On Behavioural Model Transformation in Web
Services

Behzad Bordbar and Athanasios Staikopoulos

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
B.Bordbar@cs.bham.ac.uk, A.Staikopoulos@cs.bham.ac.uk

Abstract. Web Services are seen as one of the most promising solutions for the
integration of autonomous, heterogonous e-business systems. Today’s e-
commerce systems often involve a combination of multiple Web Services,
which are implemented via a mix of technologies such as Business Process
Markup Language (BPML), Business Process Execution Language for Web
Services (BPEL4WS), and Web Service Choreography Interface (WSCI).

Recently, the application of Model Driven Architecture (MDA) to Web
Services has received considerable attention. However, most of existing
literature deals with the static aspects of Web Service modelling. This paper
focuses on the behavioral aspect of the composition of Web Services using a
Meta Object Facility (MOF) compliant metamodel for BPEL4WS. The paper
presents a transformation of the Unified Modelling Language (UML) Activity
diagram to the BPEL4WS.

1 Introduction

In recent years, the Internet has evolved from a simple storage of information into
a provider of different kind of e-commerce services, ranging from travel booking,
shopping to more complex e-business systems involving complex transactions. One
of the main challenges of the design of such systems is to integrate autonomous,
heterogonous and distributed components [21]. Currently, Web Services [26] are seen
as one of the most promising approaches to solve the above problems [20][21]. Web
Services are a set of technologies that allow applications to communicate with each
other in a platform and a programming-language independent manner. Extensible
Mark-Up Language (XML) [23], Simple Object Access Protocol (SOAP) [24], and
Web Service Description Language (WSDL) [27] are among the technologies used in
Web Service. Developing Web Services by applying Model Driven Architecture
(MDA) [10][12][17] has recently received considerable attention [4][8][12]. In
particular, [4][12] study the transformation of Web Services and present a set of case
studies involving the transformation of Web Services models to various
implementation platforms such as Java, WSDL and Enterprise Distributed Object
Computing (EDOC) [14]. However, most of existing research focuses on the
transformation of models that express the static structure of the system, i.e. models
describing what the system contains and how various parts are related together. In

this paper, we shall study transformations, which deal with the dynamic aspects of the
system, which are modeled via behavioral models, expressing the way the various
components collaborate in order to manage a task and fulfill the system functions.

Defining and supporting business processes and collaborations between Web
Services is a more complex problem than defining and supporting individual Web
Services, see page 43 in [8]. Currently, the composition of Web Services is carried out
via a mix of concrete technologies such as BPML [5], BPEL4WS [2], WSCI [25] and
other [8]. Considering the existence of various technologies and languages, there is a
clear scope for defining the business processes via behavioral Platform Independent
Models (PIM) and providing methods of translation of PIM to Platform Specific
Models (PSM) [8][10]. In this paper we shall present a method of transformation of
the behavioural models from the UML Activity diagram to BPEL4WS.

The paper is organized as follows. We shall start by a brief introduction on Web
Services, business processes and the model transformations in the MDA. Section 3
discusses the transformation of Business processes from Activity diagrams to
BPEL4WS. First, we shall presents an example of a Stock Quote Web Service, which
serves as our running example. The behavioural aspect of the Stock Quote system is
modeled as a UML Activity diagram. Next, we shall sketch a metamodel for the
UML Activity diagram and BPEL4WS. To translate the Activity diagrams to
BPEL4WS, a set of transformations is introduced. The final part of section 3 applies
the transformations to the running example. Section 4 reflects on the lessons learnt
and discusses some of the issues regarding the model transformation of the
behavioural aspects of systems. Finally, section 5 presents a conclusion.

2 Preliminaries

The Web Services introduce a new paradigm for enabling the exchange of
information across the Internet. They can be characterised as self contained, self-
describing that can be published, located and invoked across the Web. Various e-
business applications can be encapsulated and published as Web Services allowing
them to interoperate through standard communication and messaging mechanisms
[26]. In general, Web Services are based on the Extensible Mark-Up Language
(XML) [23] as the fundamental mechanism for describing protocols, structured data
and messages, the Web Service Description Language (WSDL) [27] for describing
the exposed interfaces and operations of a Web Service and the Simple Object Access
Protocol (SOAP) [24] for providing the communication protocol.

Business integration and collaboration requires more than the ability to conduct
simple interactions between Web Services. This has resulted in the creation of the
notion of business process. A business process can be viewed as a composite activity,
which defines a complicated behaviour expressed as a workflow [9]. Workflow
specifies the control and data flow among sub activities of an activity. There are
several different implementations for representing business processes [13], like the
Business Process Execution Language for Web Services (BPEL4WS) [2]. The
BPEL4WS provides an XML notation and semantics for specifying business process

behaviour based on Web Services and defines, how Web Services can be combined to
implement a business process.

In MDA each model is based on a specific metamodel, which defines the language
that the model is created in. All metamodels are based on a unique metamodel called
Meta Object Facility (MOF) [15]. As a result, model transformations can be carried
via defining Transformation Rules between two MOF compliant metamodels
[4]1[8][10], the source and the destination. In this paper, the source metamodel is the
UML Activity modelling language and the destination is the BPEL4WS. Fig. 1
depicts the use of transformation rules for model transformation [4]. The
transformation rules define a mapping between a source and a destination metamodel
that preserves equivalent or isodynamic (similar) semantics. A transformation engine
executes the transformation rules on the source model (acting as the input) in order to
generate its equivalent destination model (output).

DL_moF [

Transformation Rules

|| <af——pe| Language

Specification

baspdOn

Automatic code generation

Reverse Engineeing code
<

-«

Transformation Engine

source model

Fig. 1. Transformation in the MDA based on [4]

3 Business Processes Transformation in Web Services

This section demonstrates how a general business process can be modelled as a
UML Activity diagram and how it can be mapped to an equivalent MOF based model
representing a BPEL4WS. We shall start by presenting an example of a business
process, which serves as our running example.

Example: Fig. 2 depicts two UML actors and a business process. The actors,
caller and provider, represent two roles played by Web Services. They are composed
together with the help of the StockQuoteProcess to create a composite Web Service.
The caller makes a Stock Quote request to the business process. The process receives
the request and forwards it to the provider. The provider replies with the value of the
requested stock quote, which the process sends back to the caller.

Fig. 3 depicts a UML Activity Diagram model of the process in terms of workflow,
coordination and interaction between the involved Web Services. It can be seen that
the three services have been separated via Activity diagram swimlanes [19] and are
stereotyped accordingly to their roles. In addition, the service location is indicated by
the external stereotype regarding the business process’s perspective. Next, five tasks
receive request, prepare invocation call, invoke provider service, prepare response
message, and reply are modelled as actions and are connected in a sequential order
within a process. This order can be regarded as the execution path for handling the
caller’s request. Furthermore, there are four variables involved; request, invocation

request, response, invocation response, which are depicted as object flow, indicating
how objects can be passed around via operation calls.

<<external, partner=> <<Business Process== <<external, partner=>

caller simple provider

______ Ls o k-
StockQuoteProcess

—

_a@:k Quote request
forward the request
. >
rf’
/ reply received
caller
reply sent back

S| receive request

prepare invocation
request message [|
— invocationrecuest I
h '
invole provider
service
I
b '
., '
* - - {invacationresponse (< - - - - - - - - -
prepare response
message

777

Fig. 2. A stock quote business process Fig. 3. Activity diagram for the process

UML Metamodel for activity diagram: Metamodels play an important role
within MDA, as they provide the language and the rules for describing models. Fig. 4
depicts a part of the metamodel for Activity diagram, which includes metamodel
elements representing workflow, object flow, activities, actions, operation calls and
other various modelling elements expressing control nodes. To create this
metamodel, we have abstracted and combined various activities and action modelling
elements defined in the UML 2.0 Superstructure Specification [19].

Outputpin_| 1 0.1 [ReadVariableAction | [VariableAction | [[wiiteVariableAction | 0.
* 1 R *

variable| 4
scope superParttion
P

Variable

Kemel:NameaElement | [Kernel:Classitier |
name ; String
_ subgroup| | visibilty : VisibiityKind
type
ActivityPartiion h

Kernel. RedefinableElement | [Kernel- TypedElement
‘ edgeCanterts
N edge A A
incoming -
outgoing”

I I 1
[ExecutableNode | [Cblectiode | [Controiede | [controlFlow | [ObiectFlow_| | DataStoreNace |

1 1 [nputPin__|

[[S e

e | |

[

JAN

win B A 52
0.* [Agion | [Fin | [[| chlw(maae |
\

‘ ‘ [intiariage | [Finainioge |

£\ AN
[DecisionNode | [dointode |
ActivityFinalNode | [FlowFinalNode: | ‘ ‘ ‘
replyvalue
ot

6.1

InvocationAction - . [. v

{>‘\ BasicActiviies:: Action }4 [ReplyAction | [imputPin |
Trigger 1 trigger [AcceptEventaction | resutt 0.* i

‘ =

InputFin

N OutputPin

OutputPin 1
returminfarmation

AcceptCallAction

trigger

CallTrigger

returninforinition

KKernel:Operation 1
L —

aperation replyToCal

Fig. 4. UML Activity diagram metamodel

Metamodels create a clear view of available model elements. As a result, using the
metamodel, it is possible to refine a model and provide a more elaborate
representation. For example, consider the receive request action of Fig. 3. There are
various types of actions specified in the metamodel of Fig. 4. For example, receive
request can be modelled as an AcceptCallAction meaning the receipt of a synchronous
call request. Such model refinements is a result of implementing new requirements of
the system or by making additional assumptions regarding the model elements
involved, such as action types, sub activities and variables. Consequently, we have
refined the activity diagram of Fig. 3 to the new activity diagram of Fig. 5 by
including a set of stereotypes. We have also included sub activities to illustrate the
internal variable manipulation through read and write actions. For more information
regarding the Activity model elements refer to chapter 12 of [19].

<<extermal, parner=> <<Business Process, Sequences> <<extemal, partner=>

caller simple: provider
_____ cedatastores> | _ ., (=<AccepiCallaction==
tequest teceive
(requestPart) CIWGCEIIUHREGUBS\QWIE)
T T
' '

<<VariableAction=>
invocation message y ' '
=== <cdatastore>>
‘ frtuste ¥ v
e <<variable=> s<yariahle>

recuestPart nvocationRecuestQuote|
<<CalloperationAction> T T

invoke | |

I i

V| eedtestoress | f 1 V v
invocationresponse <<l i it i
f<<VariableActions=) i ot
esponse message

T T
77777 | <datastore=> | |
e v v
i | <avariables= <evariables>
iiiiiiii “<ReplyAction=> S—
reply L

i

it

Fig. 5. The refined Activity diagram

BPEL4WS Metamodels: 1 this section we shall present the metamodel for
BPEL4WS; the destination language, see Fig. 1. The BPEL4WS can be seen as an
extension of the WSDL [27] supporting the collaboration of Web Services. In other
words, the WSDL describes stand alone Web Services and their structure. Thus UML
class diagrams, expressing the static aspects, are sufficient to capture and represent
the semantics of the WSDL. Currently, there are approaches [4] for specifying and
mappings metamodels among UML static aspects with its relevant WSDL elements.
Our research can be seen as an extension of the existing work on static modelling by
WSDL, to include methods of the mapping of the dynamic aspects.

Fig. 6 depicts the metamodel for BPELAWS based on BPEL4WS version 1.1
specification and the XML Schema as published in [2]. Since, BPELAWS is
dependant upon a number of WSDL elements, there are references to port types,
messages and operations, which are WSDL model elements. The central element of
the metamodel is the business process, which captures both the structure and the
workflow (controlled order of actions) of a business model.

A process consists of a number of variables for holding messages and representing
the states of a process. A partner links is used to identify the associated Web Services
through their roles and their port types. A port type represents the exposed interfaces
of a Web Service via the WSDL specification. The metamodel also includes fault
handlers for dealing with errors and event handlers for reacting to the events
triggered. The BPEL4WS also includes sequence, flow, while, switch and scope as
structured activities. Sequence activity defines sequential execution of actions. Flow
provides parallel execution and synchronisation between actions. While specifies
iterative activities. Swifch supports conditional behaviour and Scope defines the
execution context in which local variables and handlers can be defined for an action.
Other basic activities for calling Web Service operations are: Receive to provide the
business process services to Web Service partners. Reply to answer an accepted
request. Invoke to either perform a request/response or a one way operation on
partner Web Services. Assign to copy message parts and data from one variable to
another. For further details, we refer the reader to the BPEL4WS specification [2].

0.1
futHanders
FauHander | utiander WSO i
0.4
.
-CorreietaionSets partners
compgnsationHandiers CorrelationSet ! name ; nename.
° ¢+
CompensationHandler ——
’—‘ Variable Process g e
I e nename naime noname et 1
cathes messageType : qname abstractProcess : boolean partnertinks | Partnertink { L . T
0.4 type: name queryLanguage : anyURI
expressionLanguage | anyURl myRale” | NAme : nename:
Catch variables " e
. partnefLinkType roles
1.2
ParinerLinkType
0.
o aetiviy respongibility
Actny WSDLForiT,
do adtivity name : ncname o acthty Compensate S
; Pt Rt
ok | JoinFaire : book
etk noname e | souree _Soure .
portType : qname |
operation : ncname 1 0.1 WSDL: peration
inputVarisble : ncrame I
Receive do|actipity]
partner : nename:
portType : anams
opercion ; nerame: L
dolactipity
from
Reply
Switch
partnerLink : nename K .\]
portType qname Pick: Variable
variable : ncrame Link
dq Activity 1
[l ¢]
anliessage ?D . cases | 1-
g [case] [Target | [Source |

onAlarm
1.0 linkhame : nename linkhame ; nename
transtionConcition : bool-expr

Fig. 6. A metamodel for BPEL4WS

Transformation Mapping: A model transformation, which defines the generation
of a target model from a source model, is described by a transformation definition,
consisting of a number of transformation rules that are executed by a transformation
CASE tool. There are various methods of specifying model transformation [1][4][10].
Currently, there is no standardised language for defining transformations definitions.
Consequently, the OMG has issued a request for proposal for a new standard called,
Query Views and Transformations (QVT) [18], which has received considerable
attention [17]. In this paper, we demonstrate the mapping among meta-elements with
a table and express their transformation rules with the Object Constraint Language
(OCL) [16]. Table 1 depicts a mapping, between the model elements of the

metamodel of the Activity diagram and BPEL4AWS 1.1. The mapping is based upon

the descriptions given in the specifications [19] and [2].

Because of space

restrictions, we have only included the relative elements demonstrated in the example

UML 2.0

BPEL 1.1

Class as BehavioredClassifier, Activity,
StructuredActivityNode

<process>

A BehavioredClassifier is a class acting as a
container and where behaviour specifications can
be defined. It is also an activity that is expressed
as a flow of execution via subordinate units.

The BPEL4WS process description.

Datastore, StructuredNode Variable,
ObjectNode, Class Attributes

<variable>

A datastore node is a central buffer node for non-
transient information. An object node is an
abstract activity node for defining object flow.
Variables are elements for passing data between
actions indirectly.

They provide the means for holding
messages that constitute the state of a
business process and the exchanging of
messages between partners.

ControlFlow

<sequence>

It contains one or more activities that are
performed sequentially in the order. It completes
when the final activity has been completed

An activity that contains one or more
other activities and which executes them
in a serial order.

AcceptCallAction

<receive>

Is an accept event action representing the receipt
of a synchronous call request. The action produces
a token that is needed later to supply the
information to the ReplyAction.

A business process provides services to
its partners through receive activities and
corresponding reply actions.

ReadVariableAction , WriteVariableAction

<assign>

Variable actions support the reading and writing
of wvariables. The VariableAction metaclass
specifies the variable being accessed.

It copies data from one variable to
another.

Variable , ObjectNode , OutputPin

<from>

An output pin is a pin that holds output values
produced by an action. Output pins are object
nodes that deliver values to other actions .

It specifies the source variable name to
be used for an assignment expression.

Variable, ObjectNode , InputPin

<to>

An input pin is a pin that holds input values to be
consumed by an action. They are object nodes that
receive values from other actions

It specifies the target variable name to be
used for an assignment expression.

CallOperationAction

<invoke>

An action that transmits an operation call request
to the target object. If the action is marked
asynchronous, the execution of the call operation

An activity that is used by a process to
make invocation to Web Services
provided by partners. Can be either

waits until the execution completes, otherwise it is | synchronous (request/reply) or
completed when the invocation is established. asynchronous (one way).
ReplyAction <reply>

An action that accepts a set of return values and a
token containing return information produced by a
previous accept call action.

An action to send a response to a request
previously accepted through a receive
activity.

Table 1. Mapping elements of the activity diagram to BPEL4WS

Transformation Rules: The transformation method adopted is based on [10] and
makes use of the OCL with the following conventions: The UML refers to the source
language (Activity diagram), the BPEL4WS refers to the target language, the params
refer to any parameters used during the transformation, the source and target refer to
various named source or target meta-language model elements, the source and target
conditions refer to source or target language conditions that must hold in order to
apply the rule, the mapping process performs the mapping among the model
elements, and -- for various comments.

The transformation process is initiated by performing a mapping between the
overall UML Activity diagram and a business process. The transformation
UMLACctivity2BusinessProcess (see Table 2), firstly, maps the activity name into a
process name. Then it performs three nested sub-transformations named as UML
Datastore2BPVariable, ActivityPartition2BPPartnerLink and UMLProcessActivity2
BPActivity. The first sub-transformation maps the variables or datastores used in the
UML activity diagram into the corresponding entities in the business processes. The
UML Activity diagram uses partitions and swimlanes to represent partners. The sub-
transformation ActivityPartition2 BPPartnerLink maps such partitions into to
BPEL4AWS partner links. Finally, the sub-transformation UMLProcessActivityBP
Activity (see Table 3) maps the UML Process Activities into Business Process
Activities.

Transformation UMLACctivity2BusinessProcess (UML, BPEL4WS)

params srcActivity: UML::Activity — the UML source Model

source srcActNodes: OCL::Set(ActivityNode)

target trgProcess: BPELAWS::Process
trgVariable: BPELAWS::Variable
trgPartnerLink: BPEL4WS::PartnerLink
trgActivity: BPELAWS:: Activity

source srcActNodes = srcActivity.nodes->asSet()->union(
cond srcActivity.group->collectNested(ActivityNode))

--mapping process

srcActivity.name <~> trgProcess.name

try UMLDat ast or e2BPVar i abl e on srcActNodes->collect(DataStore)
<~>trgVariable.type

try ActivityPartition2BPPartnerLi nk onsrcActNodes->
collect(ActivityPartition) <~> trgPartnerLink.type

try UMLProcessActivity2BPActi vity on srcActNodes->
collect(Action) <~> trgActivity.type

Table 2. The UMLActivity2BusinessProcess Transformation

When mapping the ProcessActivity to a BusinessProcess activity we need to check the
activity type, which is stereotyped in our model of Fig. 5 in order to trigger the
appropriate mapping. In our example, the process activity is of the type sequence,
therefore the UMLSequence2BPSequence (see Table 4) rule is called. If the activity
was of type flow, then the mapping rule UMLFlow2BPFlow would have been applied.

Transformation UML ProcessActivity2BPActivity (UML, BPEL4AWYS)

params srcActions: OCL::Set(UML::Action)

source srcActivity: UML::Activity

target trgSequence: BPELAWS::Sequence

| trgFlow: BPEL4AWS::Flow

--mapping process

if srcActivity.ocllsTypeof(Sequence) then

try UM.Sequence2BPSequence on scrActions <~> trgSequence.type
elseif srcActivity.ocllsTypeof(Flow) then

try UMLFI ow2BPFI owon scrActions <~> trgFlow.type

endif

Table 3. The UMLActivity2BusinessProcess Transformation

Following, we specify the mapping between sequential actions in the UML and
BPEL4WS. First the actions within a sequence activity are passed as parameters.
The method adopted involves inductive transformation of the model elements of the
UML sequence. Starting from the starting action (the one that initiates the sequence
of actions), each model element is interpreted and transformed into its corresponding
model element at the destination. The transformation procedure continues until, the
final action is reached. For example, if the type of outgoing.target, see the table
below, is an AcceptCallAction, we have to apply the AcceptCallAction to BPELAWS
ReceiveActivity mapping rule. Similarly, it is possible to deal with other target types.

Transformation UMLSequence2BPSequence (UML, BPELAWS)

params srcActions: OCL::Set(UML::Action))

source srclnitActions: OCL::Set(UML::Action) — possible set
of starting actions

target trgActReceive: BPEL4WS::Receive
trgActinvoke: BPEL4AWS::Invoke
trgActReply: BPELAWS::Reply

trgActAssign: BPEL4AWS::Assign

source srclnitActions = srcActions.iterate(a:Action

cond acc:Set(ActivityNode))=Set{} |

if a.incoming.isEmpty() then
acc->including(a)) && srclnitActions.count=1

--mapping process
action = srclnitActions
Do while action <> null

If initAction.outgoing.target.ocllsTypeOf(AcceptCal |Action)
try UMLAccept Cal | Acti on2BPRecei veActi vity on
action.outgoing.target.type <~> trgAct Recei ve. type

elseif

initActin.outgoing.target.oclisTypeOf(VariableActio n)

try UMLAssi gn2BPAssi gnAct i vi t y on action.outgoing.target.type
<~> trgAct Assi gn. type

elseif

initActin.outgoing.target.oclisTypeOf(CallOperation Action)
try UMLCal | Oper ati onActi on2BPI nvokeActi vity on
action.outgoing.target.type <~> trgAct I nvoke. type

elseif initActin.outgoing.target.ocllsTypeOf(ReplyA ction)
try UMLRepl yAct i on2BPRepl yActi vity on
action.outgoing.target.type <~> trgAct Reply. type

endif

action = action.outgoing.target
loop

Table 4. The UMLSequence2BPSequence Transformation

The above transformations are samples of the developed rules. Even though, the
above sets of rules are sufficient to illustrate the model transformation of our running
example. If we apply the transformation rules to the Activity diagram of Fig. 3 or
Fig. 5, an equivalent BPEL4WS activity model of Fig. 7 is produced.

4 Discussions and Related Work

The UML Activity diagram of Fig. 5 and Fig. 7 seem very similar, as they
represent the same case scenario. From the conceptual point of view, they belong to
totally different metamodels and have different properties. In addition, we found that
when more complex behaviours are applied (such as representing scopes and
repetitions) the models become more dissimilar.

We have a view of model transformation, which includes the transformation of
both static and dynamic aspects of the system. Following the notation of [6][7],
suppose that m;(s)/f; (my(s)/f>) represent static aspects of the system s as models
m;(m;) in formalisms f; (f;), respectively. Assume that m;(s)/f; — mys)/f> is a
transformation that maps static aspects of the system from the formalism f;, the
source, to the formalism f>, the destination. Suppose that g; and g, are two
formalisms for expressing dynamic aspects of the system s, i.e. they can be used to
specify how various components cooperate to manage various tasks and provide
functions of the system. As a result, the transformation m;(s5)/g; — my(s)/g, are used
to map the dynamic aspects of the system. Since the static and dynamic aspects of a
system are closely interrelated, it is naive to assume that the transformation of the two
aspects can be carried out independent of one another. For example, in our case study,
the metamodel of BPEL4WS shown in Fig. 6 contains references to WSDL elements;
there are references to port type, message and operation, which are static model
elements. In other words, since the dynamic aspects represent how entities (defined
in the structural models) work together to accomplish a task, it is essential to find a
systematic way of integrating the two views together. In our opinion, presenting a
general method of integrating static and dynamic aspects of arbitrary systems is a
highly non-trivial and challenging task. As a result, our current research focuses only
on the transformation of behavioural models of Business Processes, from a UML
model to a specific implementation technology (BPEL4WS). In conducting the above
case study, we have followed the following trivial rule of thumb:

“If a business process task tl at the source is transformed to a task t2 at the
destination, then t2 and tl must have the same effect on the corresponding
collaborating services.”’

Would it be possible to formalise the above rule of thumb? Caplat and Sourroulle
[6] study a similar question for the static aspects of systems. For example, they show
that, similarity of metamodels is not a good criterion for judging the similarity of
formalisms. However, answering the above question require further research.

<<external, partner>> <<Business Process, Sequence: <<external, partner>:
caller simple provider

StartProcess

<ereceivess
receive

<<from=> <sfroms:
GimneQuate) - - <> <V -7 e invocatior ot
request - ;
A I I
I I

<<varialle, part=>
requestSymbol

n
=<variable, part==

invocationRecuestQuote
T

=rs)

<sinvolie>>
invoke:

. ' <atoss <ctoss
<<varieble=> | | 1 ot
inv ocationresponse|

‘ <<variable, part=> ‘

assign=
savariables> response
(==}

response

<<variable, part==
e ot

cereply>>
reply

' s E
&3
§
< 5
it
¥ £
7 N
g
S
g3
g2

StopProcess

Fig. 7. Activity Diagram for BPEL

The Activity diagram of Fig. 3 is a high level conceptual model, which is too
abstract to be translated to an implementation. As a result, we incorporated further
information, which required making further design decisions. For example, refine the
diagram of Fig. 3 to the Activity diagram of Fig. 5. The metamodel can help us in
identifying various possible ways of refining a model. For instance, the metamodel of
Fig. 4 specifies that an ActivityNode is either a ControlNode, ObjectNode or
ExecutableNode, see page 268 in [19].

5 Conclusion

This paper deals with the modelling of the behavioural aspects of composite Web
Services. The paper studies a model transformation of business processes from a
PIM, created as a UML Activity diagram, into a PSM, modelled via BPEL4WS. We
have presented a metamodel for the UML Activity diagram, which can be used for the
refinement of the conceptual models of business processes. We have also introduced
a MOF compliant metamodel for the BPEL4WS. A mapping between the
corresponding model elements in the UML Activity diagram and BPEL4WS is
introduced. To translate Activity diagram to BPEL4WS, we have introduced a set of
transformation rules, which are specified in the OCL. Finally, we have applied our
approach to the model transformation of a Stock Quote Web Service.

References

1. Appukutan, B., Clark, T., Reddy, S., Tratt, T., Venkatesh, R.: A model driven
approach to model transformations, Kings College, (2003)

2. BEA, IBM, Microsoft, SAP AG and Siebel Systems: Business Process Execution
Language for Web Services, Version 1.1, (May 2003)

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24.

25.

26.
217.

Bezavin, J., Gerard, S.: A preliminary identification of MDA components,
University of Nantes, CEA, (2002)

Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping
Web Services to Implementation Platforms, Atlas Group, INRIA and LINA
University of Nantes, Research Report, (March 2004)

BPMI: Business Process Modelling Language (BPML), Business Process
Management Initiative, (November 2002)

Caplat, G., Sourrouille, J. L.: Considerations about Model Mapping, Workshop
on MDA, INSA, (2003)

Caplat, G., Sourrouille, J. L.: Model Mapping in MDA, INSA, France, (2002)
Frankel, D.S.: Model Driven Architecture, Model Driven Architecture: Applying
MDA to Enterprise Computing, OMG Press, ISBN: 0471319201, (January 2003)
Ganesarajah, D., Lupu, E.: Workflow-based composition of Web Services,
Department of Computer Science, Imperial College, (2002)

Kleppe, A., Warmer, J., Bast, W.. MDA Explained. The Model Driven
Architecture: Practice and Promise, Addison-Wesley, (April 2003)

Kreger, H.: Fulfilling The Web Services Promise, Communications of the ACM,
Vol. 46, No. 6, (June 2003)

Lopes, D., Hammoudi, S.: Web Services in the Context of MDA, University of
Nantes, France, (2003)

O’ Riordan, D.: Business Process Standards For Web Services, Published by
Tect, Chicago, USA

OMG: Enterprise Collaboration Architecture (ECA) Specification, Object
Management Group, Version 1.0, (February 2004)

OMG: Meta Object Facility (MOF) Specification, Object Management Group,
Version 1.4, (2002)

OMG: Object Constraint Language Specification (OCL), Part of UML 1.4.1
Specification, (2003)

OMG: Object Management Group, Available from http://www.omg.com

OMG: Request for Proposal: MOF 2.0 Query / Views / Transformations RFP,
Object Management Group, (October 2003)

OMG: UML 2.0 Superstructure Specification, Object Management Group,
Adopted Specification, Version 2, (August 2003)

Papazoglou, M.P.,Georgakopoulos, D.: Service Oriented Computing,
Communications of the ACM, Vol. 46, No. 10, (October 2003)

Siegel, J.: Using OMG’s Model Driven Architecture (MDA) to integrate Web
Services, Object Management Group White Paper, (November 2001)

Tratt, L., Clark, T.: Model Transformation in Converge, Kings College, (2003)
W3C: Extensible Markup Language (XML) 1.0, Third Edition, W3C
Recommendation, (February 2004)

W3C: Simple Object Access Protocol (SOAP), Version 1.2, W3C
Recommendation, Available from http://www.w3.org/TR/soap12-partl, (2003)
W3C: Web Service Choreography Interface (WSCI) 1.0, W3C Note, Available
from http://www.w3.org/TR/wsci, (August 2002)

W3C: Web Services Architecture, Working Group Note, (February 2004)

W3C: Web Services Description Language (WSDL) Version 2.0, W3C Working
Draft, (2003)

