
On A Chain of Transformations for Generating

Alloy from NL Constraints

Imran Sarwar Bajwa, Behzad Bordbar, Kyriakos Anastasakis, Mark Lee

School of Computer Science

University of Birmingham, UK

i.s.bajwa@cs.bham.ac.uk, b.bordbar@cs.bham.ac.uk, k.Anastasakis@cs.bham.ac.uk, m.g.lee@cs.bham.ac.uk

Abstract—Multi-Paradigm Modelling uses models from multiple

domains to leverage the tools, techniques and expertise provided

by each of the individual domains. Recent advances in model

transformation technology allow automated production of one

model from another to improve the application of multi-

paradigm techniques. Systems development starts with the

requirements gathering phase, which usually comprises of a

textual description of the system requirements provided in

Natural Language (NL). It is therefore evident that there is a

clear scope for incorporating NL Processing techniques in Multi-

Paradigm Modeling. However, using NLP methods pushes the

boundaries of Multi-Paradigm Modeling to an extreme; indeed

NLs are inherently ambiguous and open to interpretation. In this

paper, we propose a novel approach based on standards (such as

SBVR) that can cope with syntactic and semantic ambiguities in

NL specifications and can map them to formal languages such as

Alloy. The tool implementing our approach is currently the only

available tool for translating NL specifications to formal

languages such as Alloy, etc.

Keywords- UML, Alloy, SBVR, Natural Language, NL2OCL

I. INTRODUCTION

Using more than one model of a system, commonly known

as multi-paradigm modelling [1], has received considerable

attention in the last decade. Indeed, models of the systems in

different domains such as software engineering (UML [2],

OCL [3]), formal methods (Alloy [4], B [5]), and business

modeling (SBVR [6]) produce different viewpoints which

allow benefiting from tools, techniques and expertise provided

by each domain. In addition, recent advances in model

transformation technology, most notably Model Driven

Development [7] (MDD), have allowed production of one

model from another automatically for example OCL/UML to

Alloy [8], SBVR to OCL [9], SBVR to UML [10], UML/OCL

to SBVR [11], OCL to B [5], SBVR to SQL [12], etc. Such

automated transformations has made easy and simple to reuse

the existing information.

In NL2Alloy project, we aim to automatically generate

Alloy from the natural language (NL) specification and use

that Alloy for analysis of UML class models. For automated

generation of Alloy from NL specification, a sequence of

transformations (see Figure 1). First of all NL constraint is

syntactically and semantically analysed to generate a logical

representation that can be mapped to formal languages such as

Alloy. Here, the logical representation is based on the

Semantic of Business Vocabulary and Rules (SBVR) [6]

standard. Afterwards, SBVR based logical representation is

mapped to OCL constraints. Finally, the OCL constraints are

mapped to Alloy expressions for a UML class model in

OCL2Alloy transformation [8].

NL Description

Constraints

Pre/post conditions

Class diagram

SBVR OCL

Alloy

Figure 1: From Natural Language Specification to Alloy

In NL2Alloy transformation, syntactic and semantic

analysis of NL specification is the key phase. Any error or

mistake generated at this stage propagates in rest of the stages

and results in wrong OCL and wrong Alloy. For higher

accuracy in syntactic analysis, we have used the Stanford

parser to generate the parse tree and the (typed) dependencies

and are 84.1% [7] accurate. However, we have identified a

few cases the Stanford parser is unable to generate (typed)

dependencies. In natural language processing (NLP), such

cases are classified as attachment ambiguity (Kiyavitskaya,

2008), where a prepositional phrase or a relative clause in

sentence can be lawfully attached to one of the two parts of

that sentence [10]. An example of such cases is shown in

Figure 2.

English: A directory object is assigned to all files with

directory.

Typed Dependency (Collapsed):

 det(Object-3, A-1)

 nn(Object-3, Directory-2)

 nsubjpass(assigned-5, Object-3)

 auxpass(assigned-5, is-4)

 root(ROOT-0, assigned-5)

 det(files-8, all-7)

 prep_to(assigned-5, files-8)

 prep_with(object-8, Directory-10)

Figure 2. Typed dependencies generated by the Stanford Parser

In Figure 2, it is shown that the typed dependencies

generated by the Stanford parser are wrong such as

prep_with(files-8, Directory-10). However, the

correct typed dependency for this example should be

prep_with(pay-2, Directory-10) to represent the

mailto:kyriakos@anastasakis.net
mailto:i.s.bajwa@cs.bham.ac.uk
mailto:b.bordbar@cs.bham.ac.uk
mailto:k.Anastasakis@cs.bham.ac.uk
mailto:m.g.lee@cs.bham.ac.uk

actual meanings of the example i.e. a Directory Object with

Directory is assigned to all the files. This problem becomes

more critical when we map these (typed) dependencies to

SBVR vocabulary and OCL. Wrong dependencies generated

by the Stanford parser result in wrong SBVR and wrong OCL,

while the wrong OCL is mapped to wrong Alloy or result in

incomplete OCL to Alloy transformation.

This paper has three main contributions. Firstly, we present

an outline of the NL2Alloy‟s architecture which decouples the

design of the tool so that NL representation can be

transformed to Alloy via multiple separate modules. Secondly,

a novel approach is used to resolve attachment ambiguity in

NL specification of Alloy. By resolving the attachment

ambiguity, accurate Alloy code can be generated. Thirdly, we

present how the NL2Alloy tool can be helpful in analysis of

models.

The rest of the paper is structured as follows. Section 2

describes the preliminary concepts of the research; section 3

highlights main phases of NL to Alloy approach and the

working of NL2Alloy approach is explained with the help of a

running example in section 4; section 5 describes results and

evaluation of the tool. The paper ends with a conclusion

section.

II. PRELIMINARIES

The preliminary concepts such as OCL and Alloy are

described in this section.

1) Object Constraint Language (OCL)

OCL is a formal language used to annotate a UML model

with the constraints [3]. The typical use of OCL is to represent

functional requirements using class invariants [3, Section

7.3.3], pre and post conditions [3, Section 7.3.4] on operations

and other related expressions on a UML model. OCL supports

two types of expressions: constraints and pre/post conditions.

A constraint is a restriction on state or behaviour of an entity

in a UML model [2]. The OCL constraint defines a Boolean

expression. If the constraint results true, the system is in valid

state. OCL is a strongly typed formal specification language

with precise semantics. All well-formed expressions must

conform to the rules of OCL.

2) Alloy

Alloy [4] is a declarative textual modeling language based

on first-order relational logic. An Alloy model consists of a

number of signature declarations, fields, facts and predicates.

Each signature denotes a set of atoms, which are the basic

entities in Alloy. Atoms are indivisible (they cannot be divided

into smaller parts), immutable (their properties remain the

same over time) and uninterpreted (they do not have any

inherent properties). Each field needs to be declared under a

signature and represents a relation between two or more

signatures. Each field denotes a set of tuples of atoms. Facts

are declarative statements in first-order logic that define

constrains on the declared signatures and fields. Predicates are

in essence parameterized constraints that can be referenced

from within other predicates or facts.

The Alloy language is supported by a tool, the Alloy

Analyzer which supports fully automated analysis of Alloy

models. The tool can produce random instances of a model

(simulation functionality). It can also check if the model

satisfies certain desirable properties. These properties can be

expressed in the Alloy language and the tool checks if the

properties are satisfied (assertions checking functionality).

Moreover it provides support to debug over-constrained

models by locating the parts of the model that cause the

inconsistency (UnSAT core functionality)

The Alloy Analyzer works by transforming an Alloy model

to a Boolean expression that can be analysed by SAT solvers

embedded within the Alloy Analyzer. A user-specified scope

on the model elements is used to bound the domain. The scope

is a positive integer number, which limits the number of atoms

for each signature in an instance of the system that is analysed

by the solver. If an instance that violates the assertion is found

within the scope, the assertion is not valid. However, if no

instance is found, the assertion might be invalid in a larger

scope. For more details on the notion of scope, please refer to

[4, Sec. 5].

Alloy is ideal for analysing structural properties of systems

[4] and can therefore be considered a natural choice for

statically analysing UML Class Diagrams. In particular,

existing work has transformed UML and OCL to Alloy

manually for analysis. For example, Dennis et al. [35] use

Alloy to expose hidden flaws in the UML design of a radiation

therapy machine.

3) UML2Alloy

UML2Alloy works by automatically transforming UML

Class Diagrams enriched with OCL constraints into an Alloy

model. This Alloy model can then be automatically analysed

using the Alloy Analyzer. There are clear similarities between

UML Class Diagrams and Alloy. From a semantic point of

view both Alloy and UML models can be interpreted by sets

of tuples [4], [25]. Alloy is based on first-order logic and is

well suited for expressing constraints on Object-Oriented

models. Similarly, OCL has extensive constructs for

expressing constraints as first-order logic formulas. In spite of

such similarities, the UML and the Alloy have some

fundamental differences [26]. For example, Alloy makes no

distinction between sets, scalars and relations, while the UML

distinguishes between the three. To bridge some of those

semantic differences between UML and Alloy model elements

a UML profile for Alloy has been developed [26].

III. NL2ALLOY: SKETCH OF THE SOLUTION

To address the above challenges we have integrated our

existing tools and developed new modules to create a multi-

paradigm NL-based approach that generates Alloy code via

UML, SBVR and OCL. The NL to Alloy transformation is

performed by using a chain of transformations as NL/UML to

SBVR, SBVR to OCL, and OCL to Alloy. NL2Alloy

architecture is shown in Figure 3.

NL2Alloy approach takes two input documents: an English

text document and a UML model document. Then the tool

produces and SBVR representation. This representation is

used by the user to double-check if the correct English is

produced. This is a step towards curbing the complexities

associated to the ambiguities of the Natural Languages []. This

is the only semi-automated part of our approach. The

remaining steps of the transformation are fully automated.

SBVR is transformed into OCL and then into the Alloys

module. These steps are discussed in the following chapters.

It is possible to produce the UML diagram via one of the

many Class diagram extraction tools. However, this step,

which is a minor extension of work remains a task for future.

Figure 3. Architecture of NL2Alloy

1) NL to SBVR Transformation

This is the most important phase of NL2Alloy

transformation as we generate a semantically unambiguous

representation such as SBVR business rules from NL

specification of Alloy code. To overcome ambiguity of a

natural language, basic natural language processing (NLP)

(lexical analysis [27], syntax analysis [35], and semantic

analysis [33]) phases are applied to understand the actual

meanings of the NL statement and then map NL statement to a

SBVR statement. Following sections explains the

transformation of NL text to SBVR rules.

a) Lexical Analysis. First phase in analysis of natural

language specification of Alloy text is lexical analysis.

Following steps are performed to extract lexical information:

i. POS Tagging. In this step, the input English text is

tokenized and part-of-speech (POS) tagging is performed

using the Stanford POS tagger (Toutanova, 2003).

English: There is exactly one directory that has no parent.

Tags: [A/DT] [directory/NN] [object/NN] [is/VBZ]

 [assigned/VBN] [to/TO] [all/DT] [files/NNS]

 [with/IN] [directory/NN] [./.]

Figure 4. Part-of-Speech tagged text

ii. Lemmatization. In lemmatization phase, the inflectional

endings are removed and the base or dictionary form of a word

is extracted, which is known as the lemma. We identify lemma

(base form) of the tokens (all nouns and verbs) by removing

various suffixes attached to the nouns and verbs e.g. in Figure

4, verb “assigned” is analyzed as “assign+ed”. Similarly, the

noun “files” is analyzed as “file+ s”.

b) Syntactic Analysis. We have used the Stanford parser to

parse the pre-processed English text. The Stanford parser is

84.1% accurate (Cer, 2010). However, the Stanford parser is

not capable of voice-classification. Hence, we have developed

a small rule-based module classifies the voice in English

sentences. In syntax analysis phase, three steps are performed

as below:

i. Generating Syntax Tree. We have used the Stanford

parser to generate parse tree and (typed) dependencies

(Marneffe, 2006) from NL text. To address the identified cases

of attachment ambiguity, discusses in the Section 1, we need

the context of the NL statement that is a UML class model is

the context of the Alloy code. Therefore, we have used the

UML class model shown in Figure 6 to correct dependencies.

We have used the given relationships in the UML class model

such as the associations (directed and un-directed) to deal with

the attachment ambiguity. For example in Figure 6, it is shown

that „Bonus‟ is associated to „Pay‟ and there is no association

in Variable and Memory classes. By using this associations

among these classes, we can correct the dependency as

prep_with(files-8, Directory-10)instead of the

prep_with(object-8, Directory-10) identified by the

Stanford Parser.

Typed Dependency (Collapsed):

 det(Object-3, A-1)

 nn(Object-3, Directory-2)

 nsubjpass(assigned-5, Object-3)

 auxpass(assigned-5, is-4)

 root(ROOT-0, assigned-5)

 det(files-8, all-7)

 prep_to(assigned-5, files-8)

 prep_with(object-8, Directory-10)

Figure 5. Corrected (typed) dependencies

ii. Voice Classification. In Alloy generation, an active voice

sentence is treated differently from a passive voice sentence.

The Stanford Parser does not classify the voice of English

sentences. Various grammatical features manifest passive-

voice representation such as the use of past participle tense

with main verbs can be used for the identification of a passive-

voice sentence. Similarly, the use of „by‟ preposition in the

object part is also another sign of a passive-voice sentence.

However, the use of by is optional in passive-voice sentences.

c) Semantic Analysis. In semantic analysis phase, we aim

to understand the exact meanings of the input English text; to

identify the relationships in various chunks and generate a

logical representation. For semantic analysis English

constraints, we have to analyze the text in respect of particular

context such as UML class model. Our semantic analyzer

performs following three steps to identify relations in various

syntactic structures:

i. Shallow Semantic Parsing: In shallow semantic parsing,

the semantic or thematic roles are typically assigned to each

syntactic structure in a English sentence. We use SBVR

vocabulary as the target semantic roles due to the fact that the

mapping of SBVR vocabulary to OCL is easy and

straightforward. We have identified mappings of English text

elements to SBVR vocabulary (see Table 1).

OCL
Code

Alloy

Code

NL
Text

Logical
Form

Depende

ncies

Sitra

Sitra

Semantic

Analyser

Syntax

Analyser

UML Class

Model

Table 1: Mapping class model to English

English Text elements SBVR Vocabulary

Common Nouns Object Type

Proper Nouns Individual Concept

Generative Noun, Adjective Characteristic

Action Verbs Verb Concepts

Subject + verb + Object Fact Type

Following is the procedure used for semantic role labeling

of English constraints:

To identify predicates, first of all system identifies the

words in the sentence that can be semantic predicates or

semantic arguments. In English text, a predicate can be in the

form of a simple verb, a phrasal verb or a verbal collocation.

Similarly, the predicate arguments can be nouns in subject and

object part of a sentence. In English, nouns can have pre-

modifiers such as articles (determiners) and can also have

post-modifiers such as prepositional phrases, relative (finite

and non-finite) clauses, and adjective phrases.

Once the predicates are identified, semantic roles are

assigned by using the mappings given in Table 2. Role

classification is performed as the syntactic information (part of

speech and syntactic dependencies). The output of this phase

is shown in Figure 7.

A Object_Type[directory object] verb_concept[is assigned] to all

Object_Type [files] with Object_Type [directory].

Figure 7. Semantic roles assigned to input English sentence

ii. Deep Semantic Analysis. The computational semantics

aim at grasping the entire meanings of a natural language

sentence, rather than focusing on text portions only. For

computational semantics, we need to analyze the deep

semantics of the input English text. The deep semantic

analysis involves generation of a fine-grained semantic

representation from the input text. Various aspects are

involved in deep semantics analysis. However, we are

interested in quantification resolution (see Figure 8) and

quantifier scope resolution:

i. In English constraints, the quantifiers are most

commonly used. We not only cover all two traditional types

(Universal and Existential) of quantifications in FOL but also

we have used two other types: Uniqueness and Solution

quantification..

ii. Besides, the quantification resolution, we also need to

resolve the scope of quantifiers in input English text..

Moreover, the multiplicity given in the target UML class

model also helps in identifying a particular type of

quantification. For example, in figure 7, the multiplicity

„0…1‟ specifies that customer can get at most one credit card.

This will be equal to At-most n quantification in SBVR.

Univeral_Quantification[A] Object_Type[directory object] verb_concept[is

assigned] to Univeral_Quantification[all] Object_Type [files] with Object_Type

[directory].

Figure 8. Semantic roles assigned to input English sentence

iii. Semantic Interpretation: After shallow and deep

semantic parsing, a final semantic interpretation is generated

that is mapped to SBVR and OCL in later stages. A simple

interpreter was written that uses the extracted semantic

information and assigns an interpretation to a piece of text by

placing its contents in a pattern known independently of the

text. Figure 9 shows an example of the semantic interpretation

we have used in the NL to OCL approach:

 (assign

(object_type = (∃=1X ~ (DirectoryObject ? X)) AND

(object_type = (∃=1Y ~ (Directory? Y)))

 (object_type = (∀Z ~ (Files ? Z))))

Figure 9. Semantic roles assigned to input English sentence.

2) SBVR to OCL Transformation

Once we get the SBVR based logical representation of

English constraint, it is mapped to the OCL by using model

transformation technology using SiTra. A set of model

transformation rules were used for SBVR to OCL

transformation (Bajwa, 2011). For model transformation of

NL to OCL, we need following two things to generate OCL

constraints:

i. Select the appropriate OCL template (such as invariant,

pre/post conditions, collections, etc)

ii. Use set of mappings that can map source elements of

logical form to the equivalent elements in used OCL

templates.

a) OCL Templates: We have designed generic templates

for common OCL expressions such as OCL invariant, OCL

pre-condition, and OCL post-condition. User has to select one

of these three templates manually. Once the user selects one of

the constraints, the missed elements in the template are

extracted from the logical representation of English constraint.

Following is the template for invariant:

In the all above shown templates, elements written in

brackets „[]‟ are required. We get these elements from the

logical representation of English sentence. Following

mappings are used to extract these elements:

i. UML-Package is package name of the target UML class

model.

ii. UML-Class is name of the class in the target UML Class

model and UML-Class should also be an Object Type in the

subject part of the English Constraint.

iii. Class-Op is one of the operations of the target class (such as

context) in the UML Class model and Class-Op should also

be the Verb Concept in English constraint.

iv. Param is the list of input parameters of the Class-Op and

we get them from the UML class model. These parameters

should be of type Characteristics in English constraint.

v. Return-Type is the return data type of the Class-Op and we

get them from the UML class model. The return type is the

data-type of the used Characteristic in English constraint

and this data type is extracted from the UML class model.

vi. Body can be a single expression or combination of more

than one expression. The details of Body are given in the

next section.

3) OCL to Alloy Transformation

The Alloy module maps an OCL expression to Alloy code

by using model transformation that incorporates the mapping

rules between OCL and Alloy. Every OCL invariant

expression maps to an Alloy fact statement. OCL conjunction,

disjunction and negation statements (i.e. and, or, not) have a

direct mapping to the Alloy conjunction (&&), disjunction (||)

and negation (!) operators. Most of the OCL operations on

collections have a corresponding Alloy expression.

For example, the forAll() and exists() operations can be

mapped to the all and some Alloy expressions respectively.

Similarly the size() OCL operation can be represented by the

Alloy set cardinality operator (#). The isEmpty() and

notEmpty() operations are expressed using the no and some

Alloy keywords. More detailed information on the OCL to

Alloy transformation can be found in [30].

IV. A RUNNING EXAMPLE

To explain the presented approach, we have applied our

approach to the following NL text:

Consider a model of file system in which every entity is a
DirectoryObject. A DirectoryObject could be a File or a
Directory. Each Directory may include a number of
DirectoryObjects, which are the entries of the directory. If a
DirectoryObject has a Directory as its entity, it is its parent.
A DirectoryObject is assigned to all Files with Directory.
There is a root Directory without any parents. A directory
cannot not be a parent of itself.

The above example was used described in Section 3. Figure

6 UML Class Diagram of a Simple File System Model depicts

a UML class diagram of the file system. This UML Class

Diagram model was generated manually from the text

description, but tools like CM-Builder [] can be used to

automate this task.

Figure 6 UML Class Diagram of a Simple File System Model

In the following we present the transformation of the NL

statements to SBVR, then to OCL and finally to Alloy.

Constraint1:

English: There is exactly one directory that has no parent.

SBVR: It is obligatory that there is exactly one directory

that has no parent.

OCL: context Directory
inv oneRootDirectory : Directory.allInstances() ->

select (d : Directory | d.parent -> isEmpty()) ->

 size() = 1

Alloy:
fact { Directory_oneRootDirectory[]}

 pred Directory_oneRootDirectory[]{

 # { d: Directory | no d . parent } = 1}

Constraint2:

English: A directory may not be a parent of itself.

SBVR: It is possibility that a directory may not be a parent

of itself.

OCL: context Directory

 inv: self.parent -> excludes (self)

Alloy:
 fact{all self: Directory |

Directory_notAncestorOfItself[self] }

pred Directory_notAncestorOfItself[self: Directory]{

self !in self.parent }

1) Analysis

The analysis of the model can be carried out from within the

NL2OCL, using the UML2Alloy and the Alloy Analyzer

APIs. More specifically, the UML class diagram and the

automatically generated OCL constraints were automatically

transformed to Alloy using the API of the UML2Alloy.

Once the Alloy model is automatically generated, we can

analyse it with the help of the Alloy Analyzer API. First we

try to simulate the model with a scope of [31]. This means that

the Alloy Analyzer will attempt to find instances, which

conform to the model and its constraints using combinations

of up to four File and Directory instances. After producing a

number of acceptable instances, the Alloy Analyzer returned

the instance depicted in Figure 7. This was automatically

transformed from the Alloy Analyzer analysis notation to

UML Object Diagrams by UML2Alloy. The instance shows a

directory (Directory0), which is not part of the directories

hierarchy. Moreover we see that Directory1 is indirectly a

parent of itself (through Directory2).

Figure 7 Instance provided by the Alloy Analyzer

This is clearly an instance that is not desirable. Inspecting

our initial model, we can assume that Constraint 2 needs to be

augmented to express that a directory may not be directly or

indirectly a parent of itself (i.e. we need to express that the

parent association is acyclic). In order to do that we would

need to express transitive closure using natural language in the

NL2Alloy tool. However, we cannot do that since the OCL

itself is missing a transitive closure operation. Instead of

transitive closure the UML standard uses recursion to express

transitive closure. More precisely, in [32 p. 55] recursion is

used to express the allParents() operation to express that a

Generalization relation between UML Classes is acyclic and

directed.

In a similar approach we use an auxiliary self association on

the Directory class as shown in Figure 7. This self association

relates a Directory to all its direct and indirect parents

(through the allParents association end). We replaced

Constraint1, so that instead of the "parent" it uses the

"allParents" reference. After this change, simulating the

system provided only valid instances.

V. EVALUATION

NL2Alloy tool was used to translate 10 examples, similar as

solved in section 4. All examples were containing a UML

mode and different English descriptions of examples to

generate Alloy code. The largest English example was

composed of 23 words and the smallest sentence was

composed of 9 words. We calculated total required (sample)

elements in all 10 examples and extracted (correct, incorrect,

missing) elements from English description. The Calculated

recall, precision and f-values of the solved examples are

shown in table I.

Table I: Evaluatin results of NL to Alloy

Type Nsample Ncorrect Nincorrect Nmissing Rec Prec F-Value

Data 48 43 4 1 89.58 91.48 90.07

The average F-value is calculated 82.78 that is encouraging

for initial experiments. We cannot compare our results to any

other tool as NL-based constraint tool is a novel idea.

However, we can note that other language processing

technologies, such as information extraction systems, and

machine translation systems, have found commercial

applications with precision and recall figure well below this

level. Thus, the results of this initial performance evaluation

are very encouraging and support both NL2Alloy approach

and the potential of this technology in general.

VI. CONCLUSION

This research paper presents a framework for dynamic

generation of the Alloy code from the NL specification

provided by the user. Here, the user is supposed to write

simple and grammatically correct English. The designed

system can find out the required information to generate a

SBVR representation and then transform to a complete SBVR

rule, after mapping with the input UML model. The SBVR

rules are transformed to OCL expressions and finally

translated to Alloy code.

REFERENCES

[1] Vangheluwe, H., Lara, J.Computer automated multi-paradigm

modelling: Meta-modelling and graph transformation. In Winter

Simulation Conference, pages 595 - 603. Dec 2003. New Orleans.

[2] OMG. 2007. Unified Modeling Language (UML), OMG Standard, v.

2.3.

[3] OMG. 2006. Object Constraint Language (OCL), OMG Standard, v. 2.0.
[4] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The

MIT Press, London, England (2006)

[5] Kitchin, D.E., McCluskey, T.L. and West, Margaret M. B vs OCL:
comparing specification languages for Planning Domains. In:

Proceedings of the Fifteenth International Conference on Automated

Planning and Scheduling (ICAPS 2005)
[6] OMG. 2008. Semantics of Business vocabulary and Rules (SBVR),

OMG Standard, v. 1.0.

[7] Michael Azoff , The Benefits of Model Driven Development: MDD in

Modern Web-based Systems, Butler Group, Marc 2008, Available at:
http://www.ca.com/~/media/Files/whitepapers/the-benefits-of-model-

driven-development.pdf

[8] Anastasakis, K., Bordbar, B., Georg, G., and Ray, I. UML2Alloy: A
Challenging Model Transformation, ACM/IEEE 10TH International

Conference on Model Driven Engineering Languages and Systems,

LNCS, Vol. 4735, pages 436-450, 2007
[9] Bajwa, I.S., Lee, M.G. Transformation Rules for Translating Business

Rules to OCL Constraints. in ECMFA 2011- Seventh European

Conference on Modelling Foundations and Applications, Birmingham,
UK, June 2011

[10] Raj, A., Prabhakar, T.V., Hendryx, S. Transformation of SBVR business

design to UML models, Proceedings of the 1st India software
engineering conference, February 19-22, 2008, Hyderabad, India

[11] Cabot J., et al.: UML/OCL to SBVR Specification: A challenging

Transformation, Journal of Information systems
doi:10.1016/j.is.2008.12.002 (2009)

[12] Moschoyiannis, S., Marinos, A., Krause, P.J.: Generating SQL Queries

from SBVR Rules. In RuleML(2010) 128-143
[13] S. Shah, K.Anastasakis, B. Bordbar, From UML to Alloy and Back, 6th

Workshop on Model Design, Verification and Validation (MODEVVA

09) published in ACM International Conference Proceeding Series; Vol.
413, pages 1-10, 2009

[14] Bajwa I., Behzad B., Lee M., OCL Constraints Generation from Natural

Language Specification. EDOC 2010 – 14th IEEE EDOC Conference,
Vitoria, Brazil, pp. 204-213. (2010)

[15] Bajwa, I.S., Lee M.G., Behzad B. SBVR Business Rules Generation
from Natural Language Specification. AAAI 2011 Spring symposium –

AI for Business Agility, San Francisco, USA, pp. 2-8. (2011)

[16] Richters, M. A Precise Approach to Validating UML Models and OCL
Constraints. Universitaet Bremen. Berlin : Logos Verlag, 2002. BISS

Monographs, No. 14.

[17] Toutanova. K., Manning, C.D. 2000. Enriching the Knowledge Sources
Used in a Maximum Entropy Part-of-Speech Tagger. In Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora: 63-70.
[18] Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven

Architecture{Practice and Promise. The Addison-Wesley Object

Technology Se-ries. Addison-Wesley (2003)
[19] Akehurst, D.H., Boardbar, B. et al. SiTra: Simple Transformations in

Java, ACM/IEEE 9TH International Conference on Model Driven

Engineering Languages and Systems, LNCS, Vol. 4199, pages 351-364,
2006

[20] K. Anastasakis, "A Model Driven Approach for the Automated Analysis

of UML Class Diagrams," University of Birmingham, PhD Thesis ,
2009

[21] Mendel, L. Modeling By Example. M.Eng. Thesis. 2007. Dept. of

Electrical Engineering and Computer Science, Massachusetts Institute of
Technology.

[22] Object Management Group. UML Superstructure Specification 2.3.

2009.
[23] Zettlemoyer, L.S., Collins, M. (2009). Learning Context-dependent

Mappings from Sentences to Logical Form. in Joint Conference of the

Association for Computational Linguistics and International Joint
Conference on Natural Language Processing (ACL-IJCNLP), 2009.

[24] Baral, C., Dzifcak, J., Gonzalez, M.A., Zhou, J. 2011. Using Inverse

lambda and Generalization to Translate English to Formal Languages, in
9th International Conference on Computational Semantics (IWCS 2011),

Oxford, UK, pp:35-44

[25] Marie-Catherine de Marneffe, Bill MacCartney and Christopher D.
Manning. 2006. Generating Typed Dependency Parses from Phrase

Structure Parses. In LREC 2006.

[26] NL2Alloy Webpage, Available at: http://www.cs.bham.ac.uk/~bxb/
NL2OCLviaSBVR /NL2Alloy.html

[27] Dennis , G., Seater R., Rayside D., and Jackson D. Automating

Commutativity Analysis at the Design Level. In ISSTA ‟04: Proceedings
of the 2004 ACM SIGSOFT international symposium on Software

testing and analysis, pages 165–174. ACM Press, 2004.

http://www.ca.com/~/media/Files/whitepapers/the-benefits-of-model-driven-development.pdf
http://www.ca.com/~/media/Files/whitepapers/the-benefits-of-model-driven-development.pdf
http://www.cs.bham.ac.uk/~bxb/%20NL2OCLviaSBVR%20/NL2Alloy.html
http://www.cs.bham.ac.uk/~bxb/%20NL2OCLviaSBVR%20/NL2Alloy.html
http://www.cs.bham.ac.uk/~bxb/%20NL2OCLviaSBVR%20/NL2Alloy.html

