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Abstract—Model Driven Development and the core concept
of Model Transformation has gained wide acceptance especially
when used with UML languages. Model Transformations are used
to map models in one language to another and can be used to
transform a design model into an implementation or for analysing
a design model to identify faults. However, transformations are
a one time bridge and the instances of transformed models can
not be automatically mapped back into the original language.
This is despite the fact that a mapping must already exist
between the two models. This mapping is represented in the
trace of the transformations execution. Tracing is a feature of
several transformation frameworks where by the source of every
destination element is recorded.

Tracing has originally been applied for change propagation
in chains of transformation and in debugging Model Trans-
formations. In the current paper we present a novel use of
Model Transformation tracing: for reverse instance transforma-
tion. That is, the automatic transformation of instances of the
destination model back into instances of the source model. We
demonstrate the method in a case study of UML2Alloy, a complex
transformation from UML to the Alloy analysis language. In
this case study, A UML Class Diagram is transformed in to
its equivalent Alloy form. The presented method automatically
transforms analysis (instances) of the Alloy model, back into
UML-Object Diagram form that are valid instances of the
original UML Class Diagram.

I. INTRODUCTION

Model Driven Development (MDD) [34] aims to promote
the role of modeling in software development. Models in the
context of MDD are captured in machine-readable representa-
tions, using languages which are widely adopted by the soft-
ware industry [35]. Hence, it is possible to communicate such
models to various parties and reuse them. This results in lower
software production cost and shorter development cycles.
Central to the MDD is the idea of automated transformation of
models via tools, commonly known as Model Transformation
Frameworks, that execute transformation automatically [4],
[23], [1], [31]. A typical Model Transformation framework
accepts three inputs, a metamodel of the source language, a
metamodel of destination language and a specification of the
transformation which maps the model elements of the source
to the destination. Then, for any given model complying to the
metamodel of the source the tool executes the transformation
resulting in the creation of an instance of the metamodel of
the destination.

In complex applications domains, MDD can also be used to
create multiple models of the systems automatically to bridge

the gap between technical spaces [22]. For example, MDD can
be used to create analysable models from a design model [21],
[3]. In such cases, the result of the analysis must also be
transformed back to be presented to the designer. In this paper
we demonstrate that traceability is an important issue in such
Model Transformations. In effect traceability is a mechanism
for recording the link between the source and target model
elements [11], [29]. Establishing such links allows defining
the reverse transformations automatically.

This paper reports on our current research on extending
the Simple Transformer (SiTra) [1] with traceability capabil-
ities. SiTra is a simple and lightweight implementation of an
extensible Transformation Engine. SiTra has been success-
fully applied to model transformation in various application
domains[2], [8], [7]. The paper also reports on a case study
involving application of new version of SiTra to a complex
Model Transformation from UML to Alloy [7].

The paper is structured as follows, the next section gives a
brief background to the subject at hand. The concepts of Model
Driven Development and Model Transformation, tracing trans-
formations and the transformation framework: SiTra. Next we
we shall describe the problem followed by an outline of the
solution in terms of the architecture and algorithm, as well as
how SiTra was modified to accommodate traceability. Finally
we present an example Model Transformation in UML2Alloy
that applies the solution to a specific problem, followed by
some discussion.

II. BACKGROUND

A. Model Driven Engineering

Model Driven Architecture (MDA) [25], a flavour of MDD
which is initiated by the Object Management Group (OMG).
MDA makes use of Meta Object Facility (MOF) [28] which
describes the metamodels. Metamodels are themselves models,
from which models of the system are instantiated. MOF can be
compared to EBNF, which is used for defining programming
languages grammars. As a result, MOF is a blueprint from
which MOF Compliant metamodels are created.

Figure 1 depicts an outline of MDA and the process of
Model Transformation. A number of Transformation Rules
are used to define how various elements of one metamodel
(source metamodel) are mapped into the elements of another
metamodel (destination metamodel). The process of Model
Transformation is carried out automatically via software tools
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which are commonly referred to as Model Transformation
Frameworks [37], [1], [13]. A typical Model Transformation
Framework requires three inputs: source metamodel, destina-
tion metamodel and Transformation Rules. For any instance
of the source metamodel, a Transformation Engine executes
the rules to create an instance of the destination metamodel.

The central concept of MDD is Model Transformation
[32], the mechanism for bridging technical spaces. Model
transformations take as input one or more source models that
conform to source language and translate them into one or
more target models in the context of a destination language.
Judson et al. [20] propose that transformations can be applied
from one of two dimensions; vertical, that change the context
for example Design to code or horizontal, as analysis for
example UML2Alloy.

B. Model Transformation Traceability

Traceability is a feature in a Model Transformation Engines
that keeps record of which element(s) in the source model
maps to which element in the destination. Bondé et al. [5]
apply the traceability to change propagation, thus if the source
changes slightly, the change can be reflected in the destination
without re-running the entire transformation. Change propaga-
tion is most useful when several successive transformations are
applied to a model, so the models can be made interoperable.
Moreover, the ability to trace the source of an element has
been used in debugging of Model Transformation [16]. Thus,
traceability support is a desirable part of a Transformation
Engine feature set and for developer support.

Jouault [19] identifies two groups of model transformation
traceability stratergies, automatic or manual tracing. Automatic
tracing requires no manual intervention by the developer, the
trace information is recorded transparently during the transfor-
mation. Manual tracing, as the name suggests, requires explicit
tracing rules be defined as part of the Model Transormation
to be traced. Each method has it’s merits, automatic tracing
requires little developer intervention and leads to less cluttered
transformations; manual tractability gives the developer con-
trol over what information is traced. For further classification
of tracing strategies in frameworks, see [11]. It is clear that
intergrated traceability support in the form of automatic tracing
is a desirable feature for a Model Transformation framework.

The requirements for traceability information vary between
frameworks. Vanhooff and Berbers [36] encode traceability in-
formation into a UML Profile for Traceability, where a model
of the transformation is extended with trace information. The
approach is taken so that large Model Transformations can
become smaller transformations as part of “Transformation
Chains”. The smaller transformations are more axiomatic so
have dependencies on preceding transformations outcomes and
rely on trace information. The Kermeta [12] framework with
a similar aim of enabling chains of transformations, defines a
distinct meta-model of traceability information. So a model of
the trace is populated at transformation time. The OMG’s QVT
[29] Model Transformation specification aims for a generic
approach to transformation traceability, defining the Trace
Class and Trace Instance entities. Trace instaces are created
with the appropriate information during transformation. The
precise form of traceability support across languages depends
on the motivation for adding traceability to a framework.

C. Simple Transformer (SiTra)

There are a wide range of languages available to specify
MDD Transformation Rules [4], [13], [29]. Such languages,
which are mostly extending [30], not only provide strong con-
structs for the specification of Model Transformations, but also
are supported by Model Transformation Frameworks for exe-
cuting the transformations. However, none of these languages
are widely adopted by the academic community or industrial
tool vendors. Much anticipated Query View Transformation
(QVT) by OMG is now finalised [29] and is expected to
result in a unifying language for specifying transformations.
To execute a specification of a Model Transformation in the
above languages, they must be transformed into lower-level
languages such as Java.

In a large project, it is possible to divide the specification
and implementation of Model Transformations between two
different groups of people who have relevant skills. In the case
of smaller groups of developers and newcomers to MDD, the
combined effort involved in becoming an expert in the two sets
of skills described above is overwhelming. In particular, the
steep learning curve [24] associated with current MDD tools,
such as [10], [9], [14], is an inhibitive factor in the adoption
of MDD by even very experienced programmers. Simple
Transformer (SiTra) [1] is a simple and lightweight Model
Transformation Framework aiming to use Java for both writing
Model Transformations and providing a minimal environment
(the execution engine) for transformation execution. SiTra
consists of two interfaces, the Rule interface, which user
defined mapping rules have to implement and the Transformer
interface, which provides the skeleton of the methods that
carry out the transformation. The authors of SiTra provide
a simple implementation of the Transformer interface and to
use SiTra for simple transformations. The modeller only needs
to define the transformation rules by implementing the Rule
interface, which consists of three methods: check(), build() and
setProperties(). If the rule is applicable for the source element
in question, the check() method of the rule interface returns



Fig. 2. A Model of the Tracing Mechanism

true and the build() method is executed. The build() method
generated the target model element. The setProperties() is
used to set the attributes and links of the newly created
target element. SiTra has been successfully applied to Model
Transformation in various application domains[2], [8], [7]. For
further details on SiTra please refer to [1].

III. OUTLINE OF THE APPROACH

A. Description of the Problem

Often a Model Transformation is used to produce a model
of a target language as an intermediate step in a process. For
example, a model transformation may be used to transform a
model from a source language A to a target language X, to
take advantage of more advanced tool support in X. In such
a case, the toolset of the target language is used to process
(e.g. analysis, refactoring) the produced model. The results of
this processing need to be interpreted in the domain of the
original language A. If the transformation between the source
and the target languages is not bidirectional this is not a simple
task. In this section we present an algorithm, which uses the
tracing information of a Model Transformation to interpret the
results of a process on the target model, using concepts of the
source language, in a unidirectional transformation. Moreover
we propose extending the SiTra framework with support for
traceability, to implement our method.

B. Architecture and Algorithm

Figure 3 depicts an overview of the method proposed.
On the metalevel (M2) elements of the Source and Target
metamodels (A and X respectively) are mapped using the
Model Transformation T. On the model level (M1) if a source
model B is given as input to the transformation a target model
Y will be automatically generated. The execution of the Model
Transformation will also generate a set of traces T’, which
record how each element of the source model is mapped to an
element of the target model. If Z is an instance of the target
model on the M0 level, using the trace information T’, we can
construct C, which is an instance of the source model B.

The algorithm to extrapolate C is as follows. For all ele-
ments in Z, find the source of the parent element from T’ and
create an instance of that element. Once all elements in Z are
applied to the algorithm, the resulting instance model C is
produced. This is a valid instance model of B at M0-level in
the source language, created automatically. The algorithm is
shown in Figure 4.

C. Tracing Support in SiTra

In this section we describe how the SiTra Model Trans-
formation engine is modified to add traceability support.
SiTra, was developed by Akehurst et al. [1] as a simple
Object Oriented Transformation Engine, in principle based
on a modified visitor pattern. The engine has been modified
to support both Model to Model (M2M) and Model to Text
(M2Text) transformation tracing.

The MOF Queries Views and Transformations (QVT) spec-
ification [29] defines a tracing mechanism that can be used
to trace which source metamodel elements are mapped to
which target metamodel elements and the inverse. Based on
the tracing mechanism of the QVT specification, we have
developed and implemented an extension to the SiTra Trans-
formation Engine. Figure 2 depicts our model for tracing M2M
transformations.

More precisely, our tracing consists of an interface (ITrace),
which holds a collection of TraceInstances (ts). Each Trace-
Instance, represents a mapping between a source and a target
model element, through a SiTra rule. An implementation of
the ITrace interface, provides a number of methods to query
the ts collection. More specifically the resolve method, queries
the ts collection, and returns all target instances that have
been created during the transformation, from the src instance.
Likewise, resolveone should return only the first instance of the
target element that has been created during the transformation
from the src instance. The method names preceded with ‘inv’
(i.e. invresolve), perform the inverse (i.e. return the source
elements that have been mapped to the target element passed as
a parameter). The QVT specification, also defines a number of
additional methods that can be used to query the trace model.

To populate this tracing model, we have extended the
implementation of the transform method of the SiTra distri-
bution. Our implementation ensures that, for each rule being
executed, a trace is recorded (i.e. a TraceInstance), which
keeps track of the instance of the SiTra rule responsible for the
transformation, the instance of the source metamodel provided
as input to the rule and the instance of the target metamodel
produced by the rule.

A similar tracing model has been implemented in SiTra for
Model to Text (M2Text) transformations, which are usually de-
fined in order to transform the abstract syntax model elements
to a textual notation. Each TraceInstance of the M2Text trace
model maps an element of the metamodel of the languages,
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Input: Instance Model: Z, Trace: T’, Model: Y, Model: B
Output: Instance Model: C
foreach element z in model Z do

find the class element of z, y from the model Y
query T’ using y to find class element b, the source of y
using z, create c in instance model C

end

Fig. 4. Algorithm for Reverse Instance Transformation

to a range in the generated text model. The range is identified
by the rows and columns it occupies in a text file.

IV. CASE STUDY:UML2ALLOY

To demonstrate the method, we apply the approach to a
model transformation from UML class diagrams enriched with
OCL constraints [35], to the Alloy language [18]. Alloy is an
increasing popular textual language based on first-order logic
and fully automated analysis capabilities. The transformation
from UML to Alloy is implemented as part of a tool called
UML2Alloy [3], which uses the SiTra transformation frame-
work. UML2Alloy has successfully been applied to the anal-
ysis of agile manufacturing [7], E-Business applications [6]
and Security in E-Commerce systems [15].

UML is now widely accepted for designing systems before
implementation, allowing better modelling as a part of the
development process. The idea behind UML2Alloy is to allow
the designer to specify the system using UML and simultane-
ously harness the analysis capabilities of the Alloy language
to identify possible faults in the created design via the Alloy
language. More precisely, the Alloy language is supported by
a tool called Alloy Analyzer, which is able to automatically
simulate an Alloy model by creating a arbitrary instance of
the model. Additionally the analyser offers the ability to debug
overconstrained models [33], by locating the statements which
are responsible for the inconsistent model.

Figure 5 depicts an overview of the problem addressed in
this paper in the context of UML2Alloy. The UML2Alloy
transformation maps elements of the UML and OCL meta-
model to elements of the Alloy metamodel, which has been
developed using the Alloy grammar [3]. If a UML model is
given to the UML2Alloy implementation, it can automatically

create an Alloy model. This Alloy model can then be au-
tomatically analysed, by exploiting the Alloy Analyzer API.
If the model is consistent the Alloy Analyzer will create a
arbitrary instance of the model in XML form. If the model is
overconstrained, however, it will return the lines and columns
of the statements responsible for the inconsistency.

In both in simulation and analysis we need to represent the
results of the outcome of the Alloy Analyzer, from the Alloy
language concepts back to the UML domain. If the analyser
provides an instance of the model, we need to represent the
instance in terms of a UML Object Diagram [35]. If, on
the other hand, the analyser returns the regions in the Alloy
text file that are responsible for an overconstrained Alloy
model, we need to locate the original UML model elements
responsible for the inconsistency and present them to the
user. Since the transformation from UML to Alloy is not
bidirectional [34] (e.g. the multiplicity constraints of a UML
association are mapped to an Alloy fact, but an Alloy fact does
not necessarily correspond to UML association multiplicity
constraints), we need to employ the technique presented in the
previous section to carry out reverse instance transformation.
How this technique is used in UML2Alloy, is described in the
next section with the help of an example.

In order to take advantage of the analysis capability of
the Alloy language, for the designer who wishes to use only
UML, we will employ the tracing techniques presented in
the previous section. Figure 6 shows the proposed solution,
in terms of Alloy. Given a UML2Alloy transformation and
trace, it is possible to transfer the outcome of the analysis
into the UML form. In the case where the model is simulated
to generate instances, we transform the instance back into
UML Object Diagram, following the algorithm shown in
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Figure 4. In this case, for every instance element in the Alloy
Instance model, find the signature in the Alloy Model. From
the Trace, find the source Class in the UML model of the
Signature. Finally instantiate the Class using the data from
the Alloy instance in a UML Object Diagram. If repeated
for all elements in the Alloy instance, an Object Diagram
representation of the Alloy instance is created. When there
is an inconsistency found in the model by Alloy Analyzer, the
position in the text model is given. This position can be traced
back to the cause in the UML, using the same algorithm.

In the next section contains a brief introduction to the
Alloy language. Following this, there is an example model
and model transformation in UML2Alloy where the outcome
of the analysis are transfered back into UML form.

A. The Alloy Language

In this section we present a brief overview of the Alloy
language [18] and supporting tool, the Alloy Analyzer. The
Alloy language was designed for automatic reasoning and
analyse of software systems. The five high-level constructs
(termed paragraphs) in the language are Signatures, Facts,
Predicates, Functions and Assertions. Multiples of these are
used in the construction and analyse of a model. There is also
the Run sentence, required to initiate analysis of a model.
For the definition of models, Signatures, Functions and Facts
in analogy to UML are classes, methods and constraints
respectively. For analysis there are Predicates, used to simulate
the models’ properties with sample instances. Assertions are
used in analysis in attempt to (in)validate a particular property
of a model by producing counter-examples. The notion of
model scope is important as Alloy’s underlying logic is First-
Order. As first order logic is undecidable in the general case,
a scope must be set at execution time to bound the analysis
space.

Using the Alloy Analyzer, a model in the Alloy language
automatically be analysed and simulated. Models in the Alloy
languages are translated into a series of boolean expressions.
This form is suitable for analysis via off-the-shelf satisfiability
(SAT) solvers. Simulation of the Alloy model is used to
generate valid instance models.

The process is that the Alloy Analyzer automatically trans-
lates an Alloy model to a SAT formula that can be analysed by
SAT solvers. In the case of assertion, the statement is negated
and the Alloy Analyzer tries to find an instance of the model
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Fig. 6. UML2Alloy Case Study: Proposed Solution Using Tracing

that conforms to the negated statement. If it can find one, this
is a counterexample, if it cannot find one, the assertion may
be valid. In the case of simulation, it searches for cases for an
expression evaluates which to true, this expession will encode
an arbitrary instance of the model.

V. EXAMPLE

In this section we introduce the example model and trans-
formation to demonstrate the tracing mechanism. The UML
model (Figure 7) is transformed into the Alloy model (Figure
8) using the UML2Alloy trasformation in SiTra. The first part
of each model (Figures 7a, 8a) is consistent in either language;
conforming instances can be created by hand in UML or
automatically in Alloy. We use the first models (Figures 7a,
8a) to demonstrate reverse instance transformation. The second
part of each model (Figures 7b, 8b) extends on the first valid
part to add contradictory constaints, making the original model
inconsistent. The inconsistent model has no valid instances
in either language and this property of the models is used to
demonstrate the reverse instance tracing, to discover the source
of the inconsistency in the original UML. The textual Alloy
models presented here are refactored slightly to aid readability
and for purposes of brevity.

We use a two-class, UML model shown in Figure 7 as the
example in this section. According to the model, one Person
can be associated either one or no Bank Accounts. The Person
class has a single integer attribute representing age. The first
part of the model (Figure 7a) is legal UML, valid instance of
this model can be created by hand, as UML Object Diagram.
In the second (Figure 7b), invalidating part of the model, two
OCL constraints are added to the model specifying purposely
contradictory constaints about the age of a Person. Both parts
of the models are transformed into the Alloy model, shown in
Figure 8.

The Alloy model (Figure 8a) consists of two signatures
(sig), Person and Bank Account, here the keyword some
enforces the existence in an instance model. Person has the
two atoms, age is a relation to one integer and ba is a relation
one or no (lone) Bank Account. The first fact paragraph fact{



(a) Valid Elements of Model

context Person inv first:self.age>20
context BankAccount inv second:self.per.age<18

(b) OCL Constraints (Introducing Contradiction)

Fig. 7. Example UML Model

per = ∼ba }, signifies that ba and age form a single and
the same relation from Bank Account to Person and vice-
versa. Simulation of the first part of the model should yield
sample instances using the Alloy Analyzer. In the second part
of the Alloy model (Figure 8b) two facts constrain the model
in contradictory way; that is the age of a Person must be both
less then eighteen and greater then twenty.

In this example, mapping between the two models is per-
formed by the UML2Alloy tool automatically, we explain the
mapping here for the sake of clarity. The UML classes Person
and Bank Account are transformed into signatures of the same
name. The age attribute in person becomes the integer field
age in the Person signature. The association is transformed
into fields in the respective signatures, named per and ba
and facts representing multiplicity. The OCL constraints are
transformed into facts in the Alloy model. In UML2Alloy the
above is a two step process, the first transformation is to a
MOF like model of Alloy which is mapped via a one-to-one
transformation into the Alloy textual form.

In the following two sections, we use the example to
demonstrate the traceability from two perspectives. Firstly,
given valid models (Figures 7a, 8a), transform the Alloy
instances back into UML form. Secondly, given an invalid
UML model (Figure 7), trace back the element(s) causing the
inconsistency in the UML, as discovered in the Alloy model
(Figure 8a) Alloy Analyzer.

A. Example One: Reverse Instance Transformation

The Figure 9, shows the output of analysis from the Alloy
Analyser in XML form, our method will automatically create
an Object Diagram form of this instance. It Depicts a sample
of the output Analysis of the Alloy Analyser. In this partial
sample, there is an instance (atom) of the Person signature
from the Alloy model, labelled as Person$0. There are also
two fields, that form tuples (relations) from Person$0 to an
integer (5) for the age atom. The secondBankAccount$2 via
the ba atom, instances of thePerson signature’s atoms.

Reverse instanstance transformation, this context, is taking
an Alloy instance model and transforming it to back into the
original UML form. Although this may seem a straight forward
problem, possibly solved by transformation, often times there
is a difference in semantic expressiveness of elements between
the source and destination language. Reverse instance trans-
formation is not possible in all cases using only the source
and destination model as the transformation can change from
a specific to a general one.

some sig Person{
age : one Int,
ba : lone BankAccount}

some sig BankAccount{
per : one Person}

fact{ per = ˜ba }
fact{per in BankAccount lone->one Person}
fact{ba in Person one->lone BankAccount}

(a) Alloy Model, Valid Segment

fact{all p : Person | int p.age > 20}
fact{all b : BankAccount | int b.per.age < 18}

(b) Alloy Model, Contradictory Segement

Fig. 8. Alloy Model Resulting from Transformation of Figure 7, using
UML2Alloy

We demonstrate the issue in the example in Figure 9 where
it is not possible to know the origin (in the UML model) of
the Alloy instance atom marked age. This is because an Alloy
field could have been mapped from a UML attribute or a UML
association. The issue becomes more apparent in the instance
(Figure 9) where the original association between Person and
Bank Account has become a pair of Alloy atoms ba and per.
In Alloy, these atoms are semantically equivalent to the age
atom and thus indistinguishable for instance creation, without
trace information.

For this example we assume the Model transformation of the
consistent UML model in Figure 7a into the consistent Alloy
model Figure 8a. We shall create a UML representation of the
instance (Figure 9), which was created by analysis of the Alloy
model (Figure 8a). The method of finding the origin in UML
using the algorithm in the case of Figure 4 is as follows. Take
the instance tuple age that maps the atom Person$0 (Figure
9)to the Int 5, find the parent element in the Alloy model
(Figure 8). The parent element is the atom age, in the signature
Person. The origin of this element is found by querying the
trace, the origin here is is the attribute age of person, in the
source UML model (Figure 7). At this point, it is possible
to instantiate the age attribute in the UML Object Model of
Person$0, using data from the Alloy tuple i.e. with a value of
5.

B. Example Two: Model Inconsistency Tracing

Due to design errors it may be possible to define an
inconsistent model, such as the model shown in Figure 8b.
Discovering the cause of design inconsistencies in a model
is highly desirable. A UML model can be transformed into
Alloy and simulated to find inconsistency using the Alloy
Analyzer. An inconsistent model in Alloy will result in no
instance being generated. However the offending sentence(s)
will be know from the analysis in the Alloy model, but
not the original UML. The Alloy Analyser uses UnSat Core
[17] feature of the SAT solver to find the line and column
numbers of the inconsistent portion. This analysis does not



...
<sig name="Person" extends="univ">

<atom name="Person$0"/>
</sig>

<field name="age">
<type> <sig name="Person"/> <sig name="Int"/> </type>
<tuple> <atom name="Person$0"/> <atom name="5"/> </tuple>

</field>

<field name="ba">
<type> <sig name="Person"/> <sig name="BankAccount"/> </type>
<tuple> <atom name="Person$0"/> <atom name="BankAccount$2"/> </tuple>

</field>
...

Fig. 9. Example One: Partial XML Output from Alloy Analyzer

apply directly to the UML model, however our method is
able to trace the source of an element in the original UML
and thus the originating cause of inconsistency. UML2Alloy
allows inconsistency to be uncovered via analysis in Alloy and
our method uncovers the root cause of the inconsistency in the
original model, using the trace.

Our solution will trace the root cause of inconsistency in
a UML model, after it has been transformed and analysed
using Alloy. The method is as follows, assume the Model
Transformation from the inconsistent UML in Figure 7 (com-
bined) to the Alloy representation of the same in 8. The Alloy
Analyser will uncover the inconsistency and the place (line(s),
column(s)) at which the problem occurs in the Alloy model.
To find the cause of the inconsistency in UML, first identify
the element in the model causing the error. In this case, the
UnSat Core gives the expressions from the two facts in 8b as
the cause. To find the error in the UML Model, query the trace
using the given ranges returns the result in OCL form, shown
in Figure 10 and the location in the source model. This will
highlights the two conflicting statements in the UML form for
the developer to maneuver as necessary. The strength of the
method is apparent in a large model with potentially many
complex or similar constraints, as it is possible to pinpoint
precisely which statement caused the inconsistency. We have
shown that using our method to reverse transform elements in
the destination model, it is possible to find the source of an
inconsistency in the original UML model.

[self].age>20
[self].per.age<18

Fig. 10. Example Two: Result of Text to Model Tracing

VI. RELATED WORK

A common motivation for traceability in the literature
has been to support chains of transformation, sequences of
transformations with dependency, as found in [12], [36], [19].
The approach used in these methods is to add specific rules
for traceability information and create a separate model of
traceability as output of transformation.This model is then

used as input for further transformation stages. So the trac-
ing approach for chains of transformations with dependency
is fundamentally different from ours. In [19], an important
discussion is made about generating trace information from a
generic perspective based on an approach similar to [36], [12].
Our approach generates trace information automatically which
is used internally in the context of the original transformation.
We have demonstrated that it is possible to generate useful
trace information automatically, without requiring specific
rules in the original transformation.

The extension of the SiTra implementation to support trac-
ing of model transformations, has been inspired by the QVT
standard [29]. The QVT standard provides a number of meth-
ods to query the transformation traces, while the transforma-
tion is being executed (i.e. provides the ability to access target
objects created from source objects and the inverse). Since
the QVT specification does not provide any guidelines on
how to implement the standard, the SiTra extension presented
in this paper, which follows the QVT naming convention
for methods, can be considered as an implementation of the
tracing mechanism of the QVT standard.

Additionally the SiTra extension to provide tracing for
model to text transformations is based on another OMG
standard, the MOF Models to Text Transformation language
specification [27]. In particular, the metamodel of the standard
provides the ability to trace from which model element, a block
of text has been created. An implementation of model to text
tracing is presented in [26]. Our metamodel for model to text
tracing is similar to the metamodel presented in [26]. However,
these methods are more general than our extension to SiTra,
since they address issues like synchronisation and change
propagation between a model and its textual representation,
if either the model or the textual representation changes. Our
model to text transformation is simpler, since the generated
Alloy textual model, is used as an intermediate step in order
to be able to exploit the Alloy Analyzer API.

VII. CONCLUSION AND FUTURE WORK

This paper presents a implementation Traceability, a mech-
anism for recording the link between the source and target



model elements in Model Transformation Frameworks. Trace-
ability is often used for the management of Model Transfor-
mation process for change propagation or debugging purposes.
In this paper, Traceability produces the reverse transformation
automatically at the instance level. Such applications of Trace-
ability are essential for horizontal Model Transformations such
as UML2Alloy.

The presented approach, which is inspired by QVT, is
formulated as an algorithm. The SiTra framework is extended
to a new version to do both model-to-model and model-to-
text transformations, while the algorithm is implemented to
allow traceability in both cases. The paper also reports on a
case study based on the model transformation in UML2Alloy,
which uses the new version of SiTra. Using a brief exam-
ple, the process of Model Transformation carried out via
UML2Alloy is described and the role of tracing mechanism
is explained.

In the current implementation, only the binary transfor-
mation rules are traceable. So to handle ternary rules, they
must be modified to create multiple binary rules. Discovery
of methods of extension to ternary rules remains a subject for
future research. There is a clear scope for extending the current
framework to fulfill the original objectives of Traceability such
as change propagation and debugging. This also remains an
area for future research.
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