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Abstract. The need for a design language that is rigorous but accessible and 
intuitive is often at odds with the formal and mathematical nature of languages 
used for analysis. UML and Petri Nets are a good example of this dichotomy. 
UML is a widely accepted modelling language capable of modelling the 
structural and behavioural aspects of a system. However UML lacks the 
mathematical foundation that is required for rigorous analysis. Petri Nets on the 
other hand have a strong mathematical base that is well suited for analysis of a 
system but lacks the appeal and ease-of-use of UML. Design in UML languages 
such as Sequence Diagrams and analysis in Petri Nets require on one hand 
some expertise in potentially two incompatible systems and their tools, and on 
the other a seamless transition from one system to the other. One way of 
addressing this impediment is to focus the software development mainly on the 
design language system and to facilitate the transition to the formal analysis by 
means of a combination of automation and tool support. The aim of this paper 
is to present a transformation system, which takes UML Sequence Diagrams 
augmented with time constraints and generates semantically equivalent Petri 
Nets that preserve the timing requirements. A case study on a small network is 
used in order to illustrate the proposed approach and in particular the design, 
the transformation and the analysis processes. 

1 Introduction 

One of the most pressing tasks facing software developers in general and software 
engineers in particular is the development of software tools that support an integrated 
approach to the design and the analysis of software systems. The design of a system 
may be considered as an essentially cognitive activity with a focus on clarity, while its 
analysis is usually firmly grounded on mathematics and relies often on formal 
representations and formal processing. The tension that results from this dichotomy 
has presented a serious challenge for the deployment of existing software tools in both 
areas. This difficulty is further compounded by the lack of interoperability between 
the tools associated with each phase. There is a clear need for the development of 
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tools and frameworks that can reconcile the goals of the design and the analysis 
processes [1-3]. 

On the design side the Unified Modelling Language (UML) has been a focal point 
of activity in the software design community. Its rich constructs have conferred to 
UML a privileged role in designing software systems in a variety of domains such as 
network, business modelling and security [4]. One shortcoming of UML is however 
its inability to support the model analysis process.  

The requirements for the formal analysis of software systems have been met by the 
introduction of a wide range of formal languages which are well suited for analysis, 
among them Alloy [5], Z [6] and Petri Nets (PN) [7]. In providing support for design 
and analysis, one common approach is to create the design in UML languages and 
transform it into a formal representation for analysis. For example, UML2Alloy 
makes use of Alloy for the analysis of a model which is captured in UML class 
diagrams and OCL [3].  The analysis performed in the Alloy framework involves 
solving logical constraints on the model. Although Alloy is useful for the analysis of 
the static aspects of a design but it is not particularly suitable for behavioural 
modelling [3]. This limitation is one of the reasons that led developers to rely on 
formal languages such as Petri Nets.  Petri Nets are suitable for analysis of 
behavioural aspects of models such as deadlock detection, liveness and reachability. 
Their usefulness has also been enhanced by the availability of tools such as PIPE [8] 
and CPNTools [9]. 

The gap between the design and analysis in this respect can be bridged by using 
Model Driven Development (MDD) model transformation as outlined in [10]. The 
proposed model transformation addresses this issue by combining the strengths of the 
two languages: the specification of the behaviour of a system is formulated in UML 
Sequence Diagrams and the analysis is performed on Petri Nets. The transition from 
UML to Petri Nets is achieved via a transformation process, which takes a model of 
Sequence Diagrams and automatically generates the equivalent Petri Net model. The 
model can subsequently be analysed with Petri Net tools. Figure 1 gives a high-level 
description of this process. The transformation has already been covered in a previous 
work by the development of a model driven development (MDD) model 
transformation tool, SD2PN [10]. As an initial stage in the development of the 
framework it did not include timing capabilities. 

SD2PN

Sequence 
Diagrams

Petri Nets

Designer

modelling

analysis result

analysis

 

Fig. 1. Overview of the Model Transformation 

The contribution of this paper is extending the model transformation in [10] with 
timing constraints, as part of a framework for software development.  The main 
advantage of this extension is the application of the tool to the analysis of time 
sensitive systems, such as the modelling of Quality of Service (QoS) and its 
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validation. The proposed framework is supported by a case study on a QoS 
specification and analysis in a Personal Area Network (PAN). UML Sequence 
Diagrams are used to model parts of the IEEE 802.11 protocol. The model is then 
transformed into Petri Nets and analysed using relevant Petri Net tools for calculating 
the maximum waiting time for a station in the PAN. 

The remainder of the paper is organized as follows. Section 2 provides some 
background information on MDD, UML and Petri Nets. Section 3 presents a 
summary of previous work [10] and its extension. Section 4 describes the proposed 
tool. Section 5 deals with a case study based on the PAN and its analysis in Petri Nets. 
Section 6 provides a discussion and outlines some further work. Section 7 concludes 
the paper. 

2 Preliminaries 

This section introduces some preliminary material regarding Unified Modelling 
Language, Petri Nets, Model Driven Development and their role in the transformation 
process. 

2.1 Unified Modelling Language 

The function of a model is to capture a view of the system. In software engineering 
models are abstractions of a physical system which has a specific purpose [11]. 
Unified Modelling Language (UML) is a family of languages, which is widely 
accepted as the de facto standard for software modelling. UML models can be used to 
specify the structure of the system, its behaviour and the constraints that the system 
must adhere to. This includes constraints related to the timing of the occurrence of 
events. 

Models in UML are instances of metamodels. A metamodel includes system 
elements, their relationships and a set of rules to which every model must conform in 
order to be well defined. In this paper Sequence Diagrams are used as the main 
modelling language for describing the behaviour of a system. 
 
Sequence Diagrams. Sequence Diagrams are used to define the interactions between 
objects and the flow of events within a system. They are based on Message Sequence 
Charts which are extensively used to capture scenarios for distributed 
telecommunication systems.  Figure 2 is a small metamodel for Sequence Diagrams, 
adapted from [10], and will be used throughout this paper for explanation purposes. 
The metamodel of Figure 2 extends the metamodel used in our previous work [10]. 
However, while [10] presented a metamodel for general Sequence Diagrams, this 
paper presents an extension that enables the Sequence Diagrams to be augmented 
with timing constraints while still adhering to the UML 2.1 standards.   The shaded 
boxes in the metamodel in Figure 2 depict these time related extensions. 
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Fig. 2. Sequence Diagram Metamodel 

Time Properties.  The shaded elements in the metamodel of Figure 2 depict the 
previously mentioned extension that signifies the addition of time properties into 
Sequence Diagrams. These elements are adapted from "Common Behaviors", chapter 
13 of the UML 2.1 Superstructure [11]. IntervalConstraint, TimeConstraint and 
DurationConstraints are all specifications of the class Constraint and they are used to 
define particular types of constraints. TimeConstraint and DurationConstraint refer to 
TimeInterval and DurationInterval respectively. An Interval is used to specify the 
range between two ValueSpecifications through a maximum and minimum value. 
These values are inferred as float instead of ValueSpecification as to keep the 
metamodel to a minimum. While Intervals have a maximum and minimum value, 
Duration “defines a value specification that specifies the temporal distance between 
two time instants” as described in page 437 of [11]. This is also evident in [13] where 
Douglass interprets that an Interval is not a length of time, but rather a start and end 
point of a time frame while Duration is a relative time measure that has a scalar value 
independent of the start time. Douglass further noted that time constraints are 
syntactically represented textually inside curly brackets, which is also evident in page 
59 of [11] 
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Token Immediate 
Transition
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Timed 
Transition
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[ ]3, +θθ
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DurationConstraint

{ }θ
{ }3... +θθ

(a) (b)  

Fig. 3. Examples of a (a) Sequence Diagram and (b) its equivalent Petri Net 

Störrle [14] interprets the concept of time in UML 2.0 Sequence Diagrams as 
divided to two types; the first of which is preserving the state of the system for a 
certain duration or a time interval while the second represents the duration for a single 
event to occur. Both these types can be represented by intervals between pairs of 
event occurrences. This is consistent with UML 2.1 since page 482 of [11] also 
describes Duration to be “always between occurrences”.  

Figure 3 (a) shows an example of a Sequence Diagram that features both types of 
time constraints. The interval between m1 and m2 denoted by θ  shows that the state 
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after m1 is completed is preserved for the duration of θ  while the occurrence of 
message m2 takes between θ  and θ +3 to occur, where θ  is a constant. 

2.2 Petri Nets 

Petri Nets are a mathematical and graphical modelling language, which can be applied 
to complex systems. Petri Nets can be used to model a diverse set of behaviour 
including parallel, asynchronous, concurrent, hierachical and stochastic as well as 
dynamic behaviours [7]. Similarly to Sequence Diagrams, a Petri Net can model the 
flow of events in a system graphically. The formal and mathematical nature of Petri 
Nets can be used to overcome the limitations of Sequence Diagrams with respect to 
analysis. 

Petri Net

Place Transition

Marking

Mark

Arc

Time Constraints Interval

Immediate 
Transition

Timed Transition
tokens: Integer

lowerBound : float
upperBound : float

+in +in+out +out* * * *

1 1 1 1

 

Fig. 4. Petri Net Metamodel 

Figure 4 shows the metamodel of a Petri Net, which will be used throughout the 
paper. This metamodel is adapted from [10] and enhanced with timing properties 
(shaded elements). The model elements will be explained in terms of an example 
specified in Figure 3 (b). 

The example depicts a Petri Net that models the behaviour captured in the 
Sequence Diagram of Figure 3 (a). This Petri Net consists of 4 places and 3 
transitions that are all connected by arcs. An arc in a Petri Net serves as a connector 
between places and transitions and may not connect 2 places or 2 transitions.  

A transition in the Petri Net has input places and output places, which are places 
that have arcs in and out of the transition respectively. A transition is enabled and 
ready to fire when all of its input places have at least a token each. Tokens, as 
presented in Figure 3 (b), are depicted as filled circles contained inside places. When 
a transition fires, a token will be removed from each of the input places and added 
into one of the output places.  For further information on Petri nets see [7]. The 
shaded parts of Figure 4 are extension of the conventional Petri Net metamodel in 
[10] by including time properties, which are explained as follows. 
 
Timed Petri Nets. Timed Petri Nets are extensions to the conventional Petri Nets by 
the inclusion of timing information such as the time associated to the firing of 
transitions. There are different flavours of Timed Petri Nets. In this paper, the Timed 
Petri Net with closed intervals as outlined in [15] are used. The timing information in 
the metamodel are inferred from the Petri Net tools where [8] shows the existence of 
two distinct types of transitions and [16] states that each time marking is modelled via 
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closed intervals. These intervals are defined via specific upper and lower bounds 
attached to a transition. For a transition to fire, firstly it must be enabled. Secondly, 
from the moment it gets enabled, a clock starts; the transition can fire when the value 
of the clock is within the interval. An example of a timed transition is shown in Figure 
3 (b) where the transition t2 has a time constraint with the closed interval [θ ,θ +3]. 
The transition t2 can only fire under two conditions; it must be enabled and the clock 
must be between θ  and θ +3. For more information regarding Timed Petri Nets, 
readers are referred to [15]. 

The graphical representation of Timed Petri Net also differs slightly from the Petri 
Net used in [10]. In this paper, the immediate transitions or transitions without time 
constraints are depicted as black rectangles while the timed transitions are depicted as 
white rectangles; both of which are shown in Figure 3 (b) This is to provide a contrast 
between the two types of transition although semantically, an immediate transition is 
equivalent to a timed transition with an interval of [0, 0]. For timed transitions, the 
interval is shown in a bracket by the label of the transitions, with a comma separating 
the upper and lower bound. In a scenario such that the upper and lower bounds are the 
same i.e. [50, 50]; it is abbreviated as [50]. Each of the upper and lower bound must 
be of type float as inferred from the Sequence Diagrams. 

The inclusion of time constraints in Petri Nets enhances their capability for 
modelling time-sensitive systems. Moreover, with the benefit of using existing Timed 
Petri Net tools such as CPNTools [9] and PIPE [8], time analysis could take place, 
thus making it an ideal destination model in an MDD model transformation. 
 
Petri Net Analysis.  The mathematical nature of Petri Nets creates a strong base for 
various types of analysis. Murata [7] outlines a number of analysis methods how they 
relate to the problems in designing an enterprise system. Among others, Reachability 
analysis is used to study the dynamic properties of a system i.e. how taking one action 
may effect the chances of an event happening in the future. A Boundedness analysis is 
used to check the effect of the system to the buffers and registers for storing 
intermediate data while a Liveness analysis checks the system for deadlocks. All these 
analysis and more can be performed on general Petri Nets and are supported by tools 
such as CPNTools [9], PIPE [8] and various other tools.  

While the analysis capabilities of general Petri Nets focus on the structural and 
behavioural properties of a system, the addition of time properties to the Petri Nets 
allows for performance analysis as well. A Cycle-time analysis could be used to 
determine the duration for a complete sequence of action in the system while a tool 
such as CPNTools [9] can be used for computing the amount of time that separates 
two events, i.e. time between requesting access to a resource and getting the resource. 
Various Petri Net tools also provide a platform for other performance analysis such as 
average time, standard deviations, confidence intervals and throughput analysis as 
described in [8, 16]. 
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2.3 Model Driven Development 

One of the aims of Model Driven Development [17] is to promote the role of 
modelling in software development. Central to the MDD is the process of Model 
Transformation, which automatically generates a new model from an existing one. 
Figure 5 depicts an outline of MDD and the process of Model Transformation. A 
number of Transformation Rules are used to define how various elements of one 
metamodel (source metamodel) are mapped into the elements of another metamodel 
(destination metamodel). The process of Model Transformation is carried out 
automatically via the software tools which are commonly referred to as Model 
Transformation Frameworks [18-20].  

 

Fig. 5. Model Driven Development 

A typical Model Transformation Framework requires three inputs: source 
metamodel, destination metamodel and transformation rules. For any instance of the 
source metamodel, the Model Transformation Framework executes the rules to create 
an instance of the destination metamodel. One way to express such rules is through 
Query/View/Transformation [21]. QVT is a standard for expressing MDD model 
transformations governed by the Object Management Group (OMG). Further reading 
on QVT could be found in [21]. 

3 Model Transformation 

This section recalls the model transformation in [10] and discusses the extensions 
made to it to enable the analysis of timeliness properties using MDD. SD2PN [10] 
used a rule-based approach to map Sequence Diagrams into conventional Petri Nets. 
This model transformation had three stages; Decomposing Sequence Diagrams into 
fragments, transforming each fragment into Petri Net blocks and putting together the 
blocks of Petri Nets. A brief outline of the five transformation rules in SD2PN is 
given below. 

Figure 6 shows the transformation rules used in SD2PN. Rule 1 describes the 
transformation of a message fragment into a block of Petri Net as shown in Figure 6.  
Rule 2 in refers to the CombinedFragment with the InteractionOperatorKind 
alternative while Rule 3 refers to option. Page 468 of [11] describes an option with 
with a sole operand to be semantically equivalent to an alternative where the second 
operand is empty, which will be the default for Rule 3. The guards for these 
CombinedFragments can be directly transformed from the sequence diagram fragment 
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and incorporated as guards on the respective transitions. However, Timed Petri Net 
tools are not equipped to consider the guards as constraints and this limitation is a 
course for future research. Rules 4 and 5 refer to the InteractionOperatorKind break 
where the node X signifies the terminal node and parallel fragment, respectively.  
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s2
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t2

SD2PN
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m t
SD2PN
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Fig. 6. Five Rules of SD2PN and example of QVT 

The snippet of QVT given for Rule 3 is an example of how this model 
transformation could be carried out. In line 11, the type of the InteractionOperator is 
checked, and the enumeration for InteractionOperatorKind option is 1. The Petri Net 
is then built according to the diagram of Rule 3.  

In this paper, the five rules of SD2PN are refined with time properties to make 
them compliant with the new metamodels. Referring to section 1 of Figure 6, Rule 1 
is used to transform every message in a Sequence Diagram into a Petri Net block 
consisting of two places, s1 and s2, and a transition, t. By adding a time constraint to 
this rule, the transition t is given an Interval constraint with a maximum and 
minimum value acting as its upper and lower bound. There are three possible 
scenarios that could provide different outcomes to the rule. If a message has an 
interval with different maximum and minimum values associated to it i.e. {10...30}, 
the transition t in the resulting Petri Net block will be designated as a Timed 
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Transition with a closed interval [10, 30]. Similarly, if a message has a duration 
associated to it i.e. {20}, the transition t in the resulting Petri Net block will be 
designated as a Timed Transition with a closed interval [20, 20] or abbreviated as 
[20]. However, if a message does not have any time properties attached to it, the 
transition t in the resulting Petri Net block will be designated as an Immediate 
Transition. 

Rules 2 through 5, depicted by sections 2 through 5 in Figure 6 respectively, refer 
to the transformation of each InteractionOperators into a Petri Net block. However, 
since there are no intervals or durations that are attached to InteractionOperators, 
every transition in the resulting Petri Net block are designated as Immediate 
Transitions. 

This paper also introduces a new rule for SD2PN, Rule 6 as illustrated in Figure 7, 
to map time properties in Sequence Diagrams that are not attached to a message into a 
Petri Net block. This rule, although resulting in a Petri Net block similar to Rule 1, 
only has two possible scenarios. In cases where exists an interval in the Sequence 
Diagrams i.e. {10...30}, the transition t in the resulting Petri Net will have an interval 
of [10, 30] where else if there exist a duration in the Sequence Diagram i.e. {20}, the 
transition t will have an interval of [20]. 

 

s2

SD2PN
Rule 6

s1

{ }θ [ ]θ

 
Fig. 7. Rule 6 of SD2PN 

 
Once all the fragments are transformed into Petri Net blocks, they are amalgamated 

using two operations, which are referred to as morph and substitute defined in [10]. 
Morph is used for aggregating two Petri Net blocks to create larger Petri Nets. It can 
be seen that each Petri Net block has a single input and output place. Invoking morph 
with two Petri Net blocks merges the former’s output place with the latter’s input 
place. Substitute is used to replace a placeholder in the Petri Net blocks, such as 
ph1and ph2 in sections 2 through 5 of Figure 6 with a different Petri Net block. This 
will be done repeatedly until there are no longer any placeholders left in the block. 

It is shown in Theorem 1 of [10] that the model transformation generates only Free 
Choice Petri Nets that are predominantly used for effective and efficient analysis in 
enterprise system [2]. This result is preserved in this paper since the same Petri Net 
blocks are used. More information on SD2PN and the proof that it generates Free 
Choice Petri Net are available in [10].  

4 Transformation Tool 

Figure 8 depicts the architecture of the tool by showing the stages involved in the 
execution of a transformation [22]. The tool makes use of the XMI [23] 
representations of Sequence Diagrams which is provided by all mainstream UML 
tools such as [24, 25]. Using an XMI parser, the tool creates Java objects based on the 
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Sequence Diagram metamodel. By utilizing SiTra [26], the tool transforms the 
Sequence Diagram objects into Petri Net objects based on the transformation rules. 

 

UML Tools

XMI Parser
SiTra

XML Writer

Petri Net 
Tools

SD2PN Transformer

 
Fig. 8. SD2PN Transformer 

 
Finally, the functions morph and substitute introduced in [10] are used to aggregate 

the Petri Net objects, and thus create the Petri Net which corresponds to the original 
Sequence Diagram. The resulting Petri Net model can then be analysed by using a 
chosen Petri Net tool. The XML writer for the tool can be customized to correspond 
with a specific tool. This allows the designer to create a system completely in 
Sequence Diagram while still taking advantage of the analytical capabilities of Petri 
Net. 

5 Case Study 

This section presents a case study, which involves the specification and analysis of 
the Quality of Service (QoS) of a Personal Area Network (PAN) via SD2PN. The 
case study demonstrates the transformation of Sequence Diagrams into Timed Petri 
Nets and the use of the created Petri Nets to analyse QoS properties such as maximum 
delay. 

5.1 Case Description 

Figure 9 depicts a simplified PAN that has two stations and a Wireless Router that 
serves as an access point to the internet. In the router, the basic IEEE 802.11 Carrier 
Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol is used [27]. 
Due to space constraints only the elements of the protocol that are relevant to QoS 
will be considered.  

CSMA/CD assigns different waiting time to packets in order to manage the access 
of the stations to the medium. There are three different waiting times for various types 
of packets. The shortest waiting time for medium access is called Short inter-frame 
spacing (SIFS) which is used for short control messages or polling responses. The 
waiting time for time-bounded service such as a poll from the access point is 
considered PCF inter-frame spacing (PIFS) and the longest waiting time and lowest 
priority, DCF inter-frame spacing (DIFS) is used for asynchronous data services. 
There is a mechanism called contention window (CW), which is introduced in order to 
facilitate collision avoidance. The contention window makes use of an integer value 
that starts with CWmin = 7 and doubles every time a collision occurs. Every time a 
station tries to gain access to the medium, a random number is generated between 0 
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and CW and is added to the waiting time. This ensures that the stations do not send 
their packets at the same time. CW is doubled for every collision that occurs to 
accommodate a larger number of stations vying for the access of the medium. Readers 
are referred to [27] for more information. 

Station 2

Station 1

Internet

Wireless Router

Medium

 
Fig. 9. Personal Area Network (PAN) 

 
Several assumptions were made in this case in order to simplify matters and 

provide a better understanding of the tool. Firstly, the waiting time for all packets is 
constant and all packets are categorized as DIFS. Secondly, the CW is constant and 
does not increase, and since there are only two stations, the CW would be minimum, 
i.e. CWmin = 7. Thirdly, the packets are dropped after the unsuccessful tries from the 
station and each station sends only one packet.  These assumptions do not invalidate 
the results of the analysis by any means; they just limit the scope of this case study. 

5.2 Interaction Sequence Diagram 

The Sequence Diagram in Figure 10 (a) gives an overview of how a station sends a 
packet to the medium in the IEEE 802.11 protocol. This Sequence Diagram also 
features the time properties in regards to the events that occur. The medium access 
control (MAC) layer of the station receives a packet from an application and registers 
it. It is then idle for the duration of the waiting time, which in the case of DIFS is 
50µs. After idling, the MAC checks the status of the medium. If the medium is free, 
the station is able to send the packet across to the medium. However, if the medium is 
busy, the station will have to wait until the medium is free before idling again for 
50µs. This is followed by a random time slot generated based on the CW, which in 
this case is between 1 and 7. Since a standard time slot is 20µs, this means that an 
additional waiting time of between 0 to 140µs referred to as the elapsed backoff time 
(boe) for a total waiting time of between 120µs and 240µs as shown in the Sequence 
Diagram. The MAC then checks the status of the medium again before either sending 
the packet across or waiting again. If the medium becomes busy while the station is 
still counting down the boe, then the counter stops and the remaining time is called 
residual backoff time (bor). As a result, the next waiting time will only be 
incremented by the value of bor and this increases the probability of a successful 
attempt from the stations’ point of view. Note that the maximum waiting time in 
Figure 10 (a) is reduced with every attempt. 

The diagram is a simplified overview of the events that take place. In reality, each 
of the events has multiple sub-events that occur in the background. For example, the 
details for the calculation of boe and bor are not shown in the Sequence Diagram and 
are all grouped under the event waitForAccess. 
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Fig. 10. Model of (a) Sequence Diagram for a station in PAN and (b) its equivalent Petri Net 

5.3 Model Transformation 
 
A set of Petri Nets was generated by taking the Sequence Diagrams in Figure 10 (a) 
as the source model in SD2PN; they represent the process of sending packets in IEEE 
802.11. Figure 10 (b) gives the overview of the result of the transformation process as 
a mapping from the Sequence Diagram in Figure 10 (a). The Petri Nets preserve the 
time constraints specified in the sequence diagrams and will allow for various forms 
of QoS analysis to be performed. 

The Petri Net in Figure 10 (b) models the behaviour of one station trying to gain 
access to the medium to send a packet. In cases where more than one station are 
trying to access the medium, the Petri Net in Figure 10 (b) is duplicated for each 
station and is synthesized i.e. merged using a bottom-up synthesis technique [28]. 
Although the tool does not currently support synthesis, we are actively working 
towards its integration into the system. 

5.4 Model Analysis 

The Petri Net that results from the transformation lends itself to various types of 
analysis such as deadlock detection, liveness and safeness analysis [29].  Time 
sensitive analysis such as tangible states analysis and throughput analysis are also 
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possible [8]. In this case study, throughput analysis will be used to analyse maximum 
delay as one aspect of QoS. 

The maximum delay is calculated based on how long it takes for a station to gain 
access to the medium (sendPacket). For the case of a single station shown in Figure 
10 (a), the maximum delay will be 50µs since there is no contention with other 
stations. However, in the case where there are two stations competing for access to 
the medium, the maximum waiting time for a station is 290µs as shown in Figure 11. 
This calculation is based on the flow of events in the Petri Net. Since there are two 
stations, the Petri Net in Figure 10 (b) is duplicated to model the second station. After 
registering the packet (firing of registerPacket transition), in Figure 10 (b), both 
stations will face a mandatory idle time of 50µs (firing of idle transition) before 
checking the status of the medium. Following that, only one station will be able to 
gain access to the medium while the other will have to wait between 120µs and 240µs 
(firing of waitForAccess transition), thus a maximum waiting time of 290µs (= 240µs 
+ 50µs). 
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Fig. 11. Maximum Waiting Time analysis result 

 
The graph in Figure 11 indicates the maximum delay that a station may face before 

gaining access to the medium to send a packet. The number of stations is limited to 7 
to ensure there are no collisions; this is based on the previous assumption that the CW 
does not increase. Such information can be used to analyse the choice of protocols for 
interaction within the system.  

6 Discussion 

Many researchers have highlighted the trade-off between the ease of use of UML and 
its lack of precision. Recent work in this area has been marked by a concerted effort 
aimed at enhancing UML by incorporating formal methods techniques [30-34]. 
Formalisation offers many advantages including the ability to analyse a model via 
techniques such as model checking and theorem proving in order to ensure correct 
specification. The introduction of logical and timing constraints into a model, in 
particular, facilitates the investigation of non-functional aspects of the system such as 
QoS and security. It has been noted however that formalisation is often achieved at 
the expense of simplicity and that the main challenge is to strike a balance between 
precision and ease of use. 
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Formalising UML is an active area of research. For example, Evans et al [30] 
propose the use of Z as the underlying semantics for Class Diagrams to deal with the 
static aspects of models. Küster-Filipe [35] presents a semantics for Sequence 
Diagrams based on Labelled Event Structures which are used to prove the correctness 
of SD2PN [10]. The approach adopted in this paper, although it promotes the use of 
formal methods, differs from the latter in a significant way. It relies on model 
transformation and formal method analysis tools to facilitate automated analysis.  

Model transformation has also received considerable attention. Kim [32] proposes 
transforming both Class Diagrams and State Machines into Object-Z using MDA 
technology. To the best of our knowledge, this transformation has not been 
implemented yet. A similar approach is adopted in [34] and [33]  which transform 
Class Diagrams and OCL Constraints into the formal language B [36]. In particular, 
[33] proposes a UML profile for B called UML-B and the automation of  the 
transformation with a tool called U2B. A major feature of of this approach is that it 
makes use of B provers to check the conformance of the operations’ pre and post 
conditions to the invariants of the model. The main difficulty with provers, as 
underlined in [33], is that even semi-automatic provers assume a substantial amount 
of knowledge from the user. In contrast the approach presented in this paper aims to 
limit the reliance on formal method expertise such that a designer may model a 
system conveniently in Sequence Diagram and still manage to use the analysis 
capabilities of Petri Nets. 

The proposed framework transforms the UML Sequence Diagrams into Timed 
Petri Nets and takes advantage of their suitability for formal analysis. The 
transformation produces Free Choice Petri Nets, which support the investigation of 
various properties such as liveness, safeness and deadlocks detection [29]. It is 
possible to integrate existing Petri Net tools into the tool set, so that for a created 
UML Sequence Diagram, through a chain of tools, the user can automatically receive 
feedback on, among others, the liveness, safeness and deadlock freeness of the model. 
This combination of formalisms, tools and model transformations is bound to reduce 
the cognitive load on users since a thorough understanding of the underlying formal 
structure of the model is no longer required. Moreover, Free Choice Petri Nets are 
also proving to be particularly suitable for the analysis of large-scale systems [1, 2], 
an important feature that widens the scope of the application of the proposed 
framework to encompass similar systems. In addition to the structural and behavioural 
analysis, the time properties included in this paper will also enable performance 
analysis to be conducted on the system. Analysis like maximum throughput, density 
probability, interval, cycle time [8, 16] and many other time related analysis can be 
carried out. 

It is possible to augmenting Sequence Diagrams with logical constraints as pre and 
post conditions for each execution of events. Such constraints can be expressed in 
languages such as OCL [12] and mapped by extending the model transformation 
presented in the paper. This would result in Coloured Petri Nets [7] which are an 
extension of Petri Nets. Coloured Petri Nets have been investigated extensively and 
various tools, such as CPNTools [9], have been developed for their  analysis. 
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7 Conclusion 

This paper has presented a framework of applying Model Driven Development for 
transforming time augmented Sequence Diagrams into Timed Petri Nets. This model 
transformation serves to bridge the gap between the design and analysis phases of a 
system, thus enabling a designer to conveniently design a system in UML Sequence 
Diagram while taking advantage of Petri Nets' strong mathemathical foundations to 
analyse the model. Furthermore, the addition of time properties into the model 
transformation allows for performance analysis such as execution time computation 
and throughput analysis on top of the established structural and behavioral analysis 
capabilities of Petri Nets. The presented approach has been evaluated successfully 
with the help of an example of a Personal Area Network. 
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