
-1-

UML AND PETRI NETS FOR DESIGN AND ANALYSIS OF DISTRIBUTED SYSTEMS

B. Bordbar, L. Giacomini and D.J. Holding

Department of Electronic Engineering, School of Engineering, Aston University,
Aston Triangle, Birmingham B4 7ET, UK

Tel: Tel: +44 (0)121 359 3611 Fax: +44 (0)121 359 0156
e-mail: {B.Bordbar,L.Giacomini,D.J.Holding}@aston.ac.uk

Abstract: This paper presents a modification to UML, to model and analyse discrete-event
dynamic systems (DEDSs) representing Manufacturing systems. It shows how Petri Nets
can be used to improve the representation and analysis of the dynamic model of a system
specified using UML. Finally the technique is illustrated by its application to a simplified
production line.

Keywords: Discrete-event dynamic systems, Petri-nets, object modelling techniques

1. INTRODUCTION

This paper describes the design of a supervisory
control system for a distributed manufacturing
process which forms part of a wider manufacturing
system. The focus of the paper is on the design of a
verifiable discrete event controller using a UML based
method. The approach adopted involves (i) using
Petri net models instead of conventional Statecharts to
provide analytic Dynamic Models; and (ii) using
compositional Petri net techniques to synthesise the
Interconnection Model. The model of the complete
controller can be then analysed and verified using
Petri net theory. The approach is demonstrated by
application to a prototype packaging machine.

Recent advances in computer technology have
resulted in a widespread use of Discrete-Event
Dynamic Systems or DEDSs in manufacturing,
robotics, traffic management, logistics, and computer
and communication networks (Cassandras, 1999;
Sobh et al., 1994). DEDSs require complex control
systems (Ramadge and Wonham, 1987) to ensure
correct and optimal operation. To model complex
DEDSs, researchers have developed bottom up, top
down and hybrid synthesis techniques. However,
these approaches concentrate on functional

abstraction, and have produced incomplete
specifications and designs (Firesmith, 1993). In
order to facilitate the design of complex systems,
produce more understandable designs and
specifications, facilitate the transition between
design and implementation and to enable software
re-use, several researchers including Booch (1991),
Rumbaugh et al. (1991), Ellis (1994), Douglass
(1999), have advocated a paradigm shift towards
object oriented (OO) techniques. The various
approaches have converged with the development of
the UML.

2. UML BASED DESIGN

The Unified Modelling Language (UML), originally a
methodology for software designers, is the most
recent product generated by the aggregation of
previous generation Object Oriented methodologies
(Booch et al., 1999). UML takes the designer through
the design life cycle, starting from the description
provided by users or experts down to the final
software product. UML preserves convergence and
clarity in design by prescribing a set of steps that
involve the creation of a series of graphs, the
generation of an evolving model of the system, and

2

the rigorous examination of this model. Thus, the
application of UML by different people with different
skills results in comparable and highly portable final
designs.

UML consists in a set of graphs or charts with
explanatory comments that can be expressed in a
formal way or in plain spoken language. The main
diagrams recognized by the standard are nine, falling
into two categories: static aspects diagrams and
dynamic aspects diagrams. The designer can choose
quite freely a subset of them. Also the order in which
they are designed is not fixed, apart from the
following rule of thumb
1. Use case diagram
2. One diagram in the static diagrams set
3. One statechart for each object in the system
4. One diagram in the dynamic diagrams set
5. Implementations diagrams

2.1 Use cases and class diagram

A UML design procedure (Booch et al., 1999) starts
with the study of the use cases, which are detailed
written descriptions of ‘what the objectives are’ and
'how the job is carried out'. Studying the use cases
enables the designer to recognise different 'key
agents' of the system, known as Objects in UML
terminology. Considering common features and
operations of key agents, objects are extrapolated into
collections called Classes. Classes can be organised
in a graph (or a collection of graphs), to build a 'class
diagram', that describes the static relationship
between the classes. The classes are represented
graphically by rectangular boxes connected together
by lines or links that can be either of association type
or of generalisation type. An association is a
structural relationship that specifies the connection
between one or more members of the classes. A
generalisation is a relationship between a general
class and a derived class, i.e. one can define a new
class from another class, by means of inheritance.
The operations defined in the class diagram include
all the services that can be requested from an object to
effect the behaviour. The class can request itself one
of its services.

2.2 Dynamical Aspects

2.2.1 Statecharts

The UML dynamical model is conventionally
elaborated by constructing a Statechart model using
the information provided by use case and class
diagram. Statecharts, (Harel, 1987) are used to depict
the behaviour of each class/object, and show the
states (or configurations of its attributes) and the
operations / events which modify the states.

2.2.2 Interaction Diagrams

Once the class structure is defined, diagrams affiliated
to the dynamic interaction between the instances of
the classes can be drawn. An object is an instance of
a class, and the object's state is denoted by the value
of its attributes. Only executing the operations
defined in the class can change the values of the
object's attributes. Objects participate in the
interaction diagrams as follows:
• collaboration diagram: shows the structural

organization of the objects and their
interconnection or communications (service
requests or messages),

• sequence diagram: shows the time sequence of
operations.

Since the sequence diagram and collaboration
diagram are isomorphic, the designer may be decided
to use only one of the two. For our purposes the
sequence diagram is better suited.

2.2.3 A Petri net Dynamical model

In order to promote our capability to analyse and
verify the underlying system, it is desirable to
substitute the Statechart with an analytic
representation such as Process Algebras, Automata or
Petri nets. In this paper we harness the capabilities of
Petri nets for modelling asynchronous concurrent
system, and replace the Statechart dynamical model
with an analytic Petri net model. As a mathematical
formalism, Petri-net theory can be used to analyse
DEDS characteristics such as synchronisation,
concurrency, conflicts, resource sharing, precedence
relations, event sequences, non-determinism and
system deadlocks (David and Alla, 1992);
(Desrochers and Al-Jaar, 1995).
For general information regarding Petri nets, we refer
to (Peterson, 1981) and (Murata, 1989). For
completeness, a short definition of a Petri net is
reported below.

A Petri net is a triple N= (S , T , F) where S is a
finite set of places and T is a finite set of transitions,
in which S∩T = ∅, the empty set. F⊆ (S × T) ∪ (T ×
S) represents the directed arcs between places and
transitions. A marking of N is a function m:S
→{0,1,2,3, …}, assigning to each place s∈S, the
number of tokens in s under the marking m. A
transition t is enabled under m (i.e. it may fire) if
each of its inputs have at least one token. If t fires, it
changes the marking m to a new marking m′ by
removing one token from each of the input places and
adding one token in each of the output places. A
marking m′ is said to be reachable from the marking
m if it exists a sequence of firing transition from m to
m′.

3

3. COORDINATION AND SYNCHRONISATION

The final and crucial stage in the synthesis process is
the instantiation of the objects in the system and the
design of coordination and synchronisation logic that
satisfies the requirements specified in the
Collaboration and Sequence diagrams. What is
missing in the UML procedure is a methodological
way of building and verify the coordination and
synchronization aspects. Using Petri net for this task
provides a consistent, tangible, and relatively
straightforward approach.
In practice, this reduces to the instantiation of the
Petri net models of the objects, and the synthesis of
appropriate coordination and synchronisation logic.
However, the process of compositional synthesis is
not an ad-hoc procedure. For example, simply
decomposing the collaboration and sequence
diagrams into a bag of rules that are imposed on the
objects ignores the important sequence information
and will over constrain the model.

To maintain the precedence relationships in the
compositional synthesis of two Petri nets, we first
provide a scenario of the desirable states of the
composite Petri net and the order that we expect the
desirable states to appear. This is achieved by
connecting the two component Petri nets together via
the systematic addition of interconnection arcs, places
or transitions. The composite net is then analysed to
ensure conformance with the use case. The example
in Section 4 demonstrates the approach used.

3.1 The Graph of Desirable States

Let us assume that our system is made of m objects.
For each object a Petri net is instatiated. Assume that
Γ denotes the part of the use case dealing with the
synchronisation of n of the above components into
an overall system (i.e. the various objects are
synchronized two by two, or less frequently, in groups
of 3/4 components).
Assume that (N1, m1

0), …, (Nn, mn
0), where mi

0

denotes the initial marking, are safe and live Petri
Nets, representing object instances of these n
components of the system. A proportion of the
information provided by Γ has already been captured
in the body of the dynamics of the Petri nets (N1,
m1

0), …, (Nn, m
n
0).

The reachability graph of the simple juxtaposition of
the Petri Nets for the single components must contain
the desired reachability graph for the Petri Net
synchronized following the use case Γ. As a result we
might need to block some undesirable transitions to
create the desirable behaviour.

The first step is to construct a directed graph, which
we shall refer to as the Graph of Desirable States

(GDS) and as the name suggest includes the set of all
desirable states and their relations together. The word
“desirable” reflects the facts that this graph, as we
shall see later, embraces all we expect from the
system to do. R∞(Ni, mi

0) denotes the set of all
reachable markings of the Petri Net (Ni, m

i
0), for each

mi ∈ R∞(Ni, m
i
0), and let enabled(mi) denote the set

of all enabled transitions of Ni under the marking mi.
Each node of GDS is labelled by a (n + 1)-tuple of the
form a = (m1, … , mn, U) where m1, … , mn are
reachable markings of the components N1, …, Nn and
U is a (possibly empty) subset of enabled(m1) ∪ … ∪
enabled(mn), the set of all enabled transitions under
m1, … , mn that indicates the subset of fireable
transitions with the current marking that are '
undesirable'. For the node labelled with a = (m1, … ,
mk, U) we shall write m(a) = (m1, … , mk) and U(a) =
U.

3.2 Heuristic for construction of GDS

Consider the set E0 of all transitions enabled under
initial marking m1

0, …, mn
0. Relying on the

information provided by the use case Γ, it is possible
that we need some of the transitions in E0 to be
prevented from firing. Assume that U0 denotes the set
of all such transitions, notice that U0 can be the empty
set. Create the first node, which shall be referred to as
the initial node, and label it with a0 = (m1

0, … , mn
0,

U0). From this node start firing each of the desirable
transitions E0\ U0, to obtain another set of nodes with
their marking and set of undesirable cases. Put arcs
connecting node a0 and the newly created ones
labelling them with t, where t is the name of the
corresponding firing transition. The procedure is
repeated for each of the new nodes created.

GDS captures the behaviour expected from the
composite net. For example, if there is a node a of
GDS with no output then our design of the system
expects a deadlock, which is anomalous. Starting and
ending in the same node of GDS represents a cyclic
phases of the system. It is often required to have live
systems, i.e. starting from each node and considering
an action (a transition) we expect to find a path from
that node to another node which has t labelling an
outgoing arc.

Now the task ahead of us is to synchronise Petri net
(N1, m

1
0), …, (Nk, m

n
0) together and generate a new

Petri net (N, m0) with the dynamical behaviour
pictured in GDS. For GDS where ∀ a, b nodes of
GDS, m(a) = m(b) ⇒ U(a) = U(b), standard
techniques (Juan et al. , 1998) can be applied to
compose the two Petri Nets, as shown in the next
section. As an example, an almost general rule
applicable when we want to prevent a transition tk in
Petri Net Nj from firing under a certain marking mi

k

4

in Petri Net Ni, a new place is added and connected as
input/output to the transition tk. The place is also
connected to transitions in Petri net Ni in such a way
that, when the transitions give rise to the marking mi

k,
the token is removed. The firing of the transitions
moving out of the marking mi

k will put the token back
in the place (see Fig. 1 for an example).

Figure 1

4. EXAMPLE OF A PRODUCTION LINE

The approach is demonstrated by considering the
design of a controller for a simplified production line
comprising loosely-coupled independently-driven
mechanisms such as conveyor belts, wrapping film
feeders, film sealers and cutters as shown in Fig. 2.

Figure 2 : Production Line

The product (JOB) flow is supplied via a belt and a
proximity sensor located at the ’decision point’
detects each approaching JOB. When the sensor
triggers, the angular position of the motor driving the
belt is held so to be able to measure the position of the
product with respect to the underlying belt. The
packaging film is supplied by unwinding a roll of
printed foil. The printed image needs to be positioned
centrally on the product; this is done using printed
marks (TAG) which are detected by a sensor with the
same logic as for the belt. The packaging film is then
formed into a tube via a funnel, and a longitudinal
sealing roller welds the two edges of the film together.
If both JOB and TAG are within production bounds,
the product is pushed inside the funnel from where it
is carried along by the film. To produce individually
packaged products, the tube is sealed between packs
by a lateral sealer, and then cut by a cutting machine.

The process is independently driven, in the sense that
major modules of the system are controlled
individually and independently. A discrete layer,
which collects information from relevant modules,
synchronises the different parts together. To see this
in detail, we consider that the plant consists of four
modules Belt, Film, Welder and Cutter. Each of the

modules has its own control. For example, the belt is
driven by a motor, which is controlled to track a
reference model ΓBM and the Film is driven by a
second motor controlled to track a reference model
ΓFM. To achieve the control objectives related to the
synchronisation of Belt and Film the following
heuristic is implemented.

Mutual synchronisation of Belt and Film: In order to
have each JOB wrapped in Film we need to have both
{ JOB at decision point} and { TAG at decision point} .
As a result, under either of the cases { JOB at decision
point and TAG at decision point} or { JOB not at
decision point and TAG not at decision point} the
controllers of Belt and Film follow their usual
reference models ΓBM and ΓFM. However, if { JOB at
decision point} but { TAG not at decision point} then
the belt must decelerate (to stop if necessary) by
switching to another suitable reference model ΓBS. In
the meantime, the film feed will continue until the
sensor detects TAG; following this the belt is
accelerated to ensure that the JOB and TAG are
synchronised as the JOB enters the funnel. The case
for { TAG at decistion point} but { JOB not at decision
point} can be treated similarly.

The Welder and Film are synchronised by applying a
heuristic similar to the one between Belt and Film.
Similarly, the Cutter is synchronized with the Film.

4.1. The class diagram

The description in Section 3 plays the role of the use
case for the production line of Fig. 2. It can be seen
that the main objects are the four physical machines:
Film, Belt, the Welder, and Cutter. The product to be
wrapped, JOB, is identified with the belt.

The class diagram for the production line of Fig. 2 is
shown in Fig. 3. The box representing each class is
divided into three regions: name, list of attributes, list
of operations. The Belt and Film classes are exactly
dual. They have 4 states, described by boolean
variables:
• dp: in the proximity of the sensor
• Wait: stopped to wait for the other part to arrive
• Out: a part has been wrapped and a new one is

awaited for but not yet in the sensor proximity
• Wrap: JOB and TAG are moving synchronously

aligned with each other, then the wrapping is
taking place

The actions that move the objects from one state to
the other are
• New: a new JOB/TAG has been detected from

the sensor
• Ab: stop moving and wait
• Start: restart moving after a waiting phase
• Go: no waiting phase, the wrapping take place

Nj Ni

tk

5

Belt

B_dp: boolean
B_wait: boolean
B_out: boolean
B_wrap: boolean

B_new()
B_ab()
B_go()
B_start()
B_exit()

Welder

W_dp: boolean
W_wait: boolean
W_out: boolean
W_wrap: boolean

W_new()
W_ab()
W_go()
W_start()
W_exit()

Cutter

C_dp: boolean
C_wait: boolean
C_out: boolean
C_wrap: boolean

C_new()
C_ab()
C_go()
C_start()
C_exit()

Film

F_dp: boolean
F_wait: boolean
F_out: boolean
F_wrap: boolean

F_new()
F_ab()
F_go()
F_start()
F_exit()

B_go

B_wrap
B_exit

B_out

B_start

B_new

B_wait

B_ab

.
F_out

F_dp

F_go

F_wrap

F_exitF_start

F_new

F_wait

F_ab

.

 Belt: Film:

F_new()B_new()

F_start() F_ab()

B_exit() F_exit()

• Exit: the product has been wrapped and goes out
of scope

Similarly follow the classes Cutter and Welder.

Figure 3: Class diagram

4.2. The sequence diagram

The response of a class to an external solicitation is
determined by the internal dynamics of the class and
the external interactions or communications as
defined in a sequence diagram. The complete
sequence diagram for the production line involves one
object of each of the classes Belt, Film, Welder,
Cutter. For clarity, the sequence diagram can be
translated into a set of smaller sequence diagrams by
considering subsets of the objects. For example, the
temporal sequence of the service calls for the Belt-
Film subsystem are shown in the sequence diagram of
Fig. 4. The arrows indicate service requests from the
sender to the receiver. The labels on the arrows are
the operations that are requested. Fig. 4 refers to the
scenario where the TAG comes first and the Film has
to wait for the JOB to arrive. The sequence diagram
for the case when the JOB arrives first can be derived
similarly.

Figure 4: Sequence diagram: tag coming first

4.3 Synthesising Petri net model

To keep the example clearer, we focus on the classes
Belt and Film and their interaction.
First we assign Petri nets to each of the classes.
Generally, the Petri Net of a class is formed by using

a place to represent each Boolean attribute and a
transition for each operation that changes the
attributes values. As the reader can notice, in this
particular example, the classes are all structured in the
same way as shown in Fig. 5 (a).

We create an initial marking for each instantiated
object by considering the initial state of the
corresponding components of the production line.
The system starts with B_out and F_out.

 (a) Belt (b) Film

Figure 5: Petri Net for the classes Sensor and Belt

4.3.1 The GDS for the mutual synchronisation of
Belt and Film

The next stage in the compositional process is
designing the synchronisation logic which enforces
the mutual synchronisation heuristic for the Belt and
Film, as defined in Section 4. To do this we create
the scenario of desirable cases for the composition of
the Belt and Film.

To help us we make use of the discursive use case
provided in Section 4, plus the further insight of the
dynamical behaviour given by the sequence diagrams,
and the Petri Nets of the components, to generate the
GDS, as described in section 3.1.

For example, starting with (B_out, F_out) we will
have a set of transitions enabled. These are B_new
and F_new. Following the use case, none of the two
transitions is undesired, therefore U = ∅. Let us
suppose, that JOB (associated with Belt_class) arrives
first.
Then, the marking is (B_dp, F_out) and the
transitions enabled are (B_ab, B_go, F_new).
Because we want to stop the belt if the JOB is at
decision point but the TAG is still out of scope, U =
{ B_go} . Proceeding in this way the graph in Fig. 6 is
built. Now, we have condensed in a Petri Net style all
the informations about the dynamics of the two co-
operating subsystems. To synchronise the subsystems
Film and Welder (or Film and Cutter), the use case
relative to their interaction is taken into consideration
and a similar procedure is applied. Due to the
similarity of the classes and use cases, the resulting
GDS will be a copy of the one in Fig. 6, with the
relevant names changed.

(B_out, F_out); ∅

(B_dp, F_out); { B_go}

(B_wait, F_out); { B_start}

(B_out, F_dp); { F_go}

(B_out, F_wait); { F_start}

(B_dp, F_dp); { F_ab; B_ab}

B_new F_new

B_new F_abB_ab F_new

F_new B_new

6
.B_out

B_dp

B_go

B_wrap
B_exitB_start

B_new

B_wait

B_ab

.
F_out

F_dp

F_go

F_wrap

F_exitF_start

F_new

F_wait

F_ab

.

SP5

SP2

.

SP6

SP3

SP4

SP1

Figure 7: Petri Net for the discrete part of the
production line

Figure 6: GDS

4.3.2 Coordination and synchronisation

For the GDS in Fig. 6, let us examine the set of
undesirable transitions one by one.
B_new is not allowed to fire if and only if the
marking is (B_out, F_wrap), i.e. it should be
prevented from firing when the place F_wrapping is
tokenized. This is achieved adding the place SP1,
that is always marked except when F_wrapping is
marked (in fact its token is removed from the firing of
F_go or F_start and it is replaced by F_exit). The
same applies to F_new. These two conditions are
required to prevent the synchronizing procedure
getting ’confused’ when, due to the small space
allowance between JOB and TAG, one of the two
goes out of scope before than comes a new one before
the wrapping procedure is finished.
As far as B_ab is concerned, it is always an
undesirable transition except when F_wrap is marked,
therefore a double sided arc between F_wrap and
B_ab is added (and the same applies to F_ab).
B_exit is not desired before F_wrap gets marked (for
the wrapping to take place the places F_wrapping and
B_wrapping should be both marked), therefore place
SP6 is added with an arc to B_exit; it is marked by
the firing of F_go or F_start. Similarly SP4 is added
for F_exit.

B_go
and

B_start should fire as soon as F_dp is marked,
therefore SP5 is added. SP2 is added to enable F_go
and F_start as soon as B_dp is marked.
All this results in the Petri of Fig. 7, this graph is live
and bounded and has the reachability graph in Fig. 8.
The reader can notice the strong similarity with the
graph of desirable case.

5 IMPLEMENTATION

The subsystem Film-Belt has been implemented in
Matlab (vers. 5.3) and the supervisory part,
corresponding to the Petri net, is implemented as a
StateFlow block. The Simulink model is shown in Fig.
9 can be seen. Each state in the Petri net of the
components is translated into a state of the state-chart,
and the full state-chart is shown in Fig. 10. The belt
and film systems are in two parallel sections
(indicated by the dashed smoothed box). The
synchronisation places are implemented with boolean
variables, updated when a transition takes place. The
StateFlow states of the Film and Belt during a typical
synchronisation operation are shown in Fig. 11.

B_out F_out SP1 SP3

B_dp F_out SP1 SP2 SP3

B_wait F_out SP1 SP2 SP3

B_wait F_dp SP1 SP2 SP3 SP5

B_wrap F_dp SP1 SP2 SP4

B_out F_dp SP1 SP3 SP5

B_wrap F_wrap SP4 SP6

B_out F_wrap SP3 SP4

B_out F_wait SP1 SP3 SP5

B_dp F_dp SP1 SP2 SP3 SP5

B_dp F_wrap SP3 SP5 SP6

B_wait F_wrap SP3 SP5 SP6

B_wrap F_out SP1 SP2

B_wrap F_wait SP1 SP2 SP4

B_dp F_wait SP1 SP2 SP3

B_new F_new

B_exitF_exit

B_start

B_start

B_go

B_go

B_go

B_new F_abB_ab F_new

F_new

F_go

F_go

B_new

F_start

F_start

F_exitB_exit

F_go

Figure 8: Reachability graph for the petri net in figure

7

Trigger()
In1 Pos

reg:load 1 vel

Zero-Order
Hold

Ext.torque1

Ext.torque2

load 1 pos
load 2 pos

Out3
load 1 vel
load 2 vel

Subsystem

In1

In2

In3

In4

Out1

Out2

SubSystem3

In1 Out1

Sensor_Film1

In1 Out1

Sensor_FilmMultiport
Switch3

Multiport
Switch2

Multiport
Switch1

Model Info
18-Jan-2000 18:10:04

-K-

Gain1

-K-

Gain

0

Constant7

0

Constant6

-0.15

Constant4

-1

Constant3

0

Constant2

1

Constant1

1

Constant

b_dp

f_dp

valf

valb

beltref
filmref
blown

wasted
b_state
f_state
newbar

Chart

In1

In2

Pos

Vel

Belt

Plant
Belt 1

B_out/
during: b_state=1

B_dp/
during: b_state=2

B_wait/
during: b_state=3

B_wrap/
during: b_state=4

[(valb−heldb)*(valb−heldb)>border && sp6]/...
{beltref=1;b_dp1=0;sp3=1;sp6=0;}

[(valb−heldb)*(valb−heldb)>border]/...
{blown=blown+1;
beltref=1;}

[b_dp && sp1]/{heldb=valb;b_dp1=1;}

[!f_dp&&f_dp1]/{sp1=0;sp4=1;}

[!f_dp&&!f_dp1]/{beltref=2;}

[f_dp1]/{
beltref=1;sp1=0;sp4=1;}

Film 2

F_out/
during: f_state=1

F_dp/
during: f_state=2

F_wait/
during: f_state=3

F_wrap/
during: f_state=4

[(valf−heldf)*(valf−heldf)>border && sp4]/...
{f_dp1=0;sp1=1;sp4=0;newbar;}

[(valf−heldf)*(valf−heldf)>border]/...
{wasted=wasted+1;
filmref=1;}

[f_dp && sp3]/{heldf=valf;f_dp1=1;}

[b_dp1&&!b_dp]/{sp3=0;sp6=1;}

[!b_dp1&&!b_dp]/{filmref=2;}

[b_dp1]/...
{filmref=1;sp3=0;sp6=1;}

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

F
ilm

 s
ta

te

t[sec]

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

B
el

t s
ta

te

t[sec]

Arrival of first TAG

Arrival of first JOB Arrival of next TAG and JOB

6 CONCLUSIONS

This paper has presented an integrated approach to
UML for modelling and analysing real-time systems.
It has shown that Petri-net theory can be used to
improve the representation and analysis of the
dynamic model of a system that is specified using
UML, making the design engineer more confident that
the model accurately represents the system.
Moreover, the Petri-net dynamic model can be used to

implement a controller based on current supervisory
control theory. The technique has been illustrated by
its application to a wrapping machine that forms part
of a larger production line.

ACKNOWLEDGEMENTS

This work was supported by EPSRC (UK) Grant
GR/L31234.

REFERENCES

Booch, G., Object-Oriented Design With
Applications, Benjamin Cummings, 1991.

Booch, G., J. Rumbaugh and I. Jacobson, The Unified
Modeling Language User Guide, Addison
Wesley, 1999.

Cassandras, C.C., Lafortune, S.: Introduction to
Discrete Event Systems. Kluwer Academic
Publishers, 1999.

David, R. and H. Alla, Petri nets and Grafcet: Tools
for modelling Discrete-event Systems, Prentice-
Hall, 1992.

Desrochers, A.A. and R.Y. Al-Jaar, Applications of
Petri Nets in Manufacturing Systems, IEEE
Press, 1995.

Douglass, B.P., Doing Hard Time. Developing Real-
Time Systems with UML, Objects, Frameworks,
and Patterns, Addison Wesley, 1999.

Ellis, J.R., Objectifying Real-Time Systems, New
York: SIGS Books, 1994.

Firesmith, D.G., Object Oriented Requirement
Analysis and Logical design: A Software
Engineering Approach, Wiley, 1993.

Harel, D.: Statecharts: A Visual Formalism for
Complex Systems. Science of Computer
Programming, Vol. 8, pp. 231--274, 1987.

Juan, E.Y.T., Tsai, J.J.P., Murata, T.,: Compositional
verification of concurrent systems using Petri-net-
based condensation rules. ACM Trans. on
Programming Languages and Systems, Vol. 20,
No. 5, pp. 917--979, 1998.

Murata, T., Petri Nets: properties, analysis and
applications, Proceedings of the IEEE, vol. 77,
No.4, pp. 541-580, 1989.

Peterson, J.L., Petri-net Theory and the Modelling of
Systems, Prentice-Hall, 1981.

Ramadge, P.J., Wonham, W.M.: Supervisory control
of a class of discrete event processes. SIAM
Journal on Control & Optimization, vol.25, no.1
(1987) 206-230.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and
W. Lorenson, Object-Oriented Modelling and
Design, Prentice-Hall, 1991.

Sobh, M., C.J. Owen, K.P. Valvanis. and D.
Gracanin, A subject indexed bibliography of
discrete-event dynamic systems, IEEE Robotics
and Automation Magazine, Vol.1, No.2, pp. 14-
20, 1994.

Figure 9: Simulink scheme

Figure 10: Stateflow chart

Figure 11: States of Film and Belt in the chart: 1=_out,
2=_dp, 3=_wait, 4=_wrapp.

