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ABSTRACT 

Alloy is a textual language developed by Daniel Jackson and his team at MIT. It is a formal language, which has a 
succinct syntax and allows specification and automatic analysis of a wide variety of systems. On the other hand, the 
Unified Modelling Language (UML) is a semi-formal language, which is accepted by the software engineering 
community as the defacto standard for modelling, specification and implementation of Object based systems. This paper 
studies the integration of the UML and Alloy into a single CASE tool, which aims to take advantage of the positive 
aspect of both the UML and Alloy.   

Alloy and UML specification provide two views of the system. In order to synchronise the two views, we make use 
of the MDA style transformation. In particular, we shall present a Meta Object Facility (MOF) compliant metamodel for 
Alloy and define a model transformation from the UML metamodel to the Alloy metamodel. Based on the approach 
presented in the paper, we have implemented a tool called UML2Alloy for the modelling and analysis of Discrete Event 
Systems. To evaluate the tool, the paper presents a case study involving the modelling and analysis of a prototype 
manufacturing system. 
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1. INTRODUCTION 

The Unified Modelling Language (OMGb 2003) has been widely accepted as the defacto standard for 
modeling, specification and implementation of Object based systems. One of the reasons for the popularity of 
the UML, as expressed in the following quote by Warmer and Kleppe (2003), is its semi-formal nature: 
“Experience with formal or mathematical notations have led to the following conclusion: The people who 
can use the notation can express things precisely and unambiguously, but very few people can really 
understand such a notation.” 

However, the use of formal methods increases the reliability of software systems and enables verification 
and automated analysis. As a result, the conversion of UML models to formal languages has recently 
received considerable attention. In particular, there are a number of CASE tools that enable automatic 
transformation of a model specified in the UML to a formal language. For example Evans et. al. (1999), Roe 
et. al. (2003), Marcano and Levy (2002) and Delatour and Lamotte (2003) deal with the translation of the 
UML to Z, Object-Z, B and Petri Nets, respectively. Such tools enable the user to specify the system in UML 
and conduct the analysis of the system via a formal language. UML2Alloy is a tool for intergrading UML 
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and Alloy (Jackson 2004) into a single tool as depicted in Fig. 1. Using UML2Alloy, the designer can take 
advantage of the positive aspects of each modelling language. In particular, the user who is only familiar with 
UML and OCL can use the simulation and analysis facilities provided by the Alloy, while he/she is not 
required to learn Alloy. The user of UML2Alloy creates a model of the system in the UML. The UML model 
is automatically transformed into an Alloy model. To verify a statement on the UML model, the user 
specifies the statement in the OCL (Warmer and Kleppe 2003 ; OMGa 2003) language. The tool transforms a 
statement from OCL to Alloy and evaluates it on the Alloy model. UML2Alloy, is available for free 
download at http://www.cs.bham.ac.uk/ bxb/UML2Alloy.html 

Designer

UML model

Alloy model

MDA Model
Transformation

System

 
Figure 1. The Outline Of UML2Alloy 

 
Section 2 describes the outline of our approach, which makes use of an MDA (Frankel 2003; Kleppe et. 

al. 2003) style model transformation from the UML to Alloy. In particular, we shall present a simplified 
metamodel for Alloy and define a mapping between the UML metamodel and the Alloy metamodel. We shall 
end section 2 by a brief description of the architecture of UML2Alloy. To evaluate the tool, we shall present 
a case study involving modelling and analysis of a bottle capping machine as a Discrete Event System. 
Section 3 starts by explaining the example.  Section 3.1 presents an outline of a method of the specification 
of behavioural aspect of DES. Section 3.2 presents a brief explanation of verification via UM2Alloy. The 
paper ends with a conclusion.  

2. MDA MODEL TRANSFORMATION FROM UML TO ALLOY 

In the MDA, each model is based on a metamodel that describes its model elements and their relationship 
(Frankel 2003). In the MDA, model transformation is carried out via defining the transformation rules from a 
source metamodel to a destination metamodel as depicted in Fig. 2. Transformation rules define a mapping 
between a source and a destination metamodel. A transformation engine executes the transformation rules on 
the source model (acting as the input) in order to generate its equivalent destination model (output).   
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source model destination model
Transformation Engine

Transformation Rules

 
Figure 2. MDA model transformation 

Fig. 3 depicts a metamodel for Alloy. An Alloy Model consists of one or more Paragraphs. There are 
various types of Paragraphs in Alloy. For example, Signature Declarations (SignatureDecl), which are 
similar to Classes in UML, declare a Signature that denotes to a set of atoms (Jackson 2004). A Signature 
Declaration has a Signature Id (SigId), which is the unique identifier for the Signature. The Signature 
Declaration embodies a Signature Body (SigBody), which defines Declarations, containing a Declaration 
Expression (DeclarationExp). A Declaration Expression consists of one or more Expressions. For further 
details on Alloy and the meaning of elements in Fig. 3, we refer the reader to the Alloy reference manual 
(Jackson 2004). Analysis in Alloy is conducted via the discovery of instances of the model or by presenting 
counter-examples on the Assertions about the model. An Assertion is a Boolean expression that is true 
according to Facts declared in the model. A Fact is an expression about the model that is always valid. Alloy 



Analyzer (Alloy), which is a freely available implementation of Alloy, transforms the model into a format 
that can be evaluated via a SAT solver and uses an off-the-shelf SAT solver for the analysis of the model.  
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Figure 2. A Metamodel For Alloy 

Fig. 4 shows a part of the UML metamodel. The shaded elements represent OCL-related model elements. 
For further details on UML metamodels and model elements appearing in Fig. 4 we refer the reader to the 
UML specification (OMGb 2003). 

 
Table 1 depicts the correspondence between the model elements in the UML and Alloy. Classes are 

translated into Signature Declarations in Alloy, retaining their original name. Attributes of a class are 
translated into Relations on the corresponding Signature. Similarly, Data Types, which are types that carry 
pure values, are translated to Signatures. OclExpressions are translated into Alloy Expressions. The OCL 
expressions such as If Expressions are mapped into If formulas in Alloy. The translation of the other elements 
of the Table 1 can be explained similarly. Since the emphasis of Alloy is on modelling aspects of systems, it 
does not define any notion of types, as in programming languages. However, types could be supported via the 
use of libraries. For example, Booleans are not directly supported but it is possible to use a library that is 
distributed with Alloy to simulate Boolean data types. In the latest version of Alloy (version 3) there is also 
basic support for integers. 
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Figure 4. A Part Of The UML Metamodel 



We have implemented the aforementioned transformation rules into a tool called UML2Alloy, which is 
freely available at http://www.cs.bham.ac.uk/~bxb/UML2Alloy.html. Figure 4 depicts the structure of 
UML2Alloy. The user can interact with the tool either via a UML tool (ArgoUML) or the Alloy Analyzer 
(Alloy). The “core of UML2Alloy” uses the XML Metadata Interchange (XMI 2003) format generated by the 
UML tool to transform the model into Alloy. 

Table 1. A Subset Of The Transformation Rules 

UML Alloy 
Classes Signature Declarations 
Attributes Relations of the Signature 
Data Types Signature Declarations 
OCL Expressions Formula Expressions 
If Expressions If Formulas 
Operations that return a type Functions 
Operations that return void type Predicates 
Operation Parameters Parameters of Predicates or Functions 
Associations Relations of a Signature 

UML Tool

User

Alloy AnalyzerCore of
UML2Alloy

 
Figure 5. The Structure Of UML2Alloy 

3. MODELLING AND ANALYSIS OF A BOTTLE CAPPING MACHINE 

The classic paper, Ramadge and Wonham (1989) describes a Discrete Event System (DES) as a “dynamic 
system that evolves in accordance with the abrupt occurrence, at possibly unknown irregular intervals, of 
physical events ..., which requires control and coordination to ensure the orderly flow of events.” There are a 
variety of DES models. For example, Logical DES, which simplifies the model by ignoring the time of the 
occurrence of the events and considering the order in which they occur, can be modelled via Petri Nets, 
Automata, Process Algebra. Logical DES models are used when the model studies the properties of the event 
dynamic which are independent of timing assumptions. For further details on DES we refer the reader to 
Cassandras and Lafortune (1999). In this section, we shall study an example of the design of synchronization 
logic for a prototype bottle capping machine depicted in Fig. 6. The example, which is based on the example 
studied by Jiang et. al. (1996) is modelled as a Logical DES via UML2Alloy.  

Consider a system consisting of two independently driven, independently controlled axes; a Drum and a 
Slider. Bottles are delivered into the Drum from another section of the machine that is marked as Bottle into 
system. The Drum which has a rotational movement carries the bottles into the Slider, which caps each bottle. 
After capping a bottle, it is delivered out of the system from the part which is marked by Bottle out of system. 

http://www.cs.bham.ac.uk/~bxb/UML2Alloy.html


Bottle into
system

Bottle

Slider

t

Slider’s

Movement

Slider’s

Movemen
Cap

Bottle out
of system

Drum’s
rotation
Drum’s
rotation

 
Figure 6. A Prototype Bottle Capping Machine 

 
Fig. 7 depicts a UML model of the systems as a class diagram. The Drum has only one attribute position, 

of type enumeration d_pos, which is defined as a separate “Custom Data Type” class. The Drum carries the 
bottles by rotating D.position = D_Rot and when a bottle is at a suitable position to be capped, the Drum 
becomes stationary D.position = D_Sta. For the capping to take place, the drum must remain stationary 
(Stationary Committed) D.position = D_Sta_Com. At this stage, a rotating phase of the drum is completed: 
D.position = D_rotate_complete. Similarly, the Slider has an attribute position. A cycle of movement of the 
Slider starts by its approaching to the Drum S.position = S_App. To achieve the maximum output of the 
system, the Slider approaches the Drum with maximum speed. If the slider and Drum are synchronised, i.e. if 
a bottle is at its suitable position D.position = D_Sta_Com, the slider proceeds its movements and caps the 
bottle. This is modelled as the S.position = S_insert. However, if the Slider and the Drum are not 
synchronised, the slider can abort its movement. The decision to insert or abort is made at the decision point 
(S.position = S_Dpos), which considering the momentum of the movement of the Slider, is the last point that 
the Slider can abort its movement. At the decision point, if insert is not possible, the Slider aborts (S.position 
= S_abort) and waits for the Drum to catch up. Then, when the Drum and Slider are syncronised, the Slider 
can insert S.position = S_insert. Following the insert, the approach phase of the Slider is completed 
(S.position = S_approach_complete). Then, the Drum and the Slider get engaged, i.e. the bottle is capped. 
This is followed by a reverse movement of the Slider, resulting in the Slider being clear of the drum 
S.position = S_cod (Clear Of Drum). At this stage, the motion of the Slider has completed (S.position = 
S_motion_complete). 
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Figure 7. UML Model For The Bottle Capping System, version 1 

 
The Slider and Drum are driven and controlled independently. As a result, the system, which has a highly 

non-trivial dynamics, requires a component to control and synchronise the Drum and Slider such that the 
Slider can put a cap on a bottle. This is modelled as the class Syn Logic. The synchronisation logic controls 
the Drum by sending a Rotate_Inhibit or Rotate_Permit signals to the Drum. Similarly, the Syn Logic also 



controls the Slider by emitting Insert_Inhibit and Insert_Permit signals. This is modelled via a pair of 
attributes ctrlDrum and ctrlSlider of the Syn Logic which are of type ControlDrum and ControlSlider.  

3.1 Modelling the behaviour 

Fig. 7 depicts a static view of the system and does not provide any information on the dynamic aspects of 
the system, which deals with the specification of the evolution of the system from one state to another. For 
examples, in one of the state of the system, the Drum is stationary (D.position = D_Sta). This is followed by 
the state at which the Drum is rotating (D. position = D_Rot). As a result, we shall start by specifying the 
internal behaviour of the each class via a set of methods. For example the method D1() of the Drum which 
marks the change of state from rotating to stationary, can be defined via the following OCL statement: 

context Drum :: d1 () 
pre d1_pre : self . position = # D_Rot 
post d1_post : self . position = # D_rotate_complete 
Similarly, D2() defines the change of states from D_rotate_complete to D_Sta (stationary) D3() defines 

the change of states from D_Sta to D_Sta_Com (stationary and committed) and D4() defines the change of 
states from D_Sta_Com to D_Rot. The overall behaviour of the Drum is specified via the function D_all(), 
which is a “motion profile” for the Drum. D_all() makes use of the functions D1(), D2(), D3(), D4(). Due to 
space limitations, it is not possible to include the full OCL definition of all methods of the system. The 
interested reader can find the full set of definitions at http://www.cs.bham.ac.uk/ bxb/UML2Alloy.html. 

The next step is to define the collective behaviour of the system, representing the interaction among 
various components. In the UML (OMGb 2003) such dynamical aspects of the system are often specified via 
Sequence diagrams and Activity diagrams.  A possible approach is to define MDA transformations to 
translate such models to Alloy.  However, defining MDA transformations for mapping behavioural aspect of 
systems is a highly non-trivial task, which is outside of the scope of the paper. As a result, we shall present a 
method of specifying behaviour of systems based on Labelled Transition Systems. The following present the 
formal definition of Transitions Systems, which is the underlying semantics for various models of DES such 
as Petri nets and Automata, see Cassandras and Lafortune (1999). 

Definition: A (Label) Transition System is a four tuple (S,A,∆,s0) such that  S  is the set of states of the 
system,  A  is a set of actions (events) that cause a change of state in the system,  ∆⊆ S × A× S defines the 
transition between two states, by identifying consecutive states. s0 is the initial state of the system. 

 
We model Transition Systems as a part of our models, as depicted in Fig 8 below. We have added a new 

class State. Each object State has instances of the objects of the model. For example, the association 
has_slider shows that a State has one instance of the object slider.  The initial state s0 is identified by the 
attribute isInitial. There are also methods that present previous (prev()) and next (next()) State(s) of a State.  
Obviously, the initial State has no prev or next State, which can be written as an OCL constraint. 
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Figure 8. Modelling the behaviour of the Bottle Capping System 

State is a reserved Class in UML2Alloy. Like any other class, UML2Alloy transforms the UML class 
States to an Alloy signature with the same name. Our implementation makes use of the polymorphic 
ordering module of Alloy, the ordering module distributed with the Alloy Analyzer, which provides support 
for ordered sets. This is the standard way to achieve process modelling in Alloy (Wallace 2003). 

 
The model depicted in Fig. 8 requires additional constraints, which makes the analysis of the system 

inefficient. For example, notice that there are two ways to navigate from the class State to the Class Drum. 
As a result, we need to impose a constraint to specify that the Drum corresponding to a Syn_logic is the same 
as the Drum to which the State is associated. The same should be defined for the Slider. To avoid imposing 
such constraint, we have refined the model to associate a State to only the Syn_logic. This way we only have 
to specify constraints for the association of the Syn_logic with the rest of the model elements in our diagram.  
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Figure 9.  UML Model For The Bottle Capping System 

UML2Alloy translates the above model into an Alloy model via using the transformation rules of section 
2. For example enumeration types are translated as signatures and enumeration literals are translated into 
subsignatures which do not have any elements in common. 

abstract sig dr_Pos{} 
sig D_Rot, D_Sta, D_Sta_Com, D_rotate_complete extends dr_Pos{} 

3.2 Analysis of the model 

Using the latest version of the Alloy Analyzer (version 3.0 release candidate 3, which can be downloaded 
from http://alloy.mit.edu/beta/downloads.php), it is straightforward to simulate the model. However, it can be 
seen that system has non-trivial dynamics. As a result, it is crusial to analyse the system to ensure its correct 
functioning. Jiang et al. (1996) present an analysis of the liveness and safety properties of the system via Petri 
Nets. Using UML2Alloy it is possible to verify such properties with the use of assertions in Alloy. For 
example, we can check the safety criteria that, there is no instance of the model where the Slider inserts the 
Drum when the Drum is not stationary and committed. This is translated to the following Alloy statement, 
which means that the Slider must not insert the Drum when the ctrlDrum attribute of the Syn_logic has the 
value of Insert_Inhibit. 

no s : State | (s.syn.controls_s.position = S_insert) && 
(s.syn.controls_d.position = D_Rot) 

 
 



4. CONCLUSION 

This paper makes use of the MDA to define a model transformation from the UML to Alloy. Such 
transformations can map a UML model into an equivalent Alloy model and facilitate the analysis of the 
system via Alloy.  The paper also outlines a method of specification of behavioural aspects of DES, based on 
Transition Systems. The method presented in the paper is implemented as CASE tool called UML2Alloy.  
The paper also presents a case study of modelling and analysis of a prototype bottle capping system via 
UML2Alloy. 
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