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Abstract. The need for a design language that is rigorousabcessible and
intuitive is often at odds with the formal and netiatical nature of languages
used for analysis. UML and Petri Nets are a goah®e of this dichotomy.
UML is a widely accepted modelling language capatiemodelling the
structural and behavioural aspects of a system. edew UML lacks the
mathematical foundation that is required for rigagg@nalysis. Petri Nets on the
other hand have a strong mathematical base thealisuited for analysis of a
system but lacks the appeal and ease-of-use of UIMkign in UML languages
such as Sequence Diagrams and analysis in Petsi fdqtiire on one hand
some expertise in potentially two incompatible eyst and their tools, and on
the other a seamless transition from one systerthéoother. One way of
addressing this impediment is to focus the softvaEneslopment mainly on the
design language system and to facilitate the tiiansio the formal analysis by
means of a combination of automation and tool stpfde aim of this paper
is to present a transformation system, which talilsd Sequence Diagrams
augmented with time constraints and generates daraliy equivalent Petri
Nets that preserve the timing requirements. A caséy on a small network is
used in order to illustrate the proposed approaxchia particular the design,
the transformation and the analysis processes.

1 Introduction

One of the most pressing tasks facing software Idpees in general and software
engineers in particular is the development of saféatools that support an integrated
approach to the design and the analysis of softaygstems. The design of a system
may be considered as an essentially cognitiveiaictiith a focus on clarity, while its
analysis is usually firmly grounded on mathematiosl relies often on formal
representations and formal processing. The tertbianresults from this dichotomy
has presented a serious challenge for the deplayofiexisting software tools in both
areas. This difficulty is further compounded by thek of interoperability between
the tools associated with each phase. There iga deed for the development of
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tools and frameworks that can reconcile the goélthe design and the analysis
processes [1-3].

On the design side the Unified Modelling Languad®() has been a focal point
of activity in the software design community. Itshr constructs have conferred to
UML a privileged role in designing software systeimsa variety of domains such as
network, business modelling and security [4]. Ohercoming of UML is however
its inability to support the model analysis process

The requirements for the formal analysis of sofensystems have been met by the
introduction of a wide range of formal languagedohtare well suited for analysis,
among them Alloy [5], Z [6] and Petri Nets (PN) [Th providing support for design
and analysis, one common approach is to createlabign in UML languages and
transform it into a formal representation for as#y For example, UML2Alloy
makes use of Alloy for the analysis of a model whis captured in UML class
diagrams and OCL [3]. The analysis performed i@ &lloy framework involves
solving logical constraints on the model. Althougjlfoy is useful for the analysis of
the static aspects of a design but it is not paldity suitable for behavioural
modelling [3]. This limitation is one of the reasothat led developers to rely on
formal languages such as Petri Nets. Petri Nets saitable for analysis of
behavioural aspects of models such as deadlocktaeteliveness and reachability.
Their usefulness has also been enhanced by thiafiligi of tools such as PIPE [8]
and CPNTools [9].

The gap between the design and analysis in thpeotsan be bridged by using
Model Driven Development (MDD) model transformatias outlined in [10]. The
proposed model transformation addresses this lsgwembining the strengths of the
two languages: the specification of the behavidua system is formulated in UML
Sequence Diagrams and the analysis is performe@etm Nets. The transition from
UML to Petri Nets is achieved via a transformatmnocess, which takes a model of
Sequence Diagrams and automatically generatesqthieadent Petri Net model. The
model can subsequently be analysed with Petri dids.t Figure 1 gives a high-level
description of this process. The transformationdiesady been covered in a previous
work by the development of a model driven developméMDD) model
transformation tool, SD2PN [10]. As an initial stagn the development of the
framework it did not include timing capabilities.
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Fig. 1. Overview of the Model Transformation

The contribution of this paper is extending the eiadansformation in [10] with
timing constraints, as part of a framework for w@ite development. The main
advantage of this extension is the application hef tool to the analysis of time
sensitive systems, such as the modelling of QuadityService (QoS) and its
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validation. The proposed framework is supported @ycase study on a QoS
specification and analysis in a Personal Area Netw@AN). UML Sequence

Diagrams are used to model parts of the IEEE 80@rbiocol. The model is then
transformed into Petri Nets and analysed usingagliePetri Net tools for calculating
the maximum waiting time for a station in the PAN.

The remainder of the paper is organized as follo8&ction 2 provides some
background information on MDD, UML and Petri NetSection 3 presents a
summary of previous work [10] and its extensioncti®® 4 describes the proposed
tool. Section 5 deals with a case study basede®#AN and its analysis in Petri Nets.
Section 6 provides a discussion and outlines sartadr work. Section 7 concludes
the paper.

2 Prdiminaries

This section introduces some preliminary materiedarding Unified Modelling
Language, Petri Nets, Model Driven Development @it role in the transformation
process.

2.1 Unified Modelling Language

The function of amodelis to capture a view of the system. In softwargimeering
models are abstractions of a physical system whaf a specific purpose [11].
Unified Modelling Language (UML) is a family of lgnages, which is widely
accepted as th#e factostandard for software modelling. UML models carubed to
specify the structure of the system, its behavend the constraints that the system
must adhere to. This includes constraints relatethé timing of the occurrence of
events.

Models in UML are instances ahetamodelsA metamodel includes system
elements, their relationships and a set of rulestizh every model must conform in
order to be well defined. In this paper Sequencegi2ims are used as the main
modelling language for describing the behavioua sf/stem.

Sequence Diagrams. Sequence Diagrams are used to define the intenactietween
objects and the flow of events within a system.yTae based on Message Sequence
Charts which are extensively used to capture sanafor distributed
telecommunication systems. Figure 2 is a smalametlel for Sequence Diagrams,
adapted from [10], and will be used throughout fraper for explanation purposes.
The metamodel of Figure 2 extends the metamodel useur previous work [10].
However, while [10] presented a metamodel for gein&equence Diagrams, this
paper presents an extension that enables the Smxiagrams to be augmented
with timing constraints while still adhering to th#viL 2.1 standards. The shaded
boxes in the metamodel in Figure 2 depict these tiefated extensions.
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Fig. 2. Sequence Diagram Metamodel

Time Properties. The shaded elements in the metamodel of Figure picidéhe
previously mentioned extension that signifies tlilelition of time properties into
Sequence Diagrams. These elements are adapted@mmmon Behaviors", chapter
13 of the UML 2.1 Superstructure [11]. IntervalCwmamt, TimeConstraint and
DurationConstraints are all specifications of thess Constraint and they are used to
define particular types of constraints. TimeCornstrand DurationConstraint refer to
Timelnterval and Durationinterval respectively. Amterval is used to specify the
range between two ValueSpecifications through aimmam and minimum value.
These values are inferred as float instead of \&eeification as to keep the
metamodel to a minimum. While Intervals have a mmxn and minimum value,
Duration “defines a value specification that spesifthe temporal distance between
two time instants” as described in page 437 of.[Thjs is also evident in [13] where
Douglass interprets that an Interval is not a lerafttime, but rather a start and end
point of a time frame while Duration is a relativ@e measure that has a scalar value
independent of the start time. Douglass furtherediothat time constraints are
syntactically represented textually inside curladiets, which is also evident in page

59 of [11]
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Fig. 3. Examples of a (a) Sequence Diagram and (b) itevalgmt Petri Net

Storrle [14] interprets the concept of time in UMLO Sequence Diagrams as
divided to two types; the first of which is presery the state of the system for a
certain duration or a time interval while the seto@presents the duration for a single
event to occur. Both these types can be represdntedtervals between pairs of
event occurrences. This is consistent with UML 8idce page 482 of [11] also
describes Duration to be “always between occur®hnce

Figure 3 (a) shows an example of a Sequence Diatratrfeatures both types of
time constraints. The interval betweerl andm2 denoted byd shows that the state
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after m1 is completed is preserved for the durationéfwhile the occurrence of
messagen2 takes betweer and &+3 to occur, wheréd is a constant.

2.2  Petri Nets

Petri Nets are a mathematical and graphical modgliinguage, which can be applied
to complex systems. Petri Nets can be used to maddiverse set of behaviour
including parallel, asynchronous, concurrent, hikieal and stochastic as well as
dynamic behaviours [7]. Similarly to Sequence D#ags, a Petri Net can model the
flow of events in a system graphically. The forraatd mathematical nature of Petri
Nets can be used to overcome the limitations ofuBece Diagrams with respect to

analysis.
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Fig. 4. Petri Net Metamodel

Figure 4 shows the metamodel of a Petri Net, whidlh be used throughout the
paper. This metamodel is adapted from [10] and meecddh with timing properties
(shaded elements). The model elements will be &gdain terms of an example
specified in Figure 3 (b).

The example depicts a Petri Net that models theawietr captured in the
Sequence Diagram of Figure 3 (a). This Petri Netsists of 4placesand 3
transitionsthat are all connected tarcs. An arc in a Petri Net serves as a connector
betweerplacesandtransitionsand may not connectfacesor 2transitions

A transitionin the Petri Net hagput placesandoutput placeswhich areplaces
that havearcs in and out of thdransition respectively. Atransition is enabledand
ready tofire when all of itsinput placeshave at least &ken each.Tokens as
presented in Figure 3 (b), are depicted as filiedes contained insidplaces When
a transition fires atokenwill be removed from each of thaput placesand added
into one of theoutput places For further information on Petri nets see [7heT
shaded parts of Figure 4 are extension of the adioreal Petri Net metamodel in
[10] by including time properties, which are expldl as follows.

Timed Petri Nets. Timed Petri Nets are extensions to the conventiBe&ri Nets by

the inclusion of timing information such as the dimssociated to the firing of
transitions. There are different flavours of Tinfeetri Nets. In this paper, the Timed
Petri Net with closed intervals as outlined in [H5¢ used. The timing information in
the metamodel are inferred from the Petri Net todigre [8] shows the existence of
two distinct types of transitions and [16] statest teach time marking is modelled via
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closed intervals. Thesmtervals are defined via specific upper and lower bounds
attached to @ransition For atransition to fire, firstly it must beenabled Secondly,
from the moment it getsnabled a clock starts; thiansition canfire when the value

of the clock is within the interval. An exampleafimed transition is shown in Figure
3 (b) where the transitiot2 has a time constraint with the closed intervél, P +3].
The transitiort2 can only fire under two conditions; it must be lded and the clock
must be betweerf and @+3. For more information regarding Timed Petri Nets
readers are referred to [15].

The graphical representation of Timed Petri Ne differs slightly from the Petri
Net used in [10]. In this paper, tiramediate transitionsr transitionswithout time
constraints are depicted as black rectangles winlémed transitionsare depicted as
white rectangles; both of which are shown in Figgi@®) This is to provide a contrast
between the two types of transition although seroalhg, an immediate transition is
equivalent to a timed transition with an interval[@, 0]. Fortimed transitionsthe
interval is shown in a bracket by the label of thensitions with a comma separating
the upper and lower bound. In a scenario suchttieatipper and lower bounds are the
same i.e. [50, 50]; it is abbreviated as [50]. Eatkhe upper and lower bound must
be of typefloat as inferred from the Sequence Diagrams.

The inclusion of time constraints in Petri Nets amtes their capability for
modelling time-sensitive systems. Moreover, with benefit of using existing Timed
Petri Net tools such as CPNTools [9] and PIPE ig}e analysis could take place,
thus making it an ideal destination model in an MBDdel transformation.

Petri Net Analysis. The mathematical nature of Petri Nets createsaagtbase for
various types of analysis. Murata [7] outlines anber of analysis methods how they
relate to the problems in designing an enterpryséesn. Among otherskeachability
analysis is used to study the dynamic properties ofstem i.e. how taking one action
may effect the chances of an event happening ifutibee. ABoundednesanalysis is
used to check the effect of the system to the baffnd registers for storing
intermediate data whilelavenessanalysis checks the system for deadlocks. Allehes
analysis and more can be performed on general Retsi and are supported by tools
such as CPNTools [9], PIPE [8] and various othetsto

While the analysis capabilities of general PetrisNfdcus on the structural and
behavioural properties of a system, the additiotiro& properties to the Petri Nets
allows for performance analysis as well. A Cycledi analysis could be used to
determine the duration for a complete sequencectidrain the system while a tool
such as CPNTools [9] can be used for computingatheunt of time that separates
two events, i.e. time between requesting acceagésource and getting the resource.
Various Petri Net tools also provide a platform dtiner performance analysis such as
average time, standard deviations, confidenceiaterand throughput analysis as
described in [8, 16].
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2.3 Model Driven Development

One of the aims of Model Driven Development [17]tds promote the role of
modellingin software development. Central to the MDD is frecess of Model
Transformation, which automatically generates a meedel from an existing one.
Figure 5 depicts an outline of MDD and the proces#Model TransformationA
number of Transformation Rulesire used to define how various elements of one
metamodel fource metamodebre mapped into the elements of another metamodel
(destination metamodel The process of Model Transformation is carriedt o
automatically via the software tools which are caniy referred to asModel
Transformation Framework{4 8-20].

Transformation K -
Source metamode| |m—————ge- | De stination metamodel
rules A
<<instange of>> Model Transformation
Framework

Source model

<<instgnce of>>

Destination model

Fig. 5. Model Driven Development

A typical Model Transformation Framework requirebree inputs: source
metamodel, destination metamodel and transformatites. For any instance of the
source metamodel, the Model Transformation Framkwsecutes the rules to create
an instance of the destination metamodel. One wagxpress such rules is through
Query/View/Transformation [21]. QVT is a standamt fxpressing MDD model
transformations governed by the Object Managemeots(OMG). Further reading
on QVT could be found in [21].

3 Modd Transformation

This section recalls the model transformation i6][and discusses the extensions
made to it to enable the analysis of timelinesperties using MDD. SD2PN [10]
used a rule-based approach to map Sequence Diagransonventional Petri Nets.
This model transformation had three stages; DecsingoSequence Diagrams into
fragments, transforming each fragment into Petti Necks and putting together the
blocks of Petri Nets. A brief outline of the fiveahsformation rules in SD2PN is
given below.

Figure 6 shows the transformation rules used in ED2Rule 1 describes the
transformation of anessagdragment into a block of Petri Net as shown inur&6.
Rule 2 in refers to the CombinedFragment with tmerbctionOperatorKind
alternative while Rule 3 refers to option. Page 46811] describes an option with
with a sole operand to be semantically equivalerdart alternative where the second
operand is empty, which will be the default for ®&8. The guards for these
CombinedFragments can be directly transformed ftmarsequence diagram fragment
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and incorporated as guards on the respective ti@msi However, Timed Petri Net
tools are not equipped to consider the guards ast@ints and this limitation is a
course for future research. Rules 4 and 5 refé¢hadnteractionOperatorKindoreak
where the nod& signifies the terminal node aparallel fragment, respectively.

sl
m SD2PN ¢
Rulel
1 1 2
(1)
1 transformation sd2pn (sd:SeqDiagram, pn:PetriNet){
2 top relation Rule3 {
3 name: String:
4 arcl: PetriNet::Arc;
5 arc2: PetriNet::Arc;
6 arc3: PetriNet::Arc;
SD2PN 7 arcd: PetriNet:
Rule3 8 arc5: Petrilet: i
9 arc6: PetriNet::RArc;
10 checkonly domain sd 0 : SegDiagram: :CombinedFragment
11 InteractionOperator = 1;
12 bi
13 ’enfo:ce demain pn D1 : DetriNet::Place {
3) 14 out = arcl;
15 i
16 enforce domain pn Tl : PetriNet::Transition {
17 in = arcl;
18 out = arc2;
19 B
20 enforce domain pn T2 : PetriNet::Transition {
21 in = arcl;
SD2PN 2 out = arcd;
Rule 4 23 i
24 enforae demain pn PH1 : PetriNet::DlaceHolder {
25 in = arc2;
26 out = arcd;
27 i
28 enforce domain pn PH2 : PetriNet::PlaceHolder {
(4) 29 in = arc3;
30 out = arch;
31 i
32 enforce domain pn T2 : PetriNet::Transition {
33 in = arcd;
34 out = arcé;
35 b
36 enforce domain pn T4 : PetriNet::Transition {
SD2PN ,}' in = arch;
38 out = arcé;
Rule5 39 5
40 enforce domain pn P2 : PetriNet::Place {
41 in - ares;
42 }i
43
@
(5) (o)

Fig. 6. Five Rules of SD2PN and example of QVT

The snippet of QVT given for Rule 3 is an example how this model
transformation could be carried out. In line 1%k thpe of the InteractionOperator is
checked, and the enumeration for InteractionOpefatd optionis 1. The Petri Net
is then built according to the diagram of Rule 3.

In this paper, the five rules of SD2PN are refiveith time properties to make
them compliant with the new metamodels. Referrmgection 1 of Figure 6, Rule 1
is used to transform every message in a Sequermgrddn into a Petri Net block
consisting of twlaces s1ands2 and atransition t. By adding a time constraint to
this rule, thetransition tis given an Interval constraint with a maximum and
minimum value acting as its upper and lower boumbere are three possible
scenarios that could provide different outcomesh® rule. If a message has an
interval with different maximum and minimum valuassociated to it i.e. {10...30},
the transition t in the resulting Petri Net block will be desigrihitas aTimed
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Transition with a closed interval [10, 30]. Similarly, if aessage has a duration
associated to it i.e. {20}, th&ransition tin the resulting Petri Net block will be
designated as @imed Transitionwith a closed interval [20, 20] or abbreviated as
[20]. However, if a message does not have any finoperties attached to it, the
transition tin the resulting Petri Net block will be desigréitas animmediate
Transition

Rules 2 through 5, depicted by sections 2 throughFigure 6 respectively, refer
to the transformation of each InteractionOperatots a Petri Net block. However,
since there are no intervals or durations thatataeched to InteractionOperators,
every transition in the resulting Petri Net block are designated Imsnediate
Transitions

This paper also introduces a new rule for SD2PNe RBuas illustrated in Figure 7,
to map time properties in Sequence Diagrams tleahat attached to a message into a
Petri Net block. This rule, although resulting irPatri Net block similar to Rule 1,
only has two possible scenarios. In cases whergsean interval in the Sequence
Diagrams i.e. {10...30}, th&ansition tin the resulting Petri Net will have an interval
of [10, 30] where else if there exist a duratiortia Sequence Diagram i.e. {20}, the
transition twill have an interval of [20].

sl
s2

Fig. 7. Rule 6 of SD2PN

Once all the fragments are transformed into Pettibocks, they are amalgamated
using two operations, which are refertedasmorph andsubstitutedefined in [10].
Morph is used for aggregating two Petri Net blocks wate larger Petri Nets. It can
be seen that each Petri Net block has a singld anpalioutpuplace Invokingmorph
with two Petri Net blocks merges the former’s odtplace with the latter’s input
place Substituteis used to replace placeholderin the Petri Net blocks, such as
phlandph2in sections 2 through 5 of Figure 6 with a diffsr@etri Net block. This
will be done repeatedly until there are no longer alaceholderdeft in the block.

It is shown in Theorem 1 of [10] that the modehsformation generates only Free
Choice Petri Nets that are predominantly used ffacgve and efficient analysis in
enterprise system [2]. This result is preservethis paper since the same Petri Net
blocks are used. More information on SD2PN andpteof that it generates Free
Choice Petri Net are available in [10].

4  Transformation Tool

Figure 8 depicts the architecture of the tool bgvehg the stages involved in the
execution of a transformation [22]. The tool makese of the XMI [23]
representations of Sequence Diagrams which is geovby all mainstream UML
tools such as [24, 25]. Using an XMI parser, thed toeates Java objects based on the
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Sequence Diagram metamodel. By utilizing SiTra [28le tool transforms the
Sequence Diagram objects into Petri Net objectedas the transformation rules.

: XMI PgrSEI" XM Writer
B ~ ~
P N
Petri Net
UML Tools Tools

Fig. 8. SD2PN Transformer

Finally, the functionsnorphandsubstituteintroduced in [10] are used to aggregate
the Petri Net objects, and thus create the PetriwMéch corresponds to the original
Sequence Diagram. The resulting Petri Net modelthan be analysed by using a
chosen Petri Net tool. The XML writer for the tan be customized to correspond
with a specific tool. This allows the designer treate a system completely in
Sequence Diagram while still taking advantage efdhalytical capabilities of Petri
Net.

5 Case Study

This section presents a case study, which invalkesspecification and analysis of
the Quality of Service (QoS) of a Personal Areawdek (PAN) via SD2PN. The
case study demonstrates the transformation of ®equbiagrams into Timed Petri
Nets and the use of the created Petri Nets to s@&pS properties such as maximum
delay.

5.1 CaseDescription

Figure 9 depicts a simplified PAN that has twoistegd and a Wireless Router that
serves as an access point to the internet. Inotlten, the basic IEEE 802.11 Carrier
Sense Multiple Access with Collision Avoidance (C&I@A) protocol is used [27].
Due to space constraints only the elements of tbepol that are relevant to QoS
will be considered.

CSMA/CD assigns differentaiting timeto packets in order to manage the access
of the stations to the medium. There are threedifft waiting times for various types
of packets. The shortest waiting time for mediurneas is callechort inter-frame
spacing (SIFS) which is used for short control messagepailing responses. The
waiting time for time-bounded service such as a frdm the access point is
consideredPCF inter-frame spacingPIFS) and the longest waiting time and lowest
priority, DCF inter-frame spacingdDIFS) is used for asynchronous data services.
There is a mechanism calledntention windowWCW), which is introduced in order to
facilitate collisionavoidance The contention window makes use of an integeneval
that starts with C\W, = 7 and doubles every time a collision occurs.rifuéne a
station tries to gain access to the medium, a randomber is generated between 0
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and CW and is added to the waiting time. This essuhat the stations do not send
their packets at the same time. CW is doubled fa@rye collision that occurs to
accommodate a larger number of stations vyingHeraiccess of the medium. Readers
are referred t¢27] for more information.

@ Medium

y —

Wireless Router "
Station 2

Fig. 9. Personal Area Network (PAN)

Several assumptions were made in this case in daeimplify matters and
provide a better understanding of the tool. Firsthe waiting time for all packets is
constant and all packets are categorized as DIE&rflly, the CW is constant and
does not increase, and since there are only tvimissa the CW would be minimum,
i.e. CW,i, = 7. Thirdly, the packets are dropped after theusnessful tries from the
station and each station sends only one packegserassumptions do not invalidate
the results of the analysis by any means; theylijngitthe scope of this case study.

5.2 Interaction Sequence Diagram

The Sequence Diagram in Figure 10 (a) gives anvawrof how a station sends a
packet to the medium in the IEEE 802.11 protocdiisTSequence Diagram also
features the time properties in regards to the tsvérat occur. The medium access
control (MAC) layer of the station receives a padkem an application and registers
it. It is then idle for the duration of the waitirigne, which in the case of DIFS is
50us. After idling, the MAC checks the status of thedium. If the medium is free,
the station is able to send the packet acrosstongdium. However, if the medium is
busy, the station will have to wait until the medius free before idling again for
50us. This is followed by a random time slot generdiaded on the CW, which in
this case is between 1 and 7. Since a standarddiohés 2Qus, this means that an
additional waiting time of between 0 to }&0referred to as the elapsed backoff time
(boy) for a total waiting time of between 120and 24(0s as shown in the Sequence
Diagram. The MAC then checks the status of the omadigain before either sending
the packet across or waiting again. If the mediwwoomes busy while the station is
still counting down the hgthen the counter stops and the remaining timzaled
residual backoff time (R As a result, the next waiting time will only be
incremented by the value of band this increases the probability of a successful
attempt from the stations’ point of view. Note thhe maximum waiting time in
Figure 10 (a) is reduced with every attempt.

The diagram is a simplified overview of the evethiat take place. In reality, each
of the events has multiple sub-events that occuinénbackground. For example, the
details for the calculation of pand bg are not shown in the Sequence Diagram and
are all grouped under the evevaitForAccess
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checkStatus
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at) sendPacket
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dropPacket
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Fig. 10. Model of (a) Sequence Diagram for a station in P (b) its equivalent Petri Net
53 Modd Transformation

A set of Petri Nets was generated by taking theuSece Diagrams in Figure 10 (a)
as the source model in SD2PN; they represent theeps of sending packets in IEEE
802.11. Figure 10 (b) gives the overview of thautesf the transformation process as
a mapping from the Sequence Diagram in Figure LOTtse Petri Nets preserve the
time constraints specified in the sequence diagramaswill allow for various forms
of QoS analysis to be performed.

The Petri Net in Figure 10 (b) models the behavimuone station trying to gain
access to the medium to send a packet. In casese wihere than one station are
trying to access the medium, the Petri Net in Fegli®0 (b) is duplicated for each
station and is synthesized i.e. merged using aotmttp synthesis technique [28].
Although the tool does not currently suppsstnthesis we are actively working
towards its integration into the system.

54 Mode Analysis

The Petri Net that results from the transformatiends itself to various types of
analysis such as deadlock detection, liveness afehass analysis [29]. Time
sensitive analysis such as tangible states anadysisthroughput analysis are also
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possible [8]. In this case study, throughput anslysll be used to analyse maximum
delay as one aspect of QoS.

The maximum delay is calculated based on how lbmakies for a station to gain
access to the mediufsendPacket)For the case of a single station shown in Figure
10 (a), the maximum delay will be B since there is no contention with other
stations. However, in the case where there arestations competing for access to
the medium, the maximum waiting time for a stafi®29Qus as shown in Figure 11.
This calculation is based on the flow of eventsha Petri Net. Since there are two
stations, the Petri Net in Figure 10 (b) is dupgkchto model the second station. After
registering the packet (firing afegisterPackettransition), in Figure 10 (b), both
stations will face a mandatory idle time of 80(firing of idle transition) before
checking the status of the medium. Following tlaly one station will be able to
gain access to the medium while the other will havevait between 136 and 240s
(firing of waitForAccesgransition), thus a maximum waiting time of 280(= 24Qs

+ 50us).

1020 1070

w
E1000 - 800
[}
£
=

Maximum Waiting

3 4 5 6 7
Number of Stations

Fig. 11. Maximum Waiting Time analysis result

The graph in Figure 11 indicates the maximum d#&iay a station may face before
gaining access to the medium to send a packetntitrder of stations is limited to 7
to ensure there are no collisions; this is basethemprevious assumption that the CW
does not increase. Such information can be usedatyse the choice of protocols for
interaction within the system.

6 Discussion

Many researchers have highlighted the trade-offvbeh the ease of use of UML and
its lack of precision. Recent work in this area haen marked by a concerted effort
aimed at enhancing UML by incorporating formal nueth techniques [30-34].
Formalisation offers many advantages including dbdity to analyse a model via
techniques such as model checking and theoremngawi order to ensure correct
specification. The introduction of logical and tigi constraints into a model, in
particular, facilitates the investigation of nométional aspects of the system such as
QoS and security. It has been noted however thatdiisation is often achieved at
the expense of simplicity and that the main chakers to strike a balance between
precision and ease of use.
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Formalising UML is an active area of research. Erample, Evangt al [30]
propose the use of Z as the underlying semantic€lss Diagrams to deal with the
static aspects of models. Kuster-Filipe [35] présea semantics for Sequence
Diagrams based on Labelled Event Structures whielused to prove the correctness
of SD2PN [10]. The approach adopted in this papkipugh it promotes the use of
formal methods, differs from the latter in a siggaht way. It relies on model
transformation and formal method analysis toolatilitate automatecdanalysis.

Model transformation has also received consideratiention. Kim [32] proposes
transforming both Class Diagrams and State Machin&s Object-Z using MDA
technology. To the best of our knowledge, this gfarmation has not been
implemented yet. A similar approach is adopted34] [and [33] which transform
Class Diagrams and OCL Constraints into the forlaaguage B [36]. In particular,
[33] proposes a UML profile for B called UML-B antthe automation of the
transformation with a tool called U2B. A major fead of of this approach is that it
makes use of B provers to check the conformancehefoperations’ pre and post
conditions to the invariants of the model. The mdifficulty with provers, as
underlined in [33], is that even semi-automaticvers assume a substantial amount
of knowledge from the user. In contrast the appngaresented in this paper aims to
limit the reliance on formal method expertise subht a designer may model a
system conveniently in Sequence Diagram and stdhage to use the analysis
capabilities of Petri Nets.

The proposed framework transforms the UML Sequeb@grams into Timed
Petri Nets and takes advantage of their suitabifity formal analysis. The
transformation produces Free Choice Petri Netschvisupport the investigation of
various properties such as liveness, safeness aadlatks detection [29]. It is
possible to integrate existing Petri Net tools ittte tool set, so that for a created
UML Sequence Diagram, through a chain of tools,uber carautomaticallyreceive
feedback on, among others, the liveness, safemelsdemdlock freeness of the model.
This combination of formalisms, tools and modehsfarmations is bound to reduce
the cognitive load on users since a thorough utaledgng of the underlying formal
structure of the model is no longer required. Meezp Free Choice Petri Nets are
also proving to be particularly suitable for thealysis of large-scale systems [1, 2],
an important feature that widens the scope of tpplieation of the proposed
framework to encompass similar systems. In additiatme structural and behavioural
analysis, the time properties included in this papél also enable performance
analysis to be conducted on the system. Analysés iiaximum throughput, density
probability, interval, cycle time [8, 16] and manther time related analysis can be
carried out.

It is possible to augmenting Sequence Diagrams lagital constraints as pre and
post conditions for each execution of events. Scmstraints can be expressed in
languages such as OCL [12] and mapped by extentiegmodel transformation
presented in the paper. This would result in Ca@duPetri Nets [7] which are an
extension of Petri Nets. Coloured Petri Nets hagenbinvestigated extensively and
various tools, such as CPNTools [9], have beenldped for their analysis.
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7 Conclusion

This paper has presented a framework of applyingléM®riven Development for
transforming time augmented Sequence DiagramsTim@d Petri Nets. This model
transformation serves to bridge the gap betweerdéisggn and analysis phases of a
system, thus enabling a designer to convenientijgdea system in UML Sequence
Diagram while taking advantage of Petri Nets' gframathemathical foundations to
analyse the model. Furthermore, the addition ofetiproperties into the model
transformation allows for performance analysis sashexecution time computation
and throughput analysis on top of the establistiacttsiral and behavioral analysis
capabilities of Petri Nets. The presented apprd@ah been evaluated successfully
with the help of an example of a Personal Area Hetw
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