, the general form of throughput, equation (2), can be written
as a Timeliness property of degree 1. Our next aim is to present a QTA o
corresponding to throughput that satisfies the definition 5. The first requirement
is that all runs of & should be such that the time for the occurrence of e satisfies
the equation 2. A solution is to create k clocks tg, t1,...,tx_1 and use each clock
t; to measure the time difference between the j-th and i + k-th occurrence of e,
in a periodic form.

Fig. 6 represents a Timed Automata that checks if two consecutive occur-
rences of a signal e? are within Ty and 77 units of each other. In order to check the
Throughput, we require k parallel composition copies of the Timed Automata of
Fig. 6. Each such copy of the Timed Automata of Fig. 6 has an index, denoted
by 4, which acts as an identifier. There is a global variable ¢, which determines
which copy can fire an action e?. For example, in location active, if ¢ == i
and e? occurs within the period of [Tp, T], a transition fires which sets the value
of ¢ to ¢ + K. This means that, if the condition Ty < ¢t < T is satisfied, only
the copy of the Timed Automata of Fig. 6 with the index ¢ + K can fire. For
example, the QTA for the Throughput of at least K = 3 within L unit of time,
ie,Vn 0 < 71(e,n+2) —7(e?,n) < T can be modelled via the network of
Timed Automata depicted in Fig. 7.

t>=T0,t<=T,c==1

=c+K
sleep failure
©C=:i t>T
e?
t:=0, t<TO,c==1
c:=c+K e?

Fig. 6. QTA to measure time difference between corresponding events e

The QTA of Fig. 7 works as follows. At first the value of the counter ¢
is 0, therefore, if an action e? occurs, then the Left Hand Side (LHS) Timed
Automata changes its location to active, because condition ¢ == 0 holds. Thus,
LHS Timed Automata increments counter ¢ by 1 resetting its own clock tg. At
this moment, if another action e? occurs, then the Timed Automata in the middle
changes its location due to active. It also increments the counter ¢ by 1. Finally,
the Right Hand Side Timed Automata changes its location on arriving the third
action e?, because condition ¢ == 2 holds. At this point, since ¢ := ¢ — 2, the
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t0>=0,t0<=T,c==0 t1>=0,tl <=T,c==1 2>=0,2<=T,c==
e? e?

Fig. 7. QTA for the Throughput with K = 3

value of ¢ is set to 0. Now, if the fourth action e occurs within the period [0, 77,
LHS Timed Automata again fires and ¢ is again incremented from 0 to 1.

It can easily be seen that the network of Timed Automata of Fig. 7 satisfies
the definition 5 and hence is the QTA for the throughput.

The rest of the current section demonstrates our method for the verification
of Throughput of frame? signals in the Video Player system. In what follows, we
have used UPPAAL (ver. 3.2.13) on SUN WS (Ultra SPARC Memory:4G) with
the parameters specified in Table 1.

|sub-system |parameter|value|details |
|Video Source |To | 40|period of emission of packets |
Decoder To 30|Lower bound of time to generate a frame
Decoder Th 40|Upper bound of time to generate a frame
Decoder P 5| The initial value of the drop-rate of the frames
Qos Controller|unit 1000|period of control

Qos Controller |8y, 61 5|Control Thresholds

Buffer To 40|fixed period for the dispatch of packets

Buffer L 5(length of the Buffer

Table 1. Video Player Parameters

One of the requirements of the design is to ensure that the Buffer never
overflows, i.e. the location Inter of the Buffer of Fig. 3 is not reachable. This
has been verified checking the deadlock-freeness of the model.

Checking the Throughput of K frame? signals per T msec. is straight forward.
We only need to include K parallel composition copies of the Timed Automata
of Fig. 6 and check for deadlock-freeness. Since, we have already verified that
the buffer will not overflow, the only likely deadlock can occur from reaching a
global state with a coordinate failure. But, how can we calculate K and T'?

In general, estimating the Throughput of a given system is non-trivial. Here,
we can see that the system produces at most K frame? signals every T = 130 +
(K — 1) x 40 msec. To see, this noticing that the system has a drop rate of
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one in five, we need to look for the worst possible delay between frame? signals.
The worst scenario happens when two consecutive o_packets are dropped. For
example, consider the case that the 3-rd frame? signal is created in the possible
time, i.e. 30 msec. after the arrival of the corresponding buffered packet. The
5-th and 6-th frame? signals are dropped and the 7-th is created at the latest
possible time, i.e. 40 msec. after the arrival of the corresponding buffered packet.
In this case, the time difference between the 4-th and 7-th frame? is equal to
130 = 3 x 40 + 10.

Table 2 depicts the result of the verification. It can be seen that Throughput
of 1 frames in 130 msec., 2 frames in 170 msec., ... are verified, while the
Throughput of 1 frames in 129 msec., 2 frames in 169 msec., ... are not valid.
We have also included the CPU time for each experiment, which indicates an
exponential increase in time. As a result, there is a clear scope in the research
for finding faster method of verification of QoS Timeliness properties.

Number of |[|Duration time|Result of verification|CPU time
frame? signals (sec.)
1 130 valid 15
1 129 not valid
2 170 valid 30
2 169 not valid
3 210 valid 120
3 209 not valid
5 250 valid 60
5 249 not valid
6 290 valid 100
6 289 not valid
7 330 valid 600
7 329 not valid

Table 2. Result of the Verification of Throughput

Of course UPPAAL itself is not a system development tool. However, in the
early stages of the system design, it can be a strong tool for detecting time
related design errors in the specification. For example, often choosing a wrong
value for a constant or using < instead of < may creates a dead-lock. Such system
errors can be easily detected using UPPAAL. When the designer developes an
implementation as an executable code or a hardware logic design, it is hard to
detect such errors.

5 Proof of Theorem 1

The aim of this section is to present a proof of the Theorem 1. Our first result
establishes the relationship between runs of the parallel composition of two net-
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works of Timed Automata with runs of each component. The idea is to project
each run of the parallel composition to a run of the components. We shall start
with the definition of a projection map.

Definition 7. Suppose that &/ and B are two network of Timed Automata that
share actions eq,es,...,ex. Let gy : Act(o || B) URZ® — Act(o) UR2O

A e R0

A € Act(#B)\Act()
A € Act(o)\ Act(B)
A € Act() N Act(B)

T (A) =

> > O >

!

It can be seen that the projection function 7, maps all actions \ ¢ Act(«)
to 0. This can be interpreted by considering that the occurrence of such A has
no effect on the dynamics of .« and takes zero-time. The projection map 74 can
be defined similarly.

If s = (I,v) is a state of & || &, then the vector of location ! consists of
coordinates representing locations in both & and %. Also, the valuation is a
map on the set of clock variables and data variables belonging to both & and

B.

Definition 8. Suppose that s = (l,v) is a state of & || B, define prgy(s),
called the projection of the state s to &, as a pair (Lo, ve) such that lg is
the restriction of 1 to the set of coordinates of locations in &/ and vy is the
restriction of v to the clocks and data variables in < .

The next lemma states that the projection of each run of & || £ to & is a
run of &. Assume that & and & are networks of Timed Automata with shared
actions {e1,ea,...,ex}.

Lemma 1. If 0 := s Mg R85 . isa finite/infinite of o || B, then

Prez (o) Mg\l) pros(st) Wd:@Z) wﬂ:(g‘") proz(8y) -+, which we shall denote
with proj(o, &), is a run of &' = || e1/e1,...,| ex/ek] created from < by
replacing each half action with its complete form.

Angt

Proof. The proof is by induction on n. We must show that if s, "= sp41 then
An
DPrez(Sn) wﬂ(:>+1) Prog(Snt1)- Let sp = (In,vp) and spy1 = (Lng1,Vny1)-

An . . .
case 1: \,;1 € R20, is trivial. As s, =t Sn+1 implies that for each coordinate
l; of the vector of locations U, I(l;)(v+d') for all d’ < A\,41. This is true specially
for the coordinates [; of 7.
case 2: A\ € Act(PB)\Act(«) i.e. \p41 is an internal action of & and occur-
rence of A\, 41 has no effect on &/. Consequently, none of the locations, valuation
of clocks or data variable of & is changed i. e. pro(s,) = pro(sn+1) and we

can write pro/(sp) = pro(sns1)-
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case 3: \,11 € Act()\Act(B), then there is a location I; € Location(<)
such that [; AnLgors I;. As a result, U1 = Ul}/L], vp41 = r(vp), and g;(v) =

s
gi(’U |Clock(.;z¢i)UData(.;z¢i))a prd(sn) =4 prd(sn—i-l)-
case 4: | Apy1 €] Act(#)N | Act(2B). In this case, A\y41 is a shared action and

en?,gisTi l/
[

there is an e, (1 <n < K), such that \,41 =} e,. For example, [; and

L9557 4 - .

1; 225 1L in of and B, respectively. Moreover, g; (vn),9j(vp) and 3 Ur; € Z.
en?,9i,Ti

I

77 gi(vn)7r’i 6 '@
A.
Hence, pro/(sn) = prer(sn+1)- O

As aresult, replacing e,,? with | e, (=] \y,) , we have [;

The converse of the above lemma is not valid. In other word, it is not possible
to start with any two runs o7 € & and o2 € & and merge them to create a run of
the parallel composition. For o1 and o3 to synchronise, one of the requirements
is that the order of the occurrence of the shared actions to be identical.

Definition 9. Assume that & and % are two networks of Timed Automata
with shared actions ey, ...,ex. Assume that o1 and oo are finite runs of &/ and
B, respectively. o1 and oo are called Shared Action Compatible if the order of
the occurrence of shared actions in them are identical. i.e. if {u},pud, ..., ul}
and if {3, u3,...,pu2,} are ordered sequences of shared actions in o1 and o,
respectively, then n = m and for each i, u. and p? are half actions of the same
complete action, i.e. . | ul =] p2.

The following Lemma studies a special case under which it is possible to
merge a run oy of & and a run o2 of A. For o; and o3 to merge into a run of
the the parallel composition & || %, they must have the same time sequences,
for the corresponding shared actions and the order of the occurrence of shared
actions with equal Timestamps must be identical.

Lemma 2. Assume that & and & are network of Timed Automata with shared
actions ey, ez, ...ex. Assume that &/ and B have no shared clocks or data vari-
ables. Suppose that o' and o2 are finite runs of &/ and P that

1. 0! and 0* are Shared Action Compatible and;
2. for each i, Time(ol,e;) = Time(o?,¢;),

then there is 0 € Run(«/ || B) such that proj(o, o) = o' and proj(o, B) = o>.

sketch of the Proof: suppose that o' = s} = s} 2 -.- 2 s} and 0% = 52 &
22 B2 here for each i, a; € Act(o/) URZO and f; € Act(%B) UR2O.

Let us assume that Timestamp(ot, S&) < Timestamp (0%, S%,); the symmet-
ric case of Timestamp(o?,S%) > Timestamp (02, S%,) can be treated similarly.
Also, without any loss of generality, we can assume that the set of all Times-
tamps of all states 0! and the Timestamps of the states of o that occurs before
the Timestamp of the last state of o' are identical, i.e.

{Timestamp(c',s}) | 0 < j < N} = {Timestamp(o?, s3) |

Timestamp(c®, s3) < Timestamp(o?, s§)}.

3)
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The above can be achieved by using Time Additive Axiom to modify a run and
adding extra states. The proof of the lemma is by induction, we shall use the
following notations in the rest of the proof:

- forOSpSN,letal’p:zs(l)%s%%---%s;,
- forOSqSM,letaZ’q:253%82%---%83,
— also assume that for 0 < n, o” := sg éﬁ S1 éﬁ >:‘$ s, donates a run of

o || B.

Since the induction base is trivial, we only need to prove the following claim,
which implies the induction step.

CLAIM: for p+q < M+N, if proj(c™, &) = o%? and proj(oc™, #) = 021, there
is 0"t € Run(« || %) such that proj(c™t', &) = o'* and proj(c™t', B) =
027, wherep<p' <N,q<q¢ <Mandp+q<p +¢.

Proof of the CLAIM: The proof of above claim involves a number of cases.
Let s, = (I',v'), s3 = (I?,v*) and s,, = (I,v), where I consists of coordinates of
I' and I? and v = v Uv?.
case I: apy 1 = 0 or Bg41 = 0 is trivial. For example if ;11 = 0 then 811) = 3;—1-1-

. A A A a .
In this case, the sequence 6™t! = 59 = s, B ... B 5, 2" 5, is such that

proj(o™t, &) = obP*! and proj(o™t!, B) = 024. We see that p' = p+ 1 and
¢=q+1
case II: a,41 and B441 are both nonnegative real numbers. Using equation 3

we can show that api1 = B441 = d. Now, if o™F1 1= s P B sp %

Sni1, we can see that proj(c™t!, o) = obP*! and proj(o™*!,#B) = o>+l
Consequently, p’ = p+1and ¢ = ¢+ 1.

case III: One of apy1 or fg41 is a completed action. For example, if apiq is
a completed action and enabled under sy, ap41 is enabled under 3;19- Hence, if

ol = gy Mg 2L A D Spt1 then proj(o™tl, &) = obP*! and
proj(o™t, B) = 0%4. In this case, p' = p+ 1 and ¢’ = q.
case IV: Both a,41 and (441 are half actions. By the Shared Action Compati-

bility, ap4+1 and B441 are half actions of the same actions, i.e., there is ¢ such that

dapr1 =l Bgy1 =€ for 1 <i < K. Then let o™+ :=sogsl éﬁ’\ﬁsn%

Snt1. We can see that proj(c™t!, &) = o'+l and proj(o™t, B) = o>+l
Notice that p = p+ 1 and ¢’ = ¢ + 1.

case V: One of a1 or 8441 is a half action and other is in RZ. Let a1 € HA
and 8,41 € RZ°. By the Shared Action Compatibility, thereisr > g+1, such that
Br and a1 are half actions of the same actions, i.e., | apy1 = Br = e;. This
implies that 8,41 = 0, since 3,41 <Timestamp(o?, s} ,)— Timestamp(c®,s}) =
0. Using case I, there is nothing to prove. a

We shall end this section with the proof of Theorem 1.

Proof of Theorem 1 = : We shall prove by contradiction. Suppose that %
satisfies the property ¢ but there is a run o of &’ || &' ending in failure. Then
by Lemma 1 0 = proj(o, &) is arun of & ending in a failure state of &7, i.e. a
state of & with a failure coordinate. As aresult, ¢(Time(oy,e1),- .., Time(ouy, ex)) =
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F. Now, consider o = proj(o, #) which is a run of 4. Since, Time(oy,e;) =
Time(o g, €;), for each 4,

¢(Time(og,e1),...,Time(cg ,ex)) = F. Consequently, by definition 5, og
does not satisfy ¢, which is a contradiction.

Conversely: The proof of this case is also by contradiction. Assume that no run
of the parallel composition meets any failure state, but & does not satisfy ¢.
Then there is a run o2 of & such that ¢(Time(o2,e1),. .., Time(os,ex)) = F.

Suppose that t' = Time(0s,€;) ,..., tX = Time(0os,ex). Since ¢(t!,...,tK) =
F by Definition 5. There is a finite run oy of & such that oy ends in failure
and t; = Time(o1,e€1),. .., txk = Time(o1, ex). Moreover, since & is a Complete

QTA, o, can be chosen such that o; and o9 are Shared Action Compatible.
Now, using o1, 02 and Lemma 2, we can conclude that there is a run of &' || £’
ending in failure. This is a contradiction. O

6 Related Works

Formal specification of QoS in a distributed system via modelling languages such
as Unified Modelling Language (UML) is an active area of research [22,7,15,1,
11,12]. In particular, the idea of specifying the QoS requirements as contracts
[19] on the behaviour of the system is proposed [15] as a part of Model Driven Ar-
chitecture, the new initiative by the Object Management Group (www.omg.org).
However, the current research mainly deals with the issue of verifying of QoS
property via Test Automata. The question that, which properties can be anal-
ysed by Test Automata is discussed in details in [2-4]. In particular, [3] presents
a property language, called SBLL which is suitable for expressing safety and
liveness properties of the real-time systems. SBLL is a testable language, in the
sense that [4] presents an algorithm for the translation of SBLL formulae to Test
Automata. SBLL has the following grammar:

b= | g1 Ao | gV é|Wo | [alg | (a)tt(a€ %) |zing| X | max(X,9),
where ff and tt stand for false and true, respectively. g is a guard expression on
the clocks, z in ¢ stands for resetting a clock z before evaluating ¢, max(X, @)
is the maximal fixed point solution on X in ¢, % is a set of urgent actions and
W¢ stands for ¢ holds forever.

The following formula represents the Throughput as an SBLL formula

¢:t1i_n[€?](t1 ZTV(tzi_n[e?]tl ZTVtQ ZTV("'(tl ZTV"'tK_l ZT

Vtx_1 in [e?](¢"))--+)))
¢'(X) =t > TVt (in [e?](ts > TVt in [?](---tx—1 > TVix 1 in [e?](X)---)))
¢" = max(X, ¢').

Fig. 8 depicts the Test Automaton for the Throughput for K = 3, created via
the algorithm [4], in which all redundant transitions are omitted. Fig. 7 depicts
the equivalent QTA created earlier. It can be seen that the QTA of Fig. 7 has
the advantage of being scalable, i.e. the Test Automaton for the throughput of
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t1>T

t>T,2>T

t1>T,2>T,3>T

failure

Fig. 8. QTA for checking Throughput of K occurrence of e? in T unit of time

K signals e? in T units of time can be created from the parallel composition of
K copies of the QTA of Fig. 6. The reason behind scalability of our model is
that, unlike SBLL, our model of Timed Automata includes data variables. There
is a clear scope for research to extended the SBLL to include data variables. In
particular, since Ly, an extension of SBLL, completely characterises testable
properties [2-4], an extension of SBLL to include data variables will enable to
characterize the Timeliness properties which are testable.

7 Conclusion

This paper presents a formal approach to the verification of Timeliness QoS
properties, such as Throughput, Jitter and Latency, in object-based models of
Distributed Multimedia Systems. For each Timeliness property ¢, we define a
QoS Timed Automata (QTA) such that all its runs that do not meet a failure
location, satisfy ¢. Moreover, all runs of the QTA that meet a failure location
violate ¢. The main result of the paper proves that a QTA is a Test Automata,
i.e. it can be used to verify the property ¢ over a network of Timed Automata
via parallel composition. We have demonstrated our approach by the verification
of Throughput in a Video Player system.
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