
A model-based approach to Fault diagnosis in
Service oriented Architectures

Mohammed Alodib and Behzad Bordbar
School of Computer Science
University of Birmingham

United Kingdom
M.I.Alodib,B.Bordbar@cs.bham.ac.uk

Abstract—This paper aims to present a method of creating
architectures which allow monitoring occurrence of failure in
Service oriented Architectures (SoA). The presented approach
extends Discrete Event Systems techniques to produce a method
of automated creation of Diagnoser Service which monitors
interaction between the services to identify if a failure has hap-
pened and the type of failure. To do so, a formal representation
of business processes is introduced, which allows modeling of
observable/unobservable events, failure and the type of failure.
The paper puts forward a set of algorithms for creating models
of Diagnoser Service. Such models are then transformed into new
Services implemented in BPEL, which interact with the existing
services to identify if a failure has happened and the type of
failure. The approach has been applied to an example of diagnosis
of Right-first-time failure in Services used in telecommunications.

I. INTRODUCTION

Service Oriented Architecture (SoA) aims at the implemen-
tation of business processes as a composition of interacting
services [1]. In a real-world business processes, it is crucial to
develop architectures for identifying occurrences of failure, so
that suitable courses of actions can be adopted to deal with the
failure. One of the common methods of identifying failure is to
create Diagnoser, software modules or services, which monitor
the interaction between the services to identify if a failure
has (or may have) happened [2], [3], [4], [5], [6], [7], [8].
Some of these methods suggested for the design of Diagnoser
Service are model-based, extending classical approaches to
Diagnosability in Discrete Event Systems (DES) to SoA [9],
[10], [11], [12], [13], [14].

Methods suggested for the design of Diagnoser by DES
community are mostly reliant on the representations such
as automata [15] or Petri net [16], [17]. Users of such
methods must transform models of the systems, which are
often captured at higher-levels of abstraction, into lower level
models in automata and Petri net to utilize DES techniques
[8], [3], [6], [7]. This requires a substantial bridging of the gap
between different levels of abstractions. In this paper, we adopt
Workflow Graphs [18] as a language for specifying models
of business processes. Further, we will extend conventional
Workflow Graph notation to model observable, unobservable
and failure events. Using Workflow Graph formalism, we
shall present a set of algorithms for designing Diagnoser
Service. The presented formalism directly maps into business

process models used in industry which are implemented in
popular tools. In our approach the Diagnoser which will be
also captured in workflow graphs, will be implemented as a
service called a Diagnoser Service. The Diagnoser Service will
interact with existing services to identify if a failure has (or
may have) happened and the type of failure.

This paper also studies various methods of incorporating
the Diagnoser Service into the interacting services. There is a
choice to implement the Diagnoser Service as a BPEL service
or as dedicated Java Class deployed as Web Service. This
amounts to four styles of creating the Diagnoser Service. This
paper also reports on tool extending Oracle JDeveloper which
produces all four types of Diagnoser and studies them from the
performance point of view. The evaluation has been performed
with the help of stress testing facilities provided by the Oracle
Application Server.

The paper is organized as follows. Section II-A presents a
brief review of the business process model, which is further
extended in section III to model Observerable/Unobservalbe
events, failure and failure types. In Section II-B a running
example based on a real-world scenario of failure detection
in SoA used in telecommunication systems is presented. The
example deals with Right-First-Time failures, in which the
Customer Support System fails to complete a task First-
Time and is forced to repeat part of the task again. This
type of failure is important as occurrence of such failure
may cause extra costs and delays in the completion of the
tasks, causing a violation of Service Level Agreements. The
presented approach has two steps. Firstly, in section IV, an
algorithm for creating a graph called Coverability Graphs is
presented. Such graphs extend the idea of Petri net Cover-
ability graphs [14]. From this point of view our approach
furthers the method suggested by Giua and Seatzu [14], [19]
in designing Diagnoser for Petri net models. In section V, a
second algorithm is presented which produces the Workflow
Graph Diagnoser. Finally in section VI, an outline of a method
of transforming the Workflow Graph to an Business Process
Execution Language (BPEL) services, which interact with the
existing services within the architecture to identify occurrence
of the failure, will be presented. The section also describes
implementation of the presented approach as a plugin to Oracle
JDeveloper. In addition, different styles of incorporating the
Diagnoser Service will be presented. It also shows the results

related to the comparison these methods. The paper ends with
a discussion and comparison of existing approach with the
presented method.

II. PRELIMINARIES

A. Business Process Execution Language (BPEL)

There is an ever-increasing pressure on modern enterprisers
to adapt to the changes in their environment by evolving to
respond to any opportunity or threat [20]. Service oriented
Architecture (SoA) provides the foundation for implementing
business processes via the composition of existing services.
Web services [21] are software systems which make use of
well-accepted standards and XML languages to support the
creation of SoAs. For example an interaction, a task can be
captured in Business Process Execution Language [1]. BPEL
can be used to express complex sequential, parallel, iterative
and conditional interactions. The type for all messages and
variables used in BPEL file are defined via XML Schema
Definition (XSD) [22], usually in WSDL file [21].

B. Example: Right-First-Time failure

Consider a simplified interaction between a customer and a
number of services in a typical Telecommunication Company
for technical support related to the Broadband connection.

Fig. 1. An interaction between the Customer and System

As depicted in Figure 1, the customer logs 1 onto the com-
pany website and enters details such as the account number.
Choosing the ”Broadband problem” option, he submits his
form online. Next, the company’s Check Customer Account
(CCA) service determines whether the customer account is in
a satisfactory condition in order to progress the fault report.
If the current status of the account is not satisfactory the
customer is advised to phone the call center and the process
ends. If the account status is satisfactory, the CCA invokes a
request to another service called General Evaluation Services
(GES). The GES examines the availability of service at the
exchange side and ensures that everything is up and running,
in which case the process moves to the next step. If GES

1We assume that the Customer can log into the company’s website, for
example suppose the customer is not happy with the speed of his Broadband
connection

identifies any problem with the availability of the services
at the exchange side, the customer is informed of the status
and a separate process is invoked to deal with this problem
(not shown as part of this example). If everything is fine on
the exchange side, the Customer Services sends a request to
Line Test Service (LTS), which is an automated service to
check line status up to the customer premises. However, LTS
can also indicate problems on the exchange side which were
not detected by the GES. There are three possible outcomes:
1) the line has no problem, move to next step, 2) the line
has some problems, advice the customer or 3) There is no
problem with the line, although there is a likely problem with
the exchange. Option 3 is shown in bold arrow in Figure 1. If
the case 3 happens, a failure emerges which means that GES
should repeat its course of action violating Right-First-Time.
Finally, LTS sends a request to analyze data history in the
customer router. If it is possible to carry out analysis then get
a decision from the analysis algorithm (either all ok so the
customer has to call technical support, or the analysis finds
the problem and customer is advised what to do).

Fig. 2. Customer Service BPEL

Following the lead of Jussi et al. [18] in the next section a
formal representation will be explained that can capture the
interaction between services as a Workflow Graph

C. Workflow Graphs

One of the most complex aspects of a business process such
as the one explained in the above example is the specification
of the interaction between the services resulting from the
execution of actions and exchange of messages. We aim to
rely on a models that can capture the flow of the action and
message exchanges similar to models used in tools such as
Oracle JDeveloper and Websphere. The aim is not to support
all complex and elaborate constructs supported by such tools;
however we are interested to capture an essential core of
high-level interactions such as sequential, parallel and decision
behavior. To do so we adopt a model suggested at [18], which
is formalize as follows:

Definition 1: A Workflow Graph is a graph G = (N,E),
where each node n ∈ N is one of the following types: Start
node, Stop node, Activity, Fork, Join, Decision and Merge. The
unique outgoing edge of a Start node is called the entry edge,
and the unique incoming edge of a Stop node is called the exist
edge[18]. For each node n ∈ N , the set of incoming/outgoing
edges of n are denoted by In(n)/Out(n) ⊂ E.
Semantics of Workflow Graph: Following the lead of Petri
Nets, Workflow Graphs represent a flow of actions which is
captured by movement of tokens. The definition of state in
Workflow Graph extends the definition of marking in Petri
nets [23].

Definition 2: A state of Workflow Graphs defined as a
vector s = (s1, . . . , sk) where si is the number of tokens
on each edge ei ∈ E.

For a state s, we may write si, s(i) or s(ei) to represents
the number of tokens in the edge ei, i.e i-th is the coordinate
of vector s. We shall also sometimes refer to the edge ei as
”edge i”

An occurrence of an action, which is modeled via the edges
of the Workflow Graphs denoted by s

n−→ s′, which means
that occurrence of the action n has resulted a change of state
from the state s to s′. Such change states modifies the number
of tokens on the edges in s to obtains s′

Definition 3: (Change of States) Assume that s, s′ are two
states of a Workflow Graph such that s

n−→ s′, then for 1 ≤
i ≤ k:
• if n is an activity, fork or join:

s′i =

si − 1 if ei ∈ In(n)
si + 1 if ei ∈ Out(n)
si otherwise

• if n is a decision and there exists an outgoing edge e′ of
n:

s′i =

si − 1 if ei ∈ In(n)
si + 1 ei = e′i
si otherwise

• if n is a merge and there exists an incoming edge e′ of
n:

s′i =

si − 1 ei = e′i
si + 1 if ei ∈ Out(n)
si otherwise

In the above definition, for example if n is a fork one token
from each input edge e ∈ In(n) is removed and one token to
each output edge e ∈ Out(n) is added. The remaining rules
can be explained similarly. The flow of tokens in a Workflow
Graph starts from an initial state.

Definition 4: The initial state of a Workflow Graph is a
state, denoted by sinit, with a single token on the edge going
out of the Start node. The set of all reachable states are defined
as Reach(G) = {s | sinit

∗−→ s}, where ∗−→ is the kleene
closure of { ∗−→ | n ∈ N}. In other words, s ∈ Reach(G)
if there are nodes n1, . . . , nr and states s1, . . . , sr such that
sinit

n1−→ s1
n2−→ . . .

nr−→ sr, where sr = s. In this case, we
sometimes write sinit

σ−→ s where σ = n1 . . . nr is a node
on the alphabet {n | n ∈ N} such nodes result in a language:
L(G) = {σ | sinit

σ−→ s, for some s ∈ Reach(G)}

Fig. 3. WorkFlow Graph for the Customer Service

Example: The example presented in section II-B can be
specified as Workflow Graph as shown in Figure 3, where the
workflow’s activities are described as follows: a1: receive in-
puts from client, a2: check customer account, n1: (decision)if-
condition to check whether the customer account is ok or
not, a3: General Evaluation Service(GES), n2: (decision)if-
condition to check the result of GES, a5: advice customer, a6:
Line Test Service(LTS), n3: (decision) to check the result of
LTS, a7: Check Line Exchange, n4: (decision) to check the

result of exchange result, a9: Right First Time Failure(RFT),
n5: (merge) choose one of its incoming edges where at least
one token, a10: reply the result to the client.

III. OBSERVABILITY IN WORKFLOW GRAPHS

In this section we shall extend the model suggested by
[18] to include information required for dealing with failure
diagnosis. Consider A Workflow Graph model G = (N,E),
and a partition of the set of nodes into disjoint subsets of
observable Nobs and unobservable Nuo, i.e. N = Nobs ∪Nuo

and Nobs ∩ Nuo = φ. We write Nint, to represent internal
nodes, for nodes such as the Start node, Stop node, Fork,
Join, Decision and Merge which are executed internally.
We consider such actions internal to the system and hence
unobservable i.e. Nint ⊂ Nuo, whereas activity nodes which
have visible effects such as sending of messages are considered
as observable action. Such nodes are for example used to
invoke another service remotely by sending a message, so
have observable effect. Some of the unobservable nodes model
occurrence of faults. Since identifying observable faults is
trivial, without any loss of generality we shall assume that
all failure events are unobservable. Moreover, we assume that
occurrence of a faults does not stop the system to a halt. In
other words faults are like caught exceptions in Java which
allow the system to continue gracefully. Further we assume
that faults can be classified into ` disjoint categories, so we
write Nf = Nf1 ∪ · · · ∪ Nf`

where Nfi denote the nodes
representing failure of category fi.

Example: In order to explain the above definition,
the example presented in section II-B will be used.
It has 19 edges {e1, e2, . . . , e19}, and 22 nodes
N = {a1, a2, n1, a3, a4, n2, a5, a6, n3, a7, n4, a9, n5, a10},
where Nobs = {a4, a6, a5, a9, a10} and Nuo =
{a1, a2, n1, a3, n2, n3, a7, n4, n5}, Nf = {a9}

From an outsides services point of view only observable
event Nobs can be recognized. Suppose that the Workflow
Graph executes a set of events σ = n1 . . . nr. To any other
service only the observable events are visible.

Definition 5: Suppose P : N → Nobs ∪ {ε} is defined by

P (n) =
{

ε if n ∈ Nuo

n otherwise

where ε is the identify of the alphabet N ,i.e for n ∈ N ,
nε = εn = n. Also assume extending P : N∗ → (N ∪ {ε})∗
by defining for P (n1 . . . nr) = P (n1) . . . P (nr) representing
the sequence of observable events in n1 . . . nr (in their right
order).

A. Description of the problem

This paper aims to address the following problem. Suppose
S1, . . . , Sn are a set of services interacting with each other.
The aim is to produce a new service to monitor the behavior
of these service to identify the occurrence of the failures.

The Diagnoser Service designed to receives a set of observ-
able events and determines if a failure has happened, or may

Fig. 4. An overview of the Diagnosis via a Diagnoser Service

have happened as shown in Figure 4. This can be formalized
as follows:

Definition 6: considers a Workflow Graph G = (N, E),
with Nobs , Nuo, Nf = Nf1

⋃ · · ·⋃ Nf`
of the set of observ-

able, unobservable and failures respectively. Suppose σ =
n1 . . . nr ∈ N∗ is a is an arbitrary sequence of observable
events.

1) we say σ ends in a Normal state if every sequence of
events µ1 in N which is reachable sequence of G and
can be projected to σ does not end in a failure event, i.
e. ∀µ1 = n′1 . . . n′s ∈ L(G)(P (µ1) = σ ⇒ ∀i n′i /∈ Nf)

2) we say σ ends in a failure state of type Fi if every
reachable sequence of events µ2 in N , which can be
projected to σ ends in a failure node of Fi i. e. ∀µ =
n′1 . . . n′s ∈ L(G) (P (µ2) = σ ⇒ ∀i < s n′i /∈ Nf and
n′s ∈ Nfi

3) we say σ may end in a failure state of type Fi if there
are reachable sequence µ1, µ2 ∈ L(G) such that can
be both projected to σ such that µ1 ends in a failure
node of Nfi and µ2 has no failure nodes, which can be
expressed formally similar the cases 1 and 2 above.

To create the Diagnoser Service, in the next section a finite
representation that includes language of the Workflow Graph,
denoted by L(G) in previous section will be presented.

IV. COVERABILITY GRAPH OF WORKFLOW

In a Workflow Graph, it is possible to have infinite number
of states. This situation happens, when there is possibility of
increase of tokens on the edges. Next, we shall present the
idea of Coverability Graph for Workflow Graph, or simply
Coverability Graph to obtain a finite graph including all
permissible reachable traces in Workflow Graph. Coverability
Graph in our context is a direct extension of the idea of
Coverability Graphs in Petri nets, which have been used by
Guia [14], [19] for studying observability.

Definition 7: A Coverability Graph of a Workflow Graphs
G = (N,E) is a graph Gcov = (Ncov, Ecov) where:

I Ncov ⊆ {0, 1, ω}∗, i.e each edge is marked by a
k-dimensions vectors of {0, 1, ω}, where k is the
number of the edges in G, k =| E |

II each edge of the Coverability Graph is marked by
a node of G, i.e. Ecov ⊆ N .

III For each reachable set of states sinit
n1−→ s1

n2−→
. . .

nr−→ sr, there is a path α0
n1−→ α1

n2−→ . . .
nr−→

αr such that si ≤ αr for 1 ≤ i ≤ r, where ≤ is
coordinate ordering of vector in N

⋃ {w} 2.

2if α ∈ Nk and α ∈ {0, 1, ω}, s ≤ α means that for each coordinate
i, either si = 0 or αi = ω if not si = 1 and αi = 1. For the reader
information with this ordering ω can be seen ∞

Next we shall present an algorithm for constructing the
Coverability Graph. This algorithm extends the Coverability
Graph of Petri nets by incorporating the semantic of Workflow
Graph.

Algorithm 1: The computation of WorkFlow coverability
Graph

Result: compute the Coverability Graph for a Workflow
Graph G

let sinit = entry node, label the initial node as the root
and tag it as ”new”.;
while ”new” Coverability Graph nodes exist do

Select a new node α;
if α is identical with a node on a path from the root
to α then

tag α ”old”;

else
if no nodes are enabled at α then

tag (α) ”dead”;

else
forall events ni enabled at α do

compute the Marking α′ that results from
firing ni at α. The firing rules which are
described in section II-C must be
extended by ∀n n + ω = ω + n = ω ; On
the path from the root to α if there exists
a Coverability Graph node such that
α′′ ≤ α′ and α′ 6= α′′ i.e α′′ is covered
by α′, then replace α′(e) = ω for each e
such that α′(e) > α′′(e);
Introduce the new α′ as node in the
Coverability Graph, draw an arc with
label ni from α to α′;
Tag α′ ”new”;

tag α ”old”;

Lemma 1: Suppose that G = (N, E) is Workflow Graph
the algorithm 1 will produce Gcov = (Ncov, Ecov) in which
Ncov ⊆ {0, 1, ω}k

Proof: suppose Ncov * {0, 1, ω}k , so there is a node
in Ncov that is not in {0, 1, ω}k. Because it is possible to
have many such nodes, take α to the root is the shortest path.
Because α is the shortest, there is a path from the root to α.
α0

n1−→ α1
n2−→ . . .

nr−→ αr = α. α0,α1,. . . ,αr−1 ∈ {0, 1, ω}k

but αr /∈ {0, 1, ω}k. Because every execution add only one
token α(j) = 2. Moreover, because firing of nr has added
one token, nr can be fork, activity or decision. Suppose i
is the input to nr, then αr(i) = 0, as firing of nr has
removed the token from the edge corresponding to i, hence
er(i) = 0 , αr(j) = 2. Now, because αr−1

nr−→ αr, we
have αr−1(i) = 1, αr−1(j) = 1, otherwise nr would has
not been enabled under αr−1. Since αr−2 ∈ {0, 1, ω}k and

αr−2(i) 6= ω , αr−2(j) 6= ω. Then, αr−2(i) ∈ {0, 1}. Hence,
there are four possibility for αr−2(i),αr−2(j)

1) αr−2(i) = 0 , αr−2(j) = 1
2) αr−2(i) = 1 , αr−2(j) = 1
3) αr−2(i) = 1 , αr−2(j) = 0
4) αr−2(i) = 0 , αr−2(j) = 0

Case 1: it is not possible because αr−2 ≤ αr−1 with
αr−2(i) = 0 ≤ 1 = αr−1(i) which prompts αr−1(i) = ω
from the algorithm 1.
Case 2: Since nr has a token in its input, it can fire yielding
in a new marking α so the α(j) = 2. As result there is a path
from the root to α in r− 1 step which validate minimality of
αr.
Case 3: it is not possible as firing of αr−1 will not result in
αr−1(i) = 1.
Case 4: it is not possible as under αr−2, αr−1 is not enabled
to allow αr−2

nr−1−→ αr−1.
Since all options end in contradiction Ncov ⊆ {0, 1, ω}k.

Lemma 2: For any Gcov = (Ncov, Ecov) produced by the
algorithm 1 the condition (iii) in definition 7 is satisfied.

Proof: Direct extension of the proof of Coverability
Graph in [24] with using the semantic of Workflow Graph.

Corollary 1: Algorithm 1 above produces the Coverability
Graph for any given Workflow Graph.

If the Coverability Graph does not have any ω then every
node of it is a reachable state of the Workflow graph. The
proof of the following lemma is straightforward and hence
omitted.

Lemma 3: Suppose that G is a Workflow Graph and Gcov

is its coverability graph produced by algorithm 1. If none of
the nodes in Gcov is labeled with a vector containing ω, then
sinit

n1−→ s1
n2−→ . . .

nr−→ sr, there is a path of reachable states
in G, if and only if, there is a path in the Coverability Graph
α0

n1−→ α1
n2−→ . . .

nr−→ αr. As a result, L(G) = L(Gcov).

V. WORKFLOW DIAGNOSER SERVICE

A Diagnoser is a graph that approximates the behavior of the
system to allow identifying an occurrence of failure. It is used
to develop a system (Diagnoser service) that is interacting in an
online manner with existing system by receiving a sequence of
observable events and providing information about occurrence
of failure.

The above definition of the Coverability Graph Diagnoser,
firstly draws on the approach suggested by Guia and Seatzu
[14], [19] on using Petri nets’ Coverability Graphs for diag-
nosability. Secondly, it follows the method suggested in [16] to
include information with regards to the occurrence of failure.

In this section we shall present a diagnoser for a Workflow
Graph G = (N, E) based on using Coverability Graph Gcov =
(Ncov, Ecov). As a result, we shall refer to it as Diagnoser
Coverability Graph. A Diagnoser Coverability Graph (DCG)
is a graph GDCG = (NDCG, EDCG) in which edges are
marked by only observable events, i.e. EDCG ⊂ Nobs. For
any observable sequence of events σ = n1n2 . . . nr in G,
there is a path in the GDCG starting from the root marked

by n1, n2, . . . , nr. Such path in GDCG ends in a node that
provides all the information required for diagnosing failure
occurred as a result of firing of any sequence µ which has σ
as its observable actions, i.e. P (µ) = σ. Next we will explain
the nodes of GDCG which include such information which
can be used to identify if a failure has happened or may have
happened.

Each node of the DCG is marked by a set
{(α1, φ1), . . . , (αr, φr)}, where α1, . . . , αr are nodes of
the Coverability Graph Gcov. Each φ is a vector in {0, 1}`,
where ` is the number of failures categories F1, . . . , F`. If all
coordinates j of vectors φ1, . . . , φr are 0, for any observable
path σ ending in this node, we can infer that any sequence
µ of actions in G with P (µ) = σ will end up in a state in
which no failure of type Fj has occurred. In this case we say,
no failure of type Fj has occurred. If none of the coordinates
of φ1, . . . , φr is 1, then {(α1, φ1), . . . , (αr, φr)} represents
a normal state, see case 1 of definition 3. Similarly, if all
coordinate j of vectors φ1, . . . , φr are 1, then a failure of
type Fj has occurred, i.e. case 2 of definition 3. If some of
the coordinates j of vectors φ1, . . . , φr are 0 and some are
1, then a failure of type Fj may have occurred, case 3 of
definition 3.

Suppose that there is a node {(α1, φ1), . . . , (αr, φr)}
of DCG which is connected to another node
{(α′1, φ′1), . . . , (α′q, φ′q)} via an edge marked by n. Then,
there are two nodes (αi, φi) and (α′j , φ

′
j), so that αi is

connected to α′j in the Coverability Graph Gcov via an
edge marked by n. If there is a path in Gcov consisting
of unobservable events from α′j to any other node α, then
α will also appear in {α′1, . . . , α′q}, i.e. we will have an
(α′i, φ

′
i), with α′i = α. We shall refer to such nodes α′i as

a member of Unobservable reach of α′j , as they can be
reached from α′j via unobservable events. Along such path
of unobservable events, the vector φj is modified as follows.
If an unobservable event in the path is a failure event of type
Fd, then the d-th coordinate of φ′j is changed to 1. If the d-th
coordinate of φ′j is already 1 then the coordinate will remain
1. Such changes to the vectors φ is carried out via a label
propagation function, described below. Next we shall define
the Unobservable reach and label propagation function.

Definition 8: Suppose that G is a Workflow Graph and
Gcov = (Ncov, Ecov) is its Coverability Graph. For each node
α of Gcov, Unobservable Reach of α denoted by UR(α) =
{α′ | α n1−→ . . .

nr−→ αr = α′, ∀i ni ∈ Nuo}.
The label propagation function is used to calculate the

vector φ that must be assigned to each node α of the Diagnoser
Coverability Graph.

Definition 9: Suppose that Gcov = (Ncov, Ecov) is the Cov-
erability Graph of a Workflow Graph G. Label Propagation
Function is a function LP : Ncov×{0, 1}`×Ecov → {0, 1}`.
so that LP (α, φ, n) = φ′ where the i−th coordinate of φ′ is
defined by

φ′(i) =
{

1 if n ∈ Fi is an edge of Gcov starting at α
φ(i) otherwise

If α0
n1−→ α1 . . .

nr−→ αr we will abuse the notation and write
LP (α, φ, n1n2 . . . nr) to represent successive application of
LP to n1, n2, . . . , nr. Next we shall need a final piece
of notation before presenting an algorithm for creating the
Diagnoser Coverability Graph.
Notation: Suppose that (α, φ) appears in the labeling of
one of the nodes of the DCG. We write F(α, φ) to denote
the set of all (β, φ′) for which there is a sequence of
Unobservable events n1n2 . . . nr such that α

n1...nr−→ β and
φ′ = LP (α, φ, n1 . . . nr).

The function F will be used to calculate the nodes of DCG
in the following algorithm.

Algorithm 2: Diagnoser coverability Graph
Result: compute the Diagnoser Coverability Graph

(DCG)
Suppose s0 = (entrynode, (0, . . . , 0)), where entrynode
is the root of the Coverability Graph.;
The first node of DCG is {s0} ∪ s0 and tag it with
”new”. while Nodes of with tag ”new” exist do

Select a node S = {(α1, φ1), . . . , (αr, φr)} tagged by
”new” ;
Iterate through the list (αi, φi) one-by-one;
if there exists an observable action which is enabled
under αi with α

n−→ β then
Let S′ := {(β, LP (αi, φ, n))}, then write
S′ := S′ ∪ F(S′);

if S′ already exists in DCG then
discard it;

else
create a node marked by S′ and tag it as ”new”;
Create and edge from S to S′ marked by n.;

Remove the tag ”new” from S after finishing the
iteration;

Part III of Definition 7 states that each execution trace of
G maps into an execution trace of its Coverability Graph.
This means the language of G is a subset of the language
produced by the Coverability Graph, i.e. L(G) ⊂ L(Gcov).
However, the converse is not true in general, i.e. it is possible
that there are paths in the Coverability Graph starting from
the root that don’t correspond to any execution path in the
Workflow Graph. Such paths may distort the functioning of
the diagnoser. However, if the Workflow Graph produces finite
behavior the Coverability Workflow Graph will diagnose the
system

Theorem 1: Suppose that G is a Workflow Graph so that
its Coverability Graph Gcov does not include any ω. Then the
Diagnoser Coverability Graph of Algorithm 2 will diagnose
occurrences of the failure.
Sketch of the proof: Suppose that σ is a sequence of actions
observed in the system, i.e. there is an execution path µ in G
so that P (µ) = σ. By lemma 3 L(G) = L(Gcov). So µ a path
in Gcov starting at entry node. By the Algorithm 2 there is a

path in DCG which is marked by σ in which failure states of
each node is included. For any failure type Fi and any given
node S = {(α1, φ1), . . . , (αr, φr)} if there is no coordinate i
marked by 1 in that state no failure of type Fi has happened.
If there are some coordinates 1 and some coordinate 0, then
a failure of type Fi may have happened. Otherwise, a failure
of type Fi must have happened.

Example: Applying this algorithm to the example of section
II-B, a Diagnoser Service will be generated as shown in Figure
5. Since the running example has 19 edges, the state vector of
the Diagnoser Coverability Graph is of length 19. In addition,
since it has only one type of failure, the fault vector is of
length one. In the first vector, each digit in the row of the
state corresponds to the number of tokens in the edge of the
workflow , while in the second vector, each digit each row
corresponds to a fault type.

Fig. 5. Diagnoser Coverability Graph Service

VI. IMPLEMENTING WORKFLOW DIAGNOSER SERVICE AS
BPEL

The presented approach has been implemented as a Plugin
for Oracle JDeveloper. Figure 6 is a snapshot of the tool in
which path to uploading XSL and BPEL files. The imple-
mentation follows the outline of the method as depicted in
Figure 7. This method requires passing all BPEL files and their
XML Schema Definition (XSD) as inputs. Such information
is required to transform BPEL files into their equivalent
Workflows. Then, the Algorithm 1, section IV will applied
to produce the Coverability Graph. Next, Algorithm 2, section
V is applied to generate the Diagnoser Coverability Graph.

To create the Diagnoser Service, the Diagnoser Coverability
Graph will be firstly implemented and secondly incorporated
into existing services so that it can diagnose the occurrence of
failure. Next we shall present two methods of implementation
of the Diagnoser Coverability Graph and four methods of
incorporating it to the exiting services. Further we shall present
a comparison between different variations.

Fig. 6. A snapshot of the implementation as an Oracle JDeveloper plugin

There are various ways to implement the Diagnoser Service.
Firstly, Diagnoser Service can be implemented as BPEL
file resulting in a service interacting with already existing
services in order to diagnose the occurrence of failures. In a
nutshell, such BPEL file includes a Switch activity involving a
number of Cases corresponding to the observable events in the
Diagnoser model. Each Case is used to evaluate the current
status of the services according to the approximation captured
in the Diagnoser Coverability Graph (DCG) and returns N for
a normal state or the information related to the occurrence of
a failure as described in section III. In particular, in case of a
failure, the type of failure and the event which is caused the
failure will be included in the diagnosing result.

Fig. 7. An outline of the implementation method

It is also possible to implement the Diagnoser Service as

Java Class deployed as Web service that can be invoked by any
other services. In this case, similar to the implementation via
BPEL, conditional statements in form of if-then-else will be
used. In both ways, as shown in Figure 4 the Diagnoser Service
is incorporated into the system to receive the observable events
that has been executed in the service, then it responses with the
diagnosing result describing the behavior of the system which
is either in normal state or a failure has occurred. Next, we
shall discuss various methods of incorporating the Diagnoser
Service into the exiting services.

In our Oracle JDeveloper plugin, we have considered four
methods can be used to incorporate the Diagnoser Service.
These four methods can be explained as following:

Method 1: This method is based on implementing the
Diagnoser Coverability Graph (DCG) as a BPEL file, which
can collaborate with existing services to fulfill the diagnosing
task. Each business process should be conducted by including
extra Invoke activities to execute the Diagnoser Service after
each invocation task. Figure 8 represents an example of
interaction between the Diagnoser Service and three services,
which are Customer Service, GES and Line Test Service. It
can be seen that the interaction between services is built as
Choreography architecture.

Fig. 8. Example of method 1

Method 2: This method produces the Diagnoser Service as
BPEL service with a new service called a Protocol Service.
The protocol service is used as a merge function which is
defined to combine the individual Diagnoser Service result
and recover the complete diagnosing result that would be
obtained after invocation. In contrast to method 1, all the
interaction should be performed via the protocol service. For
more detail about the protocol service, we refer the reader to
our previous approach [7].

Method 3: This method automatically produces the Diagnoser
Service as a stand-alone Java class deployed as Web service
interacting with a group of BPEL services. The generated
Diagnoser Service is incorporated in the same manner of
Method 1.

Method 4: This method based on Method 2 and Method 3, it
automatically generates a Diagnoser Service as a Java Class

Fig. 9. Example of method 2

deployed as Web service, which interacts with other services
through a Protocol Service.

The four presented methods have been tested and evaluated
in terms of performance; a common practice of evaluating the
performance is applying the stress testing which identifies and
verifies the stability, capacity and the robustness of services
[25], [26]. In order to perform the stress testing, each method
has been tested by measuring the time of processing a different
number of threads. This test has been carried out with the help
of Oracle Application Server.

5 10 15 20 25 30 35 40

Number of Threads

0
0
.5

1
1
.5

2
2
.5

3
3
.5

4

T
im

e
 i
n
 S

e
c
o
n
d
s

Method 1

Method 2

Method 3

Method 4

Fig. 10. Stress Testing Result

Figure 10 illustrates the stress testing result of processing
different number of threads in seconds. It can be seen that
producing the Diagnoser Coverability Graph (DCG) as BPEL
file with the Protocol Service in Method 2 is less effective
technique. However, producing the Diagnoser Coverability
Graph as Java Class deployed as Web service in Method 3
is the fastest way to incorporate the Diagnose Service. Figure
10 shows that the performance of these methods can be seen
as linear and parallel. As result, the average of the difference
in processing a different number of threads between the fastest
method, which is Method 3, and the slowest method, which
is Method 2, is approximately 38%.

Producing the Diagnoser Coverability Graph as Java Class
deployed as Web service, which is the fastest method in this
approach, has been also compared with the fast method of our
previous approach which is based in producing the Diagnoser
Service by using the Classical diagnosability theory as Java

class Deployed as Web service. The result assets that using
the Diagnoser Service based in Coverability Graph are faster
than Diagnoser Service based on the Classical diagnosability
theory by 13.28% as shown in Figure 11. Therefore, the new
proposed approach reduces the cost of the executions time and
results in better performance in processing a large number of
requests.

5 10 15 20 25 30 35 40

Number of Threads

0
0
.5

1
1
.5

2
2
.5

3
3
.5

T
im

e
 i
n
 S

e
c
o
n
d
s

Coverability Graph Diagnoser

Classical Diagnoser

Fig. 11. Classical Diagnoser vs. Diagnoser Coverability Graph

VII. DISCUSSION

Yan et al. [27], [3] have proposed a method based on com-
puting the business process execution trajectory for monitoring
the behavior of BPEL services. The trajectory, which is a path
of contiguous states and transitions that begins at an initial
state and ends at a final state, can be computed by using
the formal model and the observed evolution of the business
process. To do so, all BPEL services should be formalized as
Discrete Event System (DES). Then, the BPEL engine should
record the trajectory of each business process by including
information related to the observable events executed by the
business process. As a result, if there is any fault occurred
during the process, the Diagnoser Service should use the
trajectory path record in the Log file to recover from the
fault. Our approach differs from [27], [3] in using Coverability
Graph and Petri nets diagnosability theories to automatically
generate the Diagnoser Service as Workflow Graph which is
transformed then to a new service interacting with original
existing BPEL representations.

Wang et al. [2] have proposed a method based on discrete
control to provide a safe execution in Workflow Graph. The
goal of their approach is to ensure that the process reaches a
terminal state without entering forbidden states, deadlock and
livelock. In that approach, the Workflow Graphs modeled by
using a Finite State Machine automaton G which is generated
from the original workflow. Then, the control flow of a
Workflow Graphs captured by using a Petri net [28]. In order
to achieve that goal, there are two phases should be carried
out:firstly, an offline control synthesis phase uses the system
model G and the specification of the terminal and forbidden
state to automatically produce a discrete controller. Secondly,

the controllable transitions, which are based on the current
execution states, are disabled selectively by the controller
during the online dynamic control phase. Disabling transitions
is necessary only in order to avoid forbidden states, livelock
and deadlock. The proposed solution for that is to build the
observer automaton which is also an Finite State Machine
(FSM). However, building the Observer has only one complex
task in which is that the large number of observer state.
Their method can be seen complimentary to ours, they focus
on avoiding forbidden state, deadlock and livelock, whereas,
in our approach we make use of the diagnosers to identify
occurrence of failure, where some might result in arriving in
a, for example, forbidden state.

Genc and Lafortune [29] have extended the existing theory
of diagnosis of discrete-event systems to satisfy the require-
ments of diagnosis faults in Petri net. In that approach, the
Diagnoser Service is generated as petri net that is associated
to every Petri net with the help of a merge function which is
defined to combine the individual Diagnoser Service states and
recover the complete Diagnoser Service state. Their research
results in proposing a distributed fault diagnosis algorithm
which allows each module in the distributed system to di-
agnose its faults independently unless completion of a task
requires the use of coupled components.

In our previous approaches [6], [7], a Model Driven De-
velopment approach to the design and implementation of
Diagnoser Service for a group of interacting services. The
method involves transforming BPEL file to Automata and then
using DES tools such as [30] to create the diagnoser. This work
differs from our previous work substantially. The focus of this
research is to develop new algorithms for Workflow Graphs,
which are better models for expressing Web services compared
to Automata. Comparing the performance of the diagnosers
obtained in our previous approach and the new method is an
area for further research.

Another area of future research is extending the algorithm to
deal with the cases that the coverability graph contains an ω.
One candidate for doing so, is to adopt the method developed
in [31] for Workflow graphs.

VIII. CONCLUSION

This paper presents a method of developing services that can
monitor execution of events in a Service oriented Environment
and identify occurrence of failure online. The adopted method
is model-based; a formal representation of services known as
Workflow Graph, which is intended to capture the flow of
actions within the system, is used. The conventional Workflow
Graph models are extended to model observable, unobservable
and failure events. Drawing on existing work on observability
in Petri nets, the idea of Petri net Coverability Graph is adopted
to produce Diagnoser Coverability Graph (DCG) for Workflow
Graphs. The paper also present methods of implementing the
DCG as services that can be integrated to a group of services to
identify if a failure has happened or may have happened. The
presented approach is implemented as an Oracle JDeveloper

plugin, which has been used in a case study involving mon-
itoring of a Customer Service applications to identify Right-
first-time failures in telecommunication systems.

REFERENCES

[1] M. B. Juric, B. Mathew, and P. Sarang, Business Process Execution
Language for Web Services. Packt Publishing, 2004.

[2] Y. Wang, T. Kelly, and S. Lafortune, “Discrete control for safe execution
of it automation workflows,” in EuroSys, 2007, pp. 305–314.

[3] Y. Yan and P. Dague, “Modeling and diagnosing orchestrated web
service processes,” in IEEE International Conference on Web Services,
vol. 9, 2007, pp. 51 – 59.

[4] H. Lababidi, “Model-based diagnostic expert system for chemical
plants,” 1992, pp. 4/1–4/3.

[5] W. Hamscher, L. Console, and J. de Kleer, Eds., Readings in model-
based diagnosis. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1992.

[6] M. Alodib, B. Bordbar, and B. Majeed, “A model driven approach to the
design and implementing of fault tolerant service oriented architectures,”
in 3rd International Conference on Digital Information Management
(ICDIM), 2008.

[7] M. Alodib and B. Bordbar, “A model driven architecture approach to
fault tolerance in service oriented architectures, a performance study,”
in 3rd International Workshop on Modeling, Design, and Analysis for
Service-oriented Architectures (MDA4SOA), 2008.

[8] Y. Yan, Y. Pencole, M.-O. Cordier, and A. Grastien, “Monitoring web
service networks in a model-based approach,” in ECOWS05, Sweden,
2005.

[9] R. K. Boel and J. H. van Schuppen, “Decentralized failure diagnosis for
discrete-event systems with costly communication between diagnosers,”
in WODES ’02: Proceedings of the Sixth International Workshop on
Discrete Event Systems (WODES’02). Washington, DC, USA: IEEE
Computer Society, 2002, p. 175.

[10] R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated decentralized
protocols for failure diagnosisof discrete event systems,” Discrete Event
Dynamic Systems, vol. 10, no. 1-2, pp. 33–86, 2000.

[11] S. Jiang and R. Kumar, “Failure diagnosis of discrete-event systems
with linear-time temporal logic specifications,” IEEE TRANSACTIONS
ON AUTOMATIC CONTROL, vol. 49, no. 6, pp. 934–945, 2004.

[12] J. Lunze and J. Schroder, “Sensor and actuator fault diagnosis of systems
with discrete inputs and outputs,” IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICSPART B, vol. 34, no. 2, pp. 1096 – 1107,
2004.

[13] M. Sampath, S. Lafortune, and D. Teneketzis, “Active diagnosis of
discrete event systems,” in PROCEEDINGS OF THE 36TH IEEE
CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, ser. IEEE
CONFERENCE ON DECISION AND CONTROL - PROCEEDINGS,
1997, pp. 2976–2983, 36th IEEE Conference on Decision and Control,
SAN DIEGO, CA, DEC 10-12, 1997.

[14] A. Giua and C. Seatzu, “Observability of place/transition nets,” IEEE
Transactions on Automatic Control, vol. 47, no. 9, pp. 1424–1437, 2002.

[15] M. Sampath, R. Sengupta, and S. Lafortune, “Diagnosability of discrete-
event systems,” IEEE Transactions on Automatic Control, vol. 40, pp.
1555–75, Sept. 1995.

[16] S. Genc and S. Lafortune, “Distributed diagnosis of discrete-event
systems using petri nets,” in International Conf. of Application and
Theory of Petri Nets, ser. IEEE CONFERENCE ON DECISION AND
CONTROL - PROCEEDINGS, 2003, pp. 23–27.

[17] G. Jiroveanu, R. B. and, and B. Bordbar, “On-line monitoring of large
petri net models under partial observation,” Discrete Event Dynamic
Systems, 2008.

[18] J. Vanhatalo, H. Völzer, and F. Leymann, “Faster and more focused
control-flow analysis for business process models through sese decom-
position,” in ICSOC ’07: Proceedings of the 5th international conference
on Service-Oriented Computing. Springer-Verlag, 2007, pp. 43–55.

[19] A. Giua and C. Seatzu, “Fault detection for discrete event systems using
petri nets with unobservable transitions,” in 44th IEEE Conference on
Decision and Control, 2005, pp. 6323– 6328.

[20] A. Arsanjani, “Empowering the business analyst for on demand com-
puting,” IBM Systems Journal, vol. 44, no. 1, pp. 67–80, 2005.

[21] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Springer Berlin, 2004.

[22] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, “Xml
schema part 1: Structures,” 2004.

[23] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[24] W. Reisig, Petri nets: an introduction. New York, NY, USA: Springer-
Verlag New York, Inc., 1985.

[25] M. B. Juric, B. Mathew, and P. Sarang, Business Process Execution
Language for Web Services. Packt Publishing, 2004.

[26] U. o. M. Department: Software Verification, “Stress test strategy.”
[27] Y. Yan, Y. Pencole, M.-O. Cordier, and A. Grastien, “Monitoring web

service networks in a model-based approach,” in ECOWS05, Sweden,
2005.

[28] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[29] S. Genc and S. Lafortune, “Distributed diagnosis of discrete-event
systems using petri nets.” in Proceedings of the 24th International
Conference on Applications and Theory of Petri Nets (ICATPN 2003),.
Springer-Verlag, 2003, pp. 316–336.

[30] L. Ricker, S. Lafortune, and S. Genc, “Desuma: A tool integrating giddes
and umdes,” in WODES, 2006.

[31] G. Jiroveanu, R. Boel, and B. Bordbar, “On-line monitoring of large petri
net models under partial obervation,” Submitted to Journal of Discrete
Event Dynamic Systems, 2006.

