
A model driven approach to the design and implementing of fault tolerant

Service oriented Architectures

Mohammed Alodib
1
, Behzad Bordbar

1
 and Basim Majeed

2

1
 School of computer Science, University of Birmingham, UK

M.I.Alodib,B.Bordbar@cs.bham.ac.uk
2
 British Telecom, Adastral Park, Ipswich, UK

Basim.Majeed@bt.com

Abstract

One of the key stages of the development of a fault

tolerant Service oriented Architecture is the creation

of Diagnosers, which monitors the system’s

behaviour to identify the occurrence of failure. This

paper presents a Model Driven Development (MDD)

approach to the automated creation of the

Diagnosing Services and integrating them into the

system. The outline of the method is as follows.

BPEL models of the services are transformed to

Deterministic Automaton with Unobservable Event

representations using MDD transformations. Then,

relying on Discrete Event System techniques a

Diagnoser Automaton for the Deterministic

Automata are created automatically. Finally, the

Diagnoser Automaton is transformed into a new

BPEL representation, which is integrated into the

original architecture.

1. Introduction

One of the crucial steps in building fault tolerant

Service oriented Architectures (SoA) is to diagnose

the occurrence of the failure automatically. This is

often achieved by the creation of the Diagnoser

which allows monitoring of a group of services and

their interactions to identify an occurrence of a

failure [1, 2]. Although diagnosability is a new area

of research in SoA, researchers in Discrete Event

System (DES) Community have been dealing with

similar challenges for the past two decades [3]. The

DES community mostly uses representations such as

automata [3] or Petri net [4] for the modelling of the

systems and Diagnosers. On the other hand, SoA

makes use of languages such as BPML and BPEL [5]

for modelling the services and business processes.

There is a clear scope for adopting methods used in

DES and applying them in SoA.

The method presented in this paper aims to

harness the capability of Model Driven Development

(MDD) [6] to automatically generate a Diagnosing

Services using DES methods. A Diagnosing Service

can be implemented to interact with the existing

services. The presented approach is implemented as

a tool which makes use of a sequence of model

transformations to create the Diagnosing Service for

the system. Firstly, BPEL representations of the

system are transformed into a variant of automata

called Deterministic Automata. Then, applying DES

techniques Observer Automaton is produced to

generate the Diagnosing Service. The approach is

applied to a case study involving Right-First-Time

failures, in which a Customer Support System fails to

complete a task First-Time and is forced to repeat a

part of the task again, causing violations of Service

Level Agreements (SLA).

The paper is organized as follows. Section 2

briefly reviews the preliminary material used in the

rest of the paper. Section 3 presents an outline of a

running example, which will be used in the rest of

the paper. The approach adopted in the paper is

explained in section 4. Section 5 discusses the related

work and the conclusions are given in section 6.

2. Preliminaries

Diagnosability of Discrete-Event Systems: A

Discrete Event System (DES) is a discrete-state,

event-driven system whose state depends on the

occurrence of asynchronous discrete events over

time [7]. There are a variety of languages used for

capturing DES models such as variants of automata

and Petri net [7]. Although the approach presented in

this paper is independent of the language adopted, a

variant of Deterministic Automaton known as

Deterministic Automaton with Unobservable Events

[3] will be used to describe the approach.

A Deterministic Automaton with Unobservable

Events, or simply a Deterministic Automaton is a

four tuple G:=(X , Σ , δ , x0), where X is a finite set

of states, Σ denotes a set of events, δ ⊆ X × Σ × X

represents the transition between the states. Here, x0

∈ X is called the initial state. Some of the events in a

978-1-4244-2917-2/08/$25.00 ©2008 IEEE 464

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 11, 2009 at 07:36 from IEEE Xplore. Restrictions apply.

DES are observable, for example the events

specified at the interfaces of the Web services. An

event which is not observable is called an
unobservable event. Internal action of service and

events which represent a failure are example of

unobservable events. Without any loss of generality,

it can be assumed that all failure events are

unobservable.

The purpose of the diagnosis is to use a model of

the system to identify the occurrence of failure. Since

a failure is assumed to be unobservable, it can not be

detected at the time of its occurrence. As a result, the

model of the system is used to monitor its behaviour

in order to reduce the uncertainty [7]. To achieve

this, from a Deterministic Automaton, a new model

called an Observer Automaton, or Observer for short,

is created. The Observer of the system describes the

current state of the system after the occurrence of

observable events [3]. From the Observer a new

automaton, called the Diagnoser Automaton is

created which is used to achieve the diagnosis when

it observes the behaviour of the system. A Diagnoser

Automaton is modelled as Gd= (Qd , Σo , δd , q0)

where Qd is the subset of the observable state which

includes all the states which can be reached from the

initial state under a specific transition δd [8]. Each

state in Qd is described by its name and a set of

Labels which describe the type of failure that has

occurred. As result, a Label either, represents a

normal status, denoted by N, or a failure state which

can be identified by a subset of failure types (F1, F2,

….Fm) to clarify what type of failure has happened

[3, 9]. Hence a Diagnoser is produced to server two

main purposes: firstly online detection and isolation

of failure ("Did a fault happen or not?", "What type

of fault happened?"). Secondly offline verification of

diagnosability properties of the system [7]. For

further information about DES and algorithms for

creating the Diagnosers automaton we refer the

reader to [3, 9].

Model Driven Development: The method

adopted in this paper relies on Model Driven

Development (MDD) [6] techniques for defining and

implementing the chain of transformations resulting

in the creation of the Diagnoser model. Each Model

is based on a specific metamodel, which defines the

elements of a language, which can be used to

represent a model of the language. In the MDD a

model transformation is defined by mapping the

meta-elements, constructs of the metamodel, of a

source language into meta-elements of the

destination language. Then every model, which is an

instance of the source metamodel, can be

automatically transformed to an instance of the

destination metamodel with the help of a model

transformation framework such as

OpenArchitectureWare [10] and SiTra [11]. For

future information the MDD, we refer the reader to

[6] or www.omg.com/mda.

 SoA and Web services: Service Oriented

Architecture (SoA) provides the foundation for

implementing business processes via the composition

of existing services. Web services [5] are software

systems which make use of well-accepted standards

and XML languages to support the creation of SoA.

The interaction between services in this paper is

captured via Business Process Execution Language

(BPEL) [12]. BPEL can be used to express complex

sequential, parallel, iterative and conditional

interactions. The type for all messages and variables

used in BPEL file are defined via XML Schema

Definition (XSD) [13], usually in WSDL file [5]. For

further information about Web services, we referee

the reader to [5].

3. Example: Right-First-Time failure

This example describes a simplified interaction

between a customer and a number of services in a

typical Telecommunication Company for technical

support related to the Broadband connection.

Figure. 1. An Overview of the Interaction.

As depicted in Figure1, the customer logs1 onto

the company website and enters details such as the

account number. Choosing the “Broadband problem”

option, he submits his form online. Next, the

company’s Check Customer Account (CCA) service

determines whether the customer account is in a

satisfactory condition in order to progress the fault

report. If the current status of the account is not

satisfactory the customer is advised to phone the call

centre and the process ends. If the account status is

satisfactory, the CCA invokes a request to another

service called General Evaluation Services (GES).

The GES examines the availability of service at the

exchange side and ensures that everything is up and

running, in which case the process moves to the next

step. If GES identifies any problem with the

availability of the services at the exchange side, the

customer is informed of the status and a separate

process is invoked to deal with this problem (not

shown as part of this example). If everything is fine

1 We assume that the Customer can log into the company’s

website, for example suppose the customer is not happy
with the speed of his Broadband connection.

465

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 11, 2009 at 07:36 from IEEE Xplore. Restrictions apply.

on the exchange side, the Customer Services sends a

request to Line Test Service (LTS), which is an

automated service to check line status up to the

customer premises. However, LTS can also indicate

problems on the exchange side which were not

detected by the GES. There are three possible

outcomes: 1) the line has no problem, move to next

step, 2) the line has some problems, advice the

customer or 3) There is no problem with the line,

although there is a likely problem with the exchange.

Option 3 is shown in bold arrow in Figure 1. If the

case 3 happens, a failure emerges which means that

GES should repeat its course of action violating

Right-First-Time. Finally, LTS sends a request to

analyze data history in the customer router. If it is

possible to carry out analysis then get a decision

from the analysis algorithm (either all ok so the

customer has to call technical support, or the analysis

finds the problem and customer is advised what to

do).

4. An MDD approach to the design of

Diagnosing Service in SOA

Consider a number of services which interact with

each other. The behaviour of these services and their

interaction is captured by a number of BPEL files.

The outline of our method is depicted in Figure 2.

First, BPEL representations are annotated to identify

the observable and unobservable events. Then, a

model transformation (BPEL2FSM) is used to

transform the annotated BPEL models automatically

to a Deterministic Automaton. Next, applying

classical theories of diagnosability [3] a Diagnoser is

computed and created, this is denoted by the arrow

marked as Generate Diagnoser in Figure 2. Then the

second model transformation (Diag2BPEL) produces

a new BPEL process which represents the

Diagnosing Service for the original BPEL models.

The Diagnosing Service is designed to receive the

current state of the system as input. Then, it

responses with diagnosing result which describes the

system behaviour whether it is normal or a failure

has occurred. If the system status had a failure, the

Diagnoser specifies which event caused this failure.

The presented approach is implemented as a Plug-

in for Oracle JDevloper. First, each BPEL file and its

XSD are combined together and are transformed into

a Deterministic Automaton via BPEL2FSM. Then

UMDES-LIB [14] is used to produce a Diagnoser

automaton. Finally, Diag2BPEL method transforms

the Diagnoser Automaton into the Diagnosing

Service. Both BPEL2FSM and Diag2BPEL are

implemented with the help of SiTra [11]. The details

of the case study are available at [15].

Figure 2. Applying MDD to Produce Diagnosers

BPEL model for the example of section 3: Due

to space restriction the scenario described in Section

3 is modelled with the help of only two services:

Customer Service and General Evaluation Service.

Figure 3(i) shows the Customer Service BPEL

modelled in Oracle JDeveloper. The scenario

described in section 3 consists of eight main

activities which are marked by (*). The flow of

activities depicted in BPEL file describes the actions

captured in Figure 1. For example, after checking the

customer account (CheckCustomerAccount) there is

a switch depicted () which result into alternating

cases either GeneralEvaluationService activity or

cancellation of the request (Cancel_Request). The

variables and data used in BPEL file are declared at

the XML Schema Definition (XSD). For example,

CustomerServiceProcessRequest which represents

input variable used to input the customer ID

(InputCustID). This is captured as XSD file in Figure

3. Figure 3(ii) represents the General Evaluation

Service BPEL which can be explained similarly. The

BPEL files and related XSD are available from [15].

4.1. Annotating BPEL

In order to apply DES techniques, BPEL models

representing the services must be transformed into

their equivalent Deterministic Automaton with

Unobservable Event. To do so, the BPEL

representations must be augmented to allow

identifying, for example which events are observable

or which events represent the failure action. Such

information is not included in a BPEL file; a

common practice is to annotate the BPEL file to

include such information [2].

Three main types of annotations are conducted:

annotation to include information with regards to

states, actions and failures. Next, we will explain the

annotation of the state with the help of an example.

Annotation related to the actions and failures can be

explained similarly.

Annotation to include States: In contrast with DES,

web services tend to adopt a process oriented

approach, focusing on the activities and their

execution. BPEL files do not include any inherent

notion of States. As a result, we will annotate BPEL

file by including new attributes tags representing the

states. Following the lead of Yan et al. [2] a new

BPEL attribute State will be declared. This new

variable is added to the XML Schema Definition

466

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 11, 2009 at 07:36 from IEEE Xplore. Restrictions apply.

(XSD) part of the BPEL file, where the input and

output variables are declared. For example, the

following snippet of XML represents the input

variables of states in General Evaluation Service. It

can be seen that there are total of three states named

as GES1, GES2 and GES3. Moreover, the state GES1

is an initial state.
<element name="states">
<complexType><sequence>
<element name="GES1" type="string"
xml:marked="0"
xml:initialstate="yes"/>
 <element name="GES2"
type="string" xml:marked="0"/>
</sequence></complexType>
</element>

(1)

Figure. 3. BPEL for Customer Support System.

4.2. Transformation from BPEL to

Deterministic Automaton

To define the transformation three items are

required: metamodel for the annotated BPEL,

metamodel of Deterministic Automaton and the

transformation rules from the annotated BPEL to the

Deterministic Automaton. Figure 4 depicts a part of

the BPEL metamodel [16], which also includes the

meta-elements related to the annotations. For

example, it can be seen that Invoke, Reply, Receive

and Assign activities models have new attributes

which are used to annotate the BPEL file as

described in section 4.1. These new set of attributes

are controllability, observability, current state, next

state, isFailure and typeFailure.

Figure. 4. A fragment of BPEL metamodel with
added elements marked by (*)

Figure 5 represents a metamodel for

Deterministic Automaton with Unobservable events,

which is based on [17]. It can be seen that a number

of states are connected to each other with the help of

Transitions. Each Transition between two States is

Triggered by an Event, which has further attributes

to define the observability, controllability and

whether this Event is a failure or not. If the Event

were defined as a failure, the type of the failure

should be specified.

The transformation rules specify the mapping

from the annotated BPEL metamodel of Figure 4 to

the model elements of Figure 5. The State model

element of BPEL is mapped into the State in

Deterministic Automaton model. Activities such as

Invoke, Receive, Reply and Assign are mapped into a

combination of Deterministic Automaton Transition

and Event. For example consider an Invoke activity,

the transformation make use of the current state

(Invoke.currentState) and the next state

(Invoke.nextState) of the Invoke activity to create the

source (Transition.source) and the target

(Transition.target) of a created transition.

As denoted in Figure 5 the Transition may be

Triggered by an Event. At the destination, such an

event must be created. Then, the attributes

isObservable and isControllable must be assigned to

the correct value. For example, in case of Invoke

these attributes can be set according to the values of

Invoke.isObservable and Invoke.IsControllable. If a

BPEL activity is consider as a failure, the failure

type attribute (typeFailure) is transformed to a

FailureType associated to the corresponding Event.

467

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 11, 2009 at 07:36 from IEEE Xplore. Restrictions apply.

Samples of the transformation specification are

included in [15].

Figure. 5. Metamodels of Deterministic
Automaton

Example of Transformation from BPEL to

Deterministic Automaton: Figure 6 represents the

Deterministic Automata created as result of applying

our transformation approach on the annotated BPEL

model of the Customer Technical Support example

shown in Figure 3. Consider CheckCustomerAccount

which is an Invoke activity. It can be seen that

currentState of this Invoke activity is "CUS1" and its

nextState is "CUS2". As a result, in Figure 6 the

model transformation has created a transition from

CUS1 to CUS2 marked by CheckCustomerAccount.

Figure. 6. Created Deterministic Automata.

4.3. Transformation of Diagnoser Automaton

to Diagnosing Service (Diag2BPEL)

After performing the model transformation on a

BPEL model a Deterministic Automaton is

produced. Because the system may be express in

more than one BPEL model, as for example in our

running example, the transformation produces more

than one Deterministic Automaton, see Figure 6. The

overall behaviour of the system is captured by the

parallel composition of created Automaton. For

information one parallel composition see [7]. From a

parallel composition of the Deterministic Automata

with Unobservable Events, it is possible to create a

single automaton with equivalent behaviour [7]. The

second transformation (Diag2BPEL) maps the

automaton into a BPEL model Diagnosing Service.

Figure 7 depicts the Diagnosing Automaton

automatically created from the Deterministic

Automata of Figure 6 via the UMDES tool [14]. The

Diagnoser Automaton represents all the possible

states which can be reached after the execution of an

event. For example, (CUS7,GES2 N, CUS9,GES2

F1) represents two states which may be created as a

result of the execution of CheckServiceAvailability.

Firstly, the service Customer Service is at state

"CUS7" and the service General Evaluation Service

(GES) is at state "GES2" see 4.1(1). This is a normal

state marked by N. Secondly, the service Customer
Service is at state "CUS9" and the service General

Evaluation Service (GES) is at state "GES2" which

is a failure of type 1.

The transformation from Diagnoser Automaton

to BPEL is very similar to the mapping described in

section 4.2. Due to space restriction, we have

included a fragment of the Diagnosing Service in

Figure 8. Element of Figure 7 marked with (*) are

transformed and included in Figure 8. Full Diagnoser

Automaton is available at [15].

Figure. 7. A Fragment of Diagnoser Automaton.

5. Discussion and related work

Yan et al. [2] formalize BPEL Web service

model as Discrete Event System (DES). In [18], Yan

and Dague propose a Model-Based approach to

diagnosing of behaviour of Web services by

extracting synchronized automata from the BPEL.

The synchronized automata are used to identify the

dependency between the variables and to identify the

trajectories following the detection of the exception.

Our approach differs from [18] in various ways.

Firstly, we make use of MDD to automatically

generate the Diagnoser. Secondly, using MDD

allows us to reuse existing results in DES [3] and

UMDES tool [14] which reduces the cost of

implementation. Our approach can deal with a wide

range of failure including the type of failure which is

discussed in [18]. It seems that the approach

presented in [2] can not handle failure such as Right-

First-Time. Finally, our approach fundamentally

differs from the above as our Diagnoser is modelled

in Web services languages.

In this paper, variants of automata are used to

represent Discrete Event Systems. Our approach is

independent of such reorientation. Petri nets are

another formalism used in diagnosability [1, 4].

Considering the wide adoption of Petri nets for

workflow modelling, there is a large scope for using

Petri net as formalism in this context. This is a

direction for future research.

468

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 11, 2009 at 07:36 from IEEE Xplore. Restrictions apply.

A centralized Diagnoser may result in bottlenecks

affecting the performance. Various decentralized

diagnosing scheme have been proposed to address

this issue [19, 20]. A decentralized diagnosing

method generates one Diagnoser per each module of

the system. Applying the method represented in this

paper along with decentralized diagnosing approach

result in a Diagnosing Service for each service which

is expected to result in better performance. These

Diagnosing Services can collaborate with each other

to fulfil the task of centralized Diagnoser. We are

currently extending our tool set to implement a

Decentralized approach.

Figure. 8. A Fragment of the Diagnoser
Service.

6. Conclusion

This paper presents a Model Driven Development

approach to the design and implementation of

Diagnosers for a group of interacting services. The

underlying idea is to apply Discrete Event System

techniques to produce a Diagnosing Service, which

will monitor the services. MDD is used to transform

models of Services, captured in BPEL, into

Deterministic Automata with Unobservable Events.

Using DES algorithms, a Diagnoser Automaton for

the Deterministic Automaton is created. MDD model

transformations map the Diagnoser Automaton to

produce the Diagnosing Service. The presented

approach is implemented as an Oracle JDeveloper

plug-in and has been applied to a case study

involving the monitoring of a Customer Service

application to identify Right-first-time failures.

8. References
[1] Y. Wang, T. Kelly, and S. Lafortune,

"Discrete control for safe execution of IT

automation workflows," in EuroSys, 2007.

[2] Y. Yan, Y. Pencole, M.-O. Cordier, and A.

Grastien, "Monitoring Web Service

Networks in a Model-based Approach," in

ECOWS05, Sweden, 2005.

[3] M. Sampath, R. Sengupta, and S. Lafortune,

"Diagnosability of discrete-event systems,"

in IEEE Transactions on Automatic

Control, Sept. 1995, pp. 1555-75.

[4] G. Jiroveanu, R. B. and, and B. Bordbar,

"On-line monitoring of large Petri Net

models under partial observation," Discrete

Event Dynamic Systems, 2008.

[5] G. Alonso, F. Casati, H. Kuno, and V.

Machiraju, Web Services: Springer, 2004.

[6] T. Stahl and M. Volter, Model Driven

Software Development; technology

engineering management: Wiley, 2006.

[7] C. Cassandras and S. Lafortune,

Introduction to Discrete Event Systems:

Springer, 2007.

[8] F. Lin, "Diagnosability of discrete event

systems and its applications " Discrete

Event Dynamic Systems, vol. 4, 1994.

[9] M. Sampath, R. Sengupta, S. Lafortune, K.

Sinnamohideen, and D. C. Teneketzis,

"Failure diagnosis using discrete-event

models," IEEE Trans. on Control Systems

Technology, vol. 4, pp. 105-124, 1996.

[10] http://www.openarchitectureware.org

[11] D. H. Akehurst, B. Bordbar, M. J. Evans,

W. G. J. Howells, and K. D. McDonald-

Maier, "SiTra: Simple Transformations in

Java," in MoDELS, 2006, pp. 351-364.

[12] M. B. Juric, B. Mathew, and P. Sarang,

Business Process Execution Language for

Web Services: Packt Publishing, 2004.

[13] H. S. Thompson, D. Beech, M. Maloney,

and N. Mendelsohn, "XML Schema Part 1:

Structures," W3C 2004.

[14] L. Ricker, S. Lafortune, and S. Genc,

"DESUMA: A Tool Integrating GIDDES

and UMDES," in WODES, 2006.

[15] www.cs.bham.ac.uk/~bxb/Alodib/RFTC.html

[16] B. Bordbar and A. Staikopoulos, "On

Behavioural Model Transformation in Web

Services," in eCOMO, China, 2004.

[17] UML2.0, "UML 2.0 Superstructure

Specification, www.omg.com," 2004.

[18] Y. Yan and P. Dague, "Modelling and

Diagnosing OrchestratedWeb Service

Processes," in ICWS, 2007.

[19] Y. Wang, T.-S. Yoo, and S. Lafortune,

"Diagnosis of Discrete Event Systems

Using Decentralized Architectures"

Discrete Event Dynamic Systems, vol. 17,

2007.

[20] S. Genc and S. Lafortune, "Distributed

Diagnosis of Place-Bordered Petri Nets,"

IEEE Transactions on Automation Science

and Engineering vol. 4, pp. 206-219, 2007.

469

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 11, 2009 at 07:36 from IEEE Xplore. Restrictions apply.

