
A Model Driven Approach to the Analysis of Timeliness
Properties

Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

1University of Birmingham, Birmingham, UK
{M.A.Ameedeen, B.Bordbar}@cs.bham.ac.uk

2Coventry University, Coventry, UK
R.Anane@coventry.ac.uk

Abstract. The need for a design language that is rigorous but accessible and
intuitive is often at odds with the formal and mathematical nature of languages
used for analysis. UML and Petri Nets are a good example of this dichotomy.
UML is a widely accepted modelling language capable of modelling the
structural and behavioural aspects of a system. However UML lacks the
mathematical foundation that is required for rigorous analysis. Petri Nets on the
other hand have a strong mathematical base that is well suited for analysis of a
system but lacks the appeal and ease-of-use of UML. Design in UML languages
such as Sequence Diagrams and analysis in Petri Nets require on one hand
some expertise in potentially two incompatible systems and their tools, and on
the other a seamless transition from one system to the other. One way of
addressing this impediment is to focus the software development mainly on the
design language system and to facilitate the transition to the formal analysis by
means of a combination of automation and tool support. The aim of this paper
is to present a transformation system, which takes UML Sequence Diagrams
augmented with time constraints and generates semantically equivalent Petri
Nets that preserve the timing requirements. A case study on a small network is
used in order to illustrate the proposed approach and in particular the design,
the transformation and the analysis processes.

1 Introduction

One of the most pressing tasks facing software developers in general and software
engineers in particular is the development of software tools that support an integrated
approach to the design and the analysis of software systems. The design of a system
may be considered as an essentially cognitive activity with a focus on clarity, while its
analysis is usually firmly grounded on mathematics and relies often on formal
representations and formal processing. The tension that results from this dichotomy
has presented a serious challenge for the deployment of existing software tools in both
areas. This difficulty is further compounded by the lack of interoperability between
the tools associated with each phase. There is a clear need for the development of

2 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

tools and frameworks that can reconcile the goals of the design and the analysis
processes [1-3].

On the design side the Unified Modelling Language (UML) has been a focal point
of activity in the software design community. Its rich constructs have conferred to
UML a privileged role in designing software systems in a variety of domains such as
network, business modelling and security [4]. One shortcoming of UML is however
its inability to support the model analysis process.

The requirements for the formal analysis of software systems have been met by the
introduction of a wide range of formal languages which are well suited for analysis,
among them Alloy [5], Z [6] and Petri Nets (PN) [7]. In providing support for design
and analysis, one common approach is to create the design in UML languages and
transform it into a formal representation for analysis. For example, UML2Alloy
makes use of Alloy for the analysis of a model which is captured in UML class
diagrams and OCL [3]. The analysis performed in the Alloy framework involves
solving logical constraints on the model. Although Alloy is useful for the analysis of
the static aspects of a design but it is not particularly suitable for behavioural
modelling [3]. This limitation is one of the reasons that led developers to rely on
formal languages such as Petri Nets. Petri Nets are suitable for analysis of
behavioural aspects of models such as deadlock detection, liveness and reachability.
Their usefulness has also been enhanced by the availability of tools such as PIPE [8]
and CPNTools [9].

The gap between the design and analysis in this respect can be bridged by using
Model Driven Development (MDD) model transformation as outlined in [10]. The
proposed model transformation addresses this issue by combining the strengths of the
two languages: the specification of the behaviour of a system is formulated in UML
Sequence Diagrams and the analysis is performed on Petri Nets. The transition from
UML to Petri Nets is achieved via a transformation process, which takes a model of
Sequence Diagrams and automatically generates the equivalent Petri Net model. The
model can subsequently be analysed with Petri Net tools. Figure 1 gives a high-level
description of this process. The transformation has already been covered in a previous
work by the development of a model driven development (MDD) model
transformation tool, SD2PN [10]. As an initial stage in the development of the
framework it did not include timing capabilities.

SD2PN

Sequence
Diagrams

Petri Nets

Designer

modelling

analysis result

analysis

Fig. 1. Overview of the Model Transformation

The contribution of this paper is extending the model transformation in [10] with
timing constraints, as part of a framework for software development. The main
advantage of this extension is the application of the tool to the analysis of time
sensitive systems, such as the modelling of Quality of Service (QoS) and its

A Model Driven Approach to the Analysis of Timeliness Properties 3

validation. The proposed framework is supported by a case study on a QoS
specification and analysis in a Personal Area Network (PAN). UML Sequence
Diagrams are used to model parts of the IEEE 802.11 protocol. The model is then
transformed into Petri Nets and analysed using relevant Petri Net tools for calculating
the maximum waiting time for a station in the PAN.

The remainder of the paper is organized as follows. Section 2 provides some
background information on MDD, UML and Petri Nets. Section 3 presents a
summary of previous work [10] and its extension. Section 4 describes the proposed
tool. Section 5 deals with a case study based on the PAN and its analysis in Petri Nets.
Section 6 provides a discussion and outlines some further work. Section 7 concludes
the paper.

2 Preliminaries

This section introduces some preliminary material regarding Unified Modelling
Language, Petri Nets, Model Driven Development and their role in the transformation
process.

2.1 Unified Modelling Language

The function of a model is to capture a view of the system. In software engineering
models are abstractions of a physical system which has a specific purpose [11].
Unified Modelling Language (UML) is a family of languages, which is widely
accepted as the de facto standard for software modelling. UML models can be used to
specify the structure of the system, its behaviour and the constraints that the system
must adhere to. This includes constraints related to the timing of the occurrence of
events.

Models in UML are instances of metamodels. A metamodel includes system
elements, their relationships and a set of rules to which every model must conform in
order to be well defined. In this paper Sequence Diagrams are used as the main
modelling language for describing the behaviour of a system.

Sequence Diagrams. Sequence Diagrams are used to define the interactions between
objects and the flow of events within a system. They are based on Message Sequence
Charts which are extensively used to capture scenarios for distributed
telecommunication systems. Figure 2 is a small metamodel for Sequence Diagrams,
adapted from [10], and will be used throughout this paper for explanation purposes.
The metamodel of Figure 2 extends the metamodel used in our previous work [10].
However, while [10] presented a metamodel for general Sequence Diagrams, this
paper presents an extension that enables the Sequence Diagrams to be augmented
with timing constraints while still adhering to the UML 2.1 standards. The shaded
boxes in the metamodel in Figure 2 depict these time related extensions.

4 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

InteractionFragment

Interaction EventOccurrence CombinedFragments

InteractionOperator :
InteractionOpetratorKind

InteractionOperand

Lifeline

Message MessageEnd

GeneralOrdering InteractionConstraint

Constraint

<<enumeration >>
InteractionOperatorKind

Alt
Opt
Break
Par

+coveredBy

+fragment

+enclosing
Interaction

+fragment
(ordered)

+interaction

+interaction

+covered

+message

+sendMessage

+receiveMessage

+sendEvent

+receiveEvent

+before +after

+toBefore+toAfter

+operand

+guard

+generalOrdering

*
*

0..1

1

1

* 0..1

0..1 0..1

0..1

* *

11

0..1

1

TimeConstraint

DurationInterval

Duration

TimeInterval

Interval

IntervalConstraint

DurationConstraint

+specification

+specification

0..1

0..1
1

1

* *

1 1+min +max

min : Float
max : Float

Fig. 2. Sequence Diagram Metamodel

Time Properties. The shaded elements in the metamodel of Figure 2 depict the
previously mentioned extension that signifies the addition of time properties into
Sequence Diagrams. These elements are adapted from "Common Behaviors", chapter
13 of the UML 2.1 Superstructure [11]. IntervalConstraint, TimeConstraint and
DurationConstraints are all specifications of the class Constraint and they are used to
define particular types of constraints. TimeConstraint and DurationConstraint refer to
TimeInterval and DurationInterval respectively. An Interval is used to specify the
range between two ValueSpecifications through a maximum and minimum value.
These values are inferred as float instead of ValueSpecification as to keep the
metamodel to a minimum. While Intervals have a maximum and minimum value,
Duration “defines a value specification that specifies the temporal distance between
two time instants” as described in page 437 of [11]. This is also evident in [13] where
Douglass interprets that an Interval is not a length of time, but rather a start and end
point of a time frame while Duration is a relative time measure that has a scalar value
independent of the start time. Douglass further noted that time constraints are
syntactically represented textually inside curly brackets, which is also evident in page
59 of [11]

p1 p2t1

p4 t2 p3Place

Token Immediate
Transition

Arc

Timed
Transition

[]θ

[]3, +θθ

m1

m2

DurationConstraint

{ }θ
{ }3... +θθ

(a) (b)

Fig. 3. Examples of a (a) Sequence Diagram and (b) its equivalent Petri Net

Störrle [14] interprets the concept of time in UML 2.0 Sequence Diagrams as
divided to two types; the first of which is preserving the state of the system for a
certain duration or a time interval while the second represents the duration for a single
event to occur. Both these types can be represented by intervals between pairs of
event occurrences. This is consistent with UML 2.1 since page 482 of [11] also
describes Duration to be “always between occurrences”.

Figure 3 (a) shows an example of a Sequence Diagram that features both types of
time constraints. The interval between m1 and m2 denoted by θ shows that the state

A Model Driven Approach to the Analysis of Timeliness Properties 5

after m1 is completed is preserved for the duration of θ while the occurrence of
message m2 takes between θ and θ +3 to occur, where θ is a constant.

2.2 Petri Nets

Petri Nets are a mathematical and graphical modelling language, which can be applied
to complex systems. Petri Nets can be used to model a diverse set of behaviour
including parallel, asynchronous, concurrent, hierachical and stochastic as well as
dynamic behaviours [7]. Similarly to Sequence Diagrams, a Petri Net can model the
flow of events in a system graphically. The formal and mathematical nature of Petri
Nets can be used to overcome the limitations of Sequence Diagrams with respect to
analysis.

Petri Net

Place Transition

Marking

Mark

Arc

Time Constraints Interval

Immediate
Transition

Timed Transition
tokens: Integer

lowerBound : float
upperBound : float

+in +in+out +out* * * *

1 1 1 1

Fig. 4. Petri Net Metamodel

Figure 4 shows the metamodel of a Petri Net, which will be used throughout the
paper. This metamodel is adapted from [10] and enhanced with timing properties
(shaded elements). The model elements will be explained in terms of an example
specified in Figure 3 (b).

The example depicts a Petri Net that models the behaviour captured in the
Sequence Diagram of Figure 3 (a). This Petri Net consists of 4 places and 3
transitions that are all connected by arcs. An arc in a Petri Net serves as a connector
between places and transitions and may not connect 2 places or 2 transitions.

A transition in the Petri Net has input places and output places, which are places
that have arcs in and out of the transition respectively. A transition is enabled and
ready to fire when all of its input places have at least a token each. Tokens, as
presented in Figure 3 (b), are depicted as filled circles contained inside places. When
a transition fires, a token will be removed from each of the input places and added
into one of the output places. For further information on Petri nets see [7]. The
shaded parts of Figure 4 are extension of the conventional Petri Net metamodel in
[10] by including time properties, which are explained as follows.

Timed Petri Nets. Timed Petri Nets are extensions to the conventional Petri Nets by
the inclusion of timing information such as the time associated to the firing of
transitions. There are different flavours of Timed Petri Nets. In this paper, the Timed
Petri Net with closed intervals as outlined in [15] are used. The timing information in
the metamodel are inferred from the Petri Net tools where [8] shows the existence of
two distinct types of transitions and [16] states that each time marking is modelled via

6 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

closed intervals. These intervals are defined via specific upper and lower bounds
attached to a transition. For a transition to fire, firstly it must be enabled. Secondly,
from the moment it gets enabled, a clock starts; the transition can fire when the value
of the clock is within the interval. An example of a timed transition is shown in Figure
3 (b) where the transition t2 has a time constraint with the closed interval [θ ,θ +3].
The transition t2 can only fire under two conditions; it must be enabled and the clock
must be between θ and θ +3. For more information regarding Timed Petri Nets,
readers are referred to [15].

The graphical representation of Timed Petri Net also differs slightly from the Petri
Net used in [10]. In this paper, the immediate transitions or transitions without time
constraints are depicted as black rectangles while the timed transitions are depicted as
white rectangles; both of which are shown in Figure 3 (b) This is to provide a contrast
between the two types of transition although semantically, an immediate transition is
equivalent to a timed transition with an interval of [0, 0]. For timed transitions, the
interval is shown in a bracket by the label of the transitions, with a comma separating
the upper and lower bound. In a scenario such that the upper and lower bounds are the
same i.e. [50, 50]; it is abbreviated as [50]. Each of the upper and lower bound must
be of type float as inferred from the Sequence Diagrams.

The inclusion of time constraints in Petri Nets enhances their capability for
modelling time-sensitive systems. Moreover, with the benefit of using existing Timed
Petri Net tools such as CPNTools [9] and PIPE [8], time analysis could take place,
thus making it an ideal destination model in an MDD model transformation.

Petri Net Analysis. The mathematical nature of Petri Nets creates a strong base for
various types of analysis. Murata [7] outlines a number of analysis methods how they
relate to the problems in designing an enterprise system. Among others, Reachability
analysis is used to study the dynamic properties of a system i.e. how taking one action
may effect the chances of an event happening in the future. A Boundedness analysis is
used to check the effect of the system to the buffers and registers for storing
intermediate data while a Liveness analysis checks the system for deadlocks. All these
analysis and more can be performed on general Petri Nets and are supported by tools
such as CPNTools [9], PIPE [8] and various other tools.

While the analysis capabilities of general Petri Nets focus on the structural and
behavioural properties of a system, the addition of time properties to the Petri Nets
allows for performance analysis as well. A Cycle-time analysis could be used to
determine the duration for a complete sequence of action in the system while a tool
such as CPNTools [9] can be used for computing the amount of time that separates
two events, i.e. time between requesting access to a resource and getting the resource.
Various Petri Net tools also provide a platform for other performance analysis such as
average time, standard deviations, confidence intervals and throughput analysis as
described in [8, 16].

A Model Driven Approach to the Analysis of Timeliness Properties 7

2.3 Model Driven Development

One of the aims of Model Driven Development [17] is to promote the role of
modelling in software development. Central to the MDD is the process of Model
Transformation, which automatically generates a new model from an existing one.
Figure 5 depicts an outline of MDD and the process of Model Transformation. A
number of Transformation Rules are used to define how various elements of one
metamodel (source metamodel) are mapped into the elements of another metamodel
(destination metamodel). The process of Model Transformation is carried out
automatically via the software tools which are commonly referred to as Model
Transformation Frameworks [18-20].

Fig. 5. Model Driven Development

A typical Model Transformation Framework requires three inputs: source
metamodel, destination metamodel and transformation rules. For any instance of the
source metamodel, the Model Transformation Framework executes the rules to create
an instance of the destination metamodel. One way to express such rules is through
Query/View/Transformation [21]. QVT is a standard for expressing MDD model
transformations governed by the Object Management Group (OMG). Further reading
on QVT could be found in [21].

3 Model Transformation

This section recalls the model transformation in [10] and discusses the extensions
made to it to enable the analysis of timeliness properties using MDD. SD2PN [10]
used a rule-based approach to map Sequence Diagrams into conventional Petri Nets.
This model transformation had three stages; Decomposing Sequence Diagrams into
fragments, transforming each fragment into Petri Net blocks and putting together the
blocks of Petri Nets. A brief outline of the five transformation rules in SD2PN is
given below.

Figure 6 shows the transformation rules used in SD2PN. Rule 1 describes the
transformation of a message fragment into a block of Petri Net as shown in Figure 6.
Rule 2 in refers to the CombinedFragment with the InteractionOperatorKind
alternative while Rule 3 refers to option. Page 468 of [11] describes an option with
with a sole operand to be semantically equivalent to an alternative where the second
operand is empty, which will be the default for Rule 3. The guards for these
CombinedFragments can be directly transformed from the sequence diagram fragment

8 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

and incorporated as guards on the respective transitions. However, Timed Petri Net
tools are not equipped to consider the guards as constraints and this limitation is a
course for future research. Rules 4 and 5 refer to the InteractionOperatorKind break
where the node X signifies the terminal node and parallel fragment, respectively.

(1) (2)

(3)

(4)

(5) (6)

s1

Opt_fragment1

Opt_fragment2

opt

ph1 ph2

s2

t1 t2

t3 t4

SD2PN
Rule 3

s1

Alt_fragment 1

Alt_fragment 2

alt

ph1 ph2

s2

t1 t2

t3 t4

SD2PN
Rule 2

s1

Break_fragment1

break

ph1

s2

t1 t2

t3

XSD2PN
Rule 4

s1

Par _fragment 1

Par _fragment 2

par

ph1 ph2

s2

t1

t2

SD2PN
Rule 5

s2

m t
SD2PN
Rule 1

s1

Fig. 6. Five Rules of SD2PN and example of QVT

The snippet of QVT given for Rule 3 is an example of how this model
transformation could be carried out. In line 11, the type of the InteractionOperator is
checked, and the enumeration for InteractionOperatorKind option is 1. The Petri Net
is then built according to the diagram of Rule 3.

In this paper, the five rules of SD2PN are refined with time properties to make
them compliant with the new metamodels. Referring to section 1 of Figure 6, Rule 1
is used to transform every message in a Sequence Diagram into a Petri Net block
consisting of two places, s1 and s2, and a transition, t. By adding a time constraint to
this rule, the transition t is given an Interval constraint with a maximum and
minimum value acting as its upper and lower bound. There are three possible
scenarios that could provide different outcomes to the rule. If a message has an
interval with different maximum and minimum values associated to it i.e. {10...30},
the transition t in the resulting Petri Net block will be designated as a Timed

A Model Driven Approach to the Analysis of Timeliness Properties 9

Transition with a closed interval [10, 30]. Similarly, if a message has a duration
associated to it i.e. {20}, the transition t in the resulting Petri Net block will be
designated as a Timed Transition with a closed interval [20, 20] or abbreviated as
[20]. However, if a message does not have any time properties attached to it, the
transition t in the resulting Petri Net block will be designated as an Immediate
Transition.

Rules 2 through 5, depicted by sections 2 through 5 in Figure 6 respectively, refer
to the transformation of each InteractionOperators into a Petri Net block. However,
since there are no intervals or durations that are attached to InteractionOperators,
every transition in the resulting Petri Net block are designated as Immediate
Transitions.

This paper also introduces a new rule for SD2PN, Rule 6 as illustrated in Figure 7,
to map time properties in Sequence Diagrams that are not attached to a message into a
Petri Net block. This rule, although resulting in a Petri Net block similar to Rule 1,
only has two possible scenarios. In cases where exists an interval in the Sequence
Diagrams i.e. {10...30}, the transition t in the resulting Petri Net will have an interval
of [10, 30] where else if there exist a duration in the Sequence Diagram i.e. {20}, the
transition t will have an interval of [20].

s2

SD2PN
Rule 6

s1

{ }θ []θ

Fig. 7. Rule 6 of SD2PN

Once all the fragments are transformed into Petri Net blocks, they are amalgamated

using two operations, which are referred to as morph and substitute defined in [10].
Morph is used for aggregating two Petri Net blocks to create larger Petri Nets. It can
be seen that each Petri Net block has a single input and output place. Invoking morph
with two Petri Net blocks merges the former’s output place with the latter’s input
place. Substitute is used to replace a placeholder in the Petri Net blocks, such as
ph1and ph2 in sections 2 through 5 of Figure 6 with a different Petri Net block. This
will be done repeatedly until there are no longer any placeholders left in the block.

It is shown in Theorem 1 of [10] that the model transformation generates only Free
Choice Petri Nets that are predominantly used for effective and efficient analysis in
enterprise system [2]. This result is preserved in this paper since the same Petri Net
blocks are used. More information on SD2PN and the proof that it generates Free
Choice Petri Net are available in [10].

4 Transformation Tool

Figure 8 depicts the architecture of the tool by showing the stages involved in the
execution of a transformation [22]. The tool makes use of the XMI [23]
representations of Sequence Diagrams which is provided by all mainstream UML
tools such as [24, 25]. Using an XMI parser, the tool creates Java objects based on the

10 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

Sequence Diagram metamodel. By utilizing SiTra [26], the tool transforms the
Sequence Diagram objects into Petri Net objects based on the transformation rules.

UML Tools

XMI Parser
SiTra

XML Writer

Petri Net
Tools

SD2PN Transformer

Fig. 8. SD2PN Transformer

Finally, the functions morph and substitute introduced in [10] are used to aggregate

the Petri Net objects, and thus create the Petri Net which corresponds to the original
Sequence Diagram. The resulting Petri Net model can then be analysed by using a
chosen Petri Net tool. The XML writer for the tool can be customized to correspond
with a specific tool. This allows the designer to create a system completely in
Sequence Diagram while still taking advantage of the analytical capabilities of Petri
Net.

5 Case Study

This section presents a case study, which involves the specification and analysis of
the Quality of Service (QoS) of a Personal Area Network (PAN) via SD2PN. The
case study demonstrates the transformation of Sequence Diagrams into Timed Petri
Nets and the use of the created Petri Nets to analyse QoS properties such as maximum
delay.

5.1 Case Description

Figure 9 depicts a simplified PAN that has two stations and a Wireless Router that
serves as an access point to the internet. In the router, the basic IEEE 802.11 Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol is used [27].
Due to space constraints only the elements of the protocol that are relevant to QoS
will be considered.

CSMA/CD assigns different waiting time to packets in order to manage the access
of the stations to the medium. There are three different waiting times for various types
of packets. The shortest waiting time for medium access is called Short inter-frame
spacing (SIFS) which is used for short control messages or polling responses. The
waiting time for time-bounded service such as a poll from the access point is
considered PCF inter-frame spacing (PIFS) and the longest waiting time and lowest
priority, DCF inter-frame spacing (DIFS) is used for asynchronous data services.
There is a mechanism called contention window (CW), which is introduced in order to
facilitate collision avoidance. The contention window makes use of an integer value
that starts with CWmin = 7 and doubles every time a collision occurs. Every time a
station tries to gain access to the medium, a random number is generated between 0

A Model Driven Approach to the Analysis of Timeliness Properties 11

and CW and is added to the waiting time. This ensures that the stations do not send
their packets at the same time. CW is doubled for every collision that occurs to
accommodate a larger number of stations vying for the access of the medium. Readers
are referred to [27] for more information.

Station 2

Station 1

Internet

Wireless Router

Medium

Fig. 9. Personal Area Network (PAN)

Several assumptions were made in this case in order to simplify matters and

provide a better understanding of the tool. Firstly, the waiting time for all packets is
constant and all packets are categorized as DIFS. Secondly, the CW is constant and
does not increase, and since there are only two stations, the CW would be minimum,
i.e. CWmin = 7. Thirdly, the packets are dropped after the unsuccessful tries from the
station and each station sends only one packet. These assumptions do not invalidate
the results of the analysis by any means; they just limit the scope of this case study.

5.2 Interaction Sequence Diagram

The Sequence Diagram in Figure 10 (a) gives an overview of how a station sends a
packet to the medium in the IEEE 802.11 protocol. This Sequence Diagram also
features the time properties in regards to the events that occur. The medium access
control (MAC) layer of the station receives a packet from an application and registers
it. It is then idle for the duration of the waiting time, which in the case of DIFS is
50µs. After idling, the MAC checks the status of the medium. If the medium is free,
the station is able to send the packet across to the medium. However, if the medium is
busy, the station will have to wait until the medium is free before idling again for
50µs. This is followed by a random time slot generated based on the CW, which in
this case is between 1 and 7. Since a standard time slot is 20µs, this means that an
additional waiting time of between 0 to 140µs referred to as the elapsed backoff time
(boe) for a total waiting time of between 120µs and 240µs as shown in the Sequence
Diagram. The MAC then checks the status of the medium again before either sending
the packet across or waiting again. If the medium becomes busy while the station is
still counting down the boe, then the counter stops and the remaining time is called
residual backoff time (bor). As a result, the next waiting time will only be
incremented by the value of bor and this increases the probability of a successful
attempt from the stations’ point of view. Note that the maximum waiting time in
Figure 10 (a) is reduced with every attempt.

The diagram is a simplified overview of the events that take place. In reality, each
of the events has multiple sub-events that occur in the background. For example, the
details for the calculation of boe and bor are not shown in the Sequence Diagram and
are all grouped under the event waitForAccess.

12 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

p0

p1

idle [50]

p2

checkStatus

If free

p4

sendPacket

p5

p3

If busy

registerPacket

p6

waitForAccess
[120,240]

If free

p8

sendPacket

p9

p7

If busy

waitForAccess
[120,240]

If free

p12

sendPacket

p13

p11

If busy

p14

If free

p16

sendPacket

p17

p15

If busy

p18

dropPacket

p19

p10

Station Medium

registerPacket

packet

idle {50}

checkStatus

return status

sendPacket

waitForAccess {120...240}

sendPacket

waitForAccess{120 ...220 }

sendPacket

waitForAccess{120 ...200 }

sendPacket

dropPacket

If free

If free

If free

If free

If busy

If busy

If busy

If busy

(a) (b)

alt

alt

alt

alt

waitForAccess
[120,240]

Fig. 10. Model of (a) Sequence Diagram for a station in PAN and (b) its equivalent Petri Net

5.3 Model Transformation

A set of Petri Nets was generated by taking the Sequence Diagrams in Figure 10 (a)
as the source model in SD2PN; they represent the process of sending packets in IEEE
802.11. Figure 10 (b) gives the overview of the result of the transformation process as
a mapping from the Sequence Diagram in Figure 10 (a). The Petri Nets preserve the
time constraints specified in the sequence diagrams and will allow for various forms
of QoS analysis to be performed.

The Petri Net in Figure 10 (b) models the behaviour of one station trying to gain
access to the medium to send a packet. In cases where more than one station are
trying to access the medium, the Petri Net in Figure 10 (b) is duplicated for each
station and is synthesized i.e. merged using a bottom-up synthesis technique [28].
Although the tool does not currently support synthesis, we are actively working
towards its integration into the system.

5.4 Model Analysis

The Petri Net that results from the transformation lends itself to various types of
analysis such as deadlock detection, liveness and safeness analysis [29]. Time
sensitive analysis such as tangible states analysis and throughput analysis are also

A Model Driven Approach to the Analysis of Timeliness Properties 13

possible [8]. In this case study, throughput analysis will be used to analyse maximum
delay as one aspect of QoS.

The maximum delay is calculated based on how long it takes for a station to gain
access to the medium (sendPacket). For the case of a single station shown in Figure
10 (a), the maximum delay will be 50µs since there is no contention with other
stations. However, in the case where there are two stations competing for access to
the medium, the maximum waiting time for a station is 290µs as shown in Figure 11.
This calculation is based on the flow of events in the Petri Net. Since there are two
stations, the Petri Net in Figure 10 (b) is duplicated to model the second station. After
registering the packet (firing of registerPacket transition), in Figure 10 (b), both
stations will face a mandatory idle time of 50µs (firing of idle transition) before
checking the status of the medium. Following that, only one station will be able to
gain access to the medium while the other will have to wait between 120µs and 240µs
(firing of waitForAccess transition), thus a maximum waiting time of 290µs (= 240µs
+ 50µs).

50

290
510 560

800
1020 1070

0

500

1000

1500

1 2 3 4 5 6 7

Number of Stations

M
a

x
im

u
m

 W
a

it
in

g

T
im

e
 (

m
s)

Fig. 11. Maximum Waiting Time analysis result

The graph in Figure 11 indicates the maximum delay that a station may face before

gaining access to the medium to send a packet. The number of stations is limited to 7
to ensure there are no collisions; this is based on the previous assumption that the CW
does not increase. Such information can be used to analyse the choice of protocols for
interaction within the system.

6 Discussion

Many researchers have highlighted the trade-off between the ease of use of UML and
its lack of precision. Recent work in this area has been marked by a concerted effort
aimed at enhancing UML by incorporating formal methods techniques [30-34].
Formalisation offers many advantages including the ability to analyse a model via
techniques such as model checking and theorem proving in order to ensure correct
specification. The introduction of logical and timing constraints into a model, in
particular, facilitates the investigation of non-functional aspects of the system such as
QoS and security. It has been noted however that formalisation is often achieved at
the expense of simplicity and that the main challenge is to strike a balance between
precision and ease of use.

14 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

Formalising UML is an active area of research. For example, Evans et al [30]
propose the use of Z as the underlying semantics for Class Diagrams to deal with the
static aspects of models. Küster-Filipe [35] presents a semantics for Sequence
Diagrams based on Labelled Event Structures which are used to prove the correctness
of SD2PN [10]. The approach adopted in this paper, although it promotes the use of
formal methods, differs from the latter in a significant way. It relies on model
transformation and formal method analysis tools to facilitate automated analysis.

Model transformation has also received considerable attention. Kim [32] proposes
transforming both Class Diagrams and State Machines into Object-Z using MDA
technology. To the best of our knowledge, this transformation has not been
implemented yet. A similar approach is adopted in [34] and [33] which transform
Class Diagrams and OCL Constraints into the formal language B [36]. In particular,
[33] proposes a UML profile for B called UML-B and the automation of the
transformation with a tool called U2B. A major feature of of this approach is that it
makes use of B provers to check the conformance of the operations’ pre and post
conditions to the invariants of the model. The main difficulty with provers, as
underlined in [33], is that even semi-automatic provers assume a substantial amount
of knowledge from the user. In contrast the approach presented in this paper aims to
limit the reliance on formal method expertise such that a designer may model a
system conveniently in Sequence Diagram and still manage to use the analysis
capabilities of Petri Nets.

The proposed framework transforms the UML Sequence Diagrams into Timed
Petri Nets and takes advantage of their suitability for formal analysis. The
transformation produces Free Choice Petri Nets, which support the investigation of
various properties such as liveness, safeness and deadlocks detection [29]. It is
possible to integrate existing Petri Net tools into the tool set, so that for a created
UML Sequence Diagram, through a chain of tools, the user can automatically receive
feedback on, among others, the liveness, safeness and deadlock freeness of the model.
This combination of formalisms, tools and model transformations is bound to reduce
the cognitive load on users since a thorough understanding of the underlying formal
structure of the model is no longer required. Moreover, Free Choice Petri Nets are
also proving to be particularly suitable for the analysis of large-scale systems [1, 2],
an important feature that widens the scope of the application of the proposed
framework to encompass similar systems. In addition to the structural and behavioural
analysis, the time properties included in this paper will also enable performance
analysis to be conducted on the system. Analysis like maximum throughput, density
probability, interval, cycle time [8, 16] and many other time related analysis can be
carried out.

It is possible to augmenting Sequence Diagrams with logical constraints as pre and
post conditions for each execution of events. Such constraints can be expressed in
languages such as OCL [12] and mapped by extending the model transformation
presented in the paper. This would result in Coloured Petri Nets [7] which are an
extension of Petri Nets. Coloured Petri Nets have been investigated extensively and
various tools, such as CPNTools [9], have been developed for their analysis.

A Model Driven Approach to the Analysis of Timeliness Properties 15

7 Conclusion

This paper has presented a framework of applying Model Driven Development for
transforming time augmented Sequence Diagrams into Timed Petri Nets. This model
transformation serves to bridge the gap between the design and analysis phases of a
system, thus enabling a designer to conveniently design a system in UML Sequence
Diagram while taking advantage of Petri Nets' strong mathemathical foundations to
analyse the model. Furthermore, the addition of time properties into the model
transformation allows for performance analysis such as execution time computation
and throughput analysis on top of the established structural and behavioral analysis
capabilities of Petri Nets. The presented approach has been evaluated successfully
with the help of an example of a Personal Area Network.

Acknowledgement. The authors wish to thank Behrang Saroui for his part in the tool
development.

8 References

1. van der Aalst, W.M.P., The Application of Petri Nets for Workflow Management. The
Journal of Circuits, Systems and Computers, 1998. 8(1): p. 21-66.

2. Vanhatalo, J., H. Volzer, and F. Leymann, Faster and More Focussed Control-Flow
Analysis for Business Process Models Through SESE Decomposition, in Fifth International
Conference on Service Oriented Computing. 2007, Springer: Vienna, Austria. p. 43-55.

3. Anastasakis, K., et al. UML2Alloy: a Challenging Model Transformation. in ACM/IEEE
10th international confernece on Model Driven Engineering Languages and Systems. 2007.

4. Juerjens, J., Secure Systems Development With UML. 2004: Springer.
5. Jackson, D., Software Abstractions Logic, Language, and Analysis. 2006: MIT press.
6. Spivey, J.M., The Z Notation: a reference manual. 2001: Prentice Hall (out of print,

available at http://spivey.oriel.ox.ac.uk/~mike/zrm/).
7. Murata, T., Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,

1989. 77(4): p. 541-580.
8. Bonet, P., et al., PIPE v2.5: a Petri Net Tool for Performance Modeling, in XXXIii

Conferencia Latinoaméricana de Informática. 2007.
9. CPNTools, Computer Tool for Coloured Petri Nets, http://wiki.daimi.au.dk/cpntools/.
10. Ameedeen, M.A. and B. Bordbar, A Model Driven Approach to Represent Sequence

Diagrams as Free Choice Petri Nets, in 12th International IEEE Enterprise Distributed
Object Computing Conference (EDOC). 2008: München, Germany. p. 213 - 221.

11. OMG, OMG Unified Modelling Language (UML) Superstructure 2.1, available at
www.omg.org. 2007.

12. OMG, UML 2.0 OCL 2nd revised submission, available at www.omg.org. 2003.
13. Douglass, B.P., Doing Hard Time: Developing Real-time Systems with UML, Objects,

Frameworks and Patterns. Object Technology Series. 1999: Addison Wesley.
14. Störrle, H., Trace Semantics of UML 2.0 Interactions. 2004, University of Munich.
15. Wang, J., Timed Petri Nets: Theory and Application. 1998: Springer.

16 Mohamed A. Ameedeen1, Behzad Bordbar1, Rachid Anane2

16. Jensen, K., L.M. Kristensen, and L. Wells, Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software Tools for
Technology Transfer (STTT), 2007.

17. Stahl, T. and M. Volter, Model Driven Software Development; technology engineering
management. 2006: Wiley.

18. Jouault, F., Kurtev, I. Transforming Models with ATL. Model Transformations in Practice
Workshop at MoDELS 2005. 2005.

19. P.A. Muller, F. Fleurey, and J. M. J´ez´equel. Weaving Executability into Object-Oriented
 Meta-languages. In MoDELS’05: 8th Int. Conf. on Model Driven Engineering Languages
 and Systems, Montego Bay, Jamaica, Oct 2005. Springer.

20. Akehurst, D.H., et al. SiTra: Simple Transformations in Java. in ACM/IEEE 9th
International Conference on Model Driven Engineering Languages and Systems (formerly
the UML series of conferences). 2006. Genova, Italy.

21. OMG, MOF 2.0 Query/View/Transformation (QVT) Specification, available at
www.omg.org. 2008.

22. Saroui, B.S., Model Transformation from Sequence Diagrams to Petri Nets. 2008,
University of Birmingham: Birmingham, UK.

23. XMI, XML Metadata Interchange (XMI), v2.1, available at www.omg.org. 2005.
24. ArgoUML, ArgoUML web site, sourceforge.net/projects/argouml. 2005.
25. Poseidon. Poseidon for UML, from Gentleware, www.gentleware.com/. 2006.
26. Akehurst, D.H., et al. SiTra: Simple Transformations in Java. in ACM/IEEE 9TH

International Conference on Model Driven Engineering Languages and Systems. 2006.
27. Schiller, J.H., Mobile Communications. 2003: Pearson Education.
28. Agerwala, T. and Y.-C. Choed-Amphai, A synthesis rule for concurrent systems, in ACM

IEEE Design Automation Conference. 1978.
29. Desel, J. and J. Esparza, Free Choice Petri Nets. 1995: Cambridge University Press.
30. Evans, A.F., Robert & Grant, Emanuel. Towards Formal Reasoning with UML Models. in

Proceedings of the OOPSLA'99 Workshop on Behavioral Semantics. 1999.
31. Kim, D., et al. A UML-Based Metamodeling Language to Specify Design Patterns. 2003
32. Kim, S.-K., A Metamodel-based Approach to Integrate Object-Oriented Graphical and

Formal Specification Techniques. 2002, University of Queensland: Brisbane, Australia.
33. Snook, C. and M. Butler, UML-B: Formal modelling and design aided by UML, in ACM

Transactions on Software Engineering and Methodology. 2006.
34. Marcano, R. and N. Lévy, Transformation Rules of OCL Constraints into B Formal

Expressions, in 5th International Conference on the Unified Modeling Language. 2002:
Dresden, Germany.

35. Küster-Filipe, J., Modelling concurrent interactions. Theoretical Computer Science, 2006.
351(2): p. 203-220.

36. Abrial, J.-R., The B-book: Assigning Programs to Meanings. 1996: Cambridge University
Press.

