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Abstract—Multi-Paradigm Modelling uses models from multiple 

domains to leverage the tools, techniques and expertise provided 

by each of the individual domains. Recent advances in model 

transformation technology allow automated production of one 

model from another to improve the application of multi-

paradigm techniques. Systems development starts with the 

requirements gathering phase, which usually comprises of a 

textual description of the system requirements provided in 

Natural Language (NL).  It is therefore evident that there is a 

clear scope for incorporating NL Processing techniques in Multi-

Paradigm Modeling.  However, using NLP methods pushes the 

boundaries of Multi-Paradigm Modeling to an extreme; indeed 

NLs are inherently ambiguous and open to interpretation. In this 

paper, we propose a novel approach based on standards (such as 

SBVR) that can cope with syntactic and semantic ambiguities in 

NL specifications and can map them to formal languages such as 

Alloy.  The tool implementing our approach is currently the only 

available tool for translating NL specifications to formal 

languages such as Alloy, etc. 
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I.  INTRODUCTION 

Using more than one model of a system, commonly known 

as multi-paradigm modelling [1], has received considerable 

attention in the last decade. Indeed, models of the systems in 

different domains such as software engineering (UML [2], 

OCL [3]), formal methods (Alloy [4], B [5]), and business 

modeling (SBVR [6]) produce different viewpoints which 

allow benefiting from tools, techniques and expertise provided 

by each domain. In addition, recent advances in model 

transformation technology, most notably Model Driven 

Development [7] (MDD), have allowed production of one 

model from another automatically for example OCL/UML to 

Alloy [8], SBVR to OCL [9], SBVR to UML [10], UML/OCL 

to SBVR [11], OCL to B [5], SBVR to SQL [12], etc. Such 

automated transformations has made easy and simple to reuse 

the existing information. 

In NL2Alloy project, we aim to automatically generate 

Alloy from the natural language (NL) specification and use 

that Alloy for analysis of UML class models. For automated 

generation of Alloy from NL specification, a sequence of 

transformations (see Figure 1). First of all NL constraint is 

syntactically and semantically analysed to generate a logical 

representation that can be mapped to formal languages such as 

Alloy. Here, the logical representation is based on the 

Semantic of Business Vocabulary and Rules (SBVR) [6] 

standard. Afterwards, SBVR based logical representation is 

mapped to OCL constraints. Finally, the OCL constraints are 

mapped to Alloy expressions for a UML class model in 

OCL2Alloy transformation [8].    
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Figure 1: From Natural Language Specification to Alloy 

In NL2Alloy transformation, syntactic and semantic 

analysis of NL specification is the key phase. Any error or 

mistake generated at this stage propagates in rest of the stages 

and results in wrong OCL and wrong Alloy. For higher 

accuracy in syntactic analysis, we have used the Stanford 

parser to generate the parse tree and the (typed) dependencies 

and are 84.1% [7] accurate. However, we have identified a 

few cases the Stanford parser is unable to generate (typed) 

dependencies. In natural language processing (NLP), such 

cases are classified as attachment ambiguity (Kiyavitskaya, 

2008), where a prepositional phrase or a relative clause in 

sentence can be lawfully attached to one of the two parts of 

that sentence [10]. An example of such cases is shown in 

Figure 2.  
 

English:  A directory object is assigned to all files with 

directory. 

Typed Dependency (Collapsed):  

      det(Object-3, A-1) 

      nn(Object-3, Directory-2) 

      nsubjpass(assigned-5, Object-3) 

      auxpass(assigned-5, is-4) 

      root(ROOT-0, assigned-5) 

      det(files-8, all-7) 

      prep_to(assigned-5, files-8) 

      prep_with(object-8, Directory-10) 

Figure 2. Typed dependencies generated by the Stanford Parser 

In Figure 2, it is shown that the typed dependencies 

generated by the Stanford parser are wrong such as 

prep_with(files-8, Directory-10). However, the 

correct typed dependency for this example should be 

prep_with(pay-2, Directory-10) to represent the 
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actual meanings of the example i.e. a Directory Object with 

Directory is assigned to all the files. This problem becomes 

more critical when we map these (typed) dependencies to 

SBVR vocabulary and OCL. Wrong dependencies generated 

by the Stanford parser result in wrong SBVR and wrong OCL, 

while the wrong OCL is mapped to wrong Alloy or result in 

incomplete OCL to Alloy transformation. 

This paper has three main contributions. Firstly, we present 

an outline of the NL2Alloy‟s architecture which decouples the 

design of the tool so that NL representation can be 

transformed to Alloy via multiple separate modules. Secondly, 

a novel approach is used to resolve attachment ambiguity in 

NL specification of Alloy. By resolving the attachment 

ambiguity, accurate Alloy code can be generated. Thirdly, we 

present how the NL2Alloy tool can be helpful in analysis of 

models.  

The rest of the paper is structured as follows.  Section 2 

describes the preliminary concepts of the research; section 3 

highlights main phases of NL to Alloy approach and the 

working of NL2Alloy approach is explained with the help of a 

running example in section 4; section 5 describes results and 

evaluation of the tool. The paper ends with a conclusion 

section. 

II. PRELIMINARIES 

The preliminary concepts such as OCL and Alloy are 

described in this section.  

1)  Object Constraint Language (OCL) 

OCL is a formal language used to annotate a UML model 

with the constraints [3]. The typical use of OCL is to represent 

functional requirements using class invariants [3, Section 

7.3.3], pre and post conditions [3, Section 7.3.4] on operations 

and other related expressions on a UML model. OCL supports 

two types of expressions: constraints and pre/post conditions. 

A constraint is a restriction on state or behaviour of an entity 

in a UML model [2]. The OCL constraint defines a Boolean 

expression. If the constraint results true, the system is in valid 

state. OCL is a strongly typed formal specification language 

with precise semantics. All well-formed expressions must 

conform to the rules of OCL. 

2) Alloy 

Alloy [4] is a declarative textual modeling language based 

on first-order relational logic. An Alloy model consists of a 

number of signature declarations, fields, facts and predicates. 

Each signature denotes a set of atoms, which are the basic 

entities in Alloy. Atoms are indivisible (they cannot be divided 

into smaller parts), immutable (their properties remain the 

same over time) and uninterpreted (they do not have any 

inherent properties). Each field needs to be declared under a 

signature and represents a relation between two or more 

signatures. Each field denotes a set of tuples of atoms. Facts 

are declarative statements in first-order logic that define 

constrains on the declared signatures and fields. Predicates are 

in essence parameterized constraints that can be referenced 

from within other predicates or facts. 

The Alloy language is supported by a tool, the Alloy 

Analyzer which supports fully automated analysis of Alloy 

models. The tool can produce random instances of a model 

(simulation functionality). It can also check if the model 

satisfies certain desirable properties. These properties can be 

expressed in the Alloy language and the tool checks if the 

properties are satisfied (assertions checking functionality). 

Moreover it provides support to debug over-constrained 

models by locating the parts of the model that cause the 

inconsistency (UnSAT core functionality) 

The Alloy Analyzer works by transforming an Alloy model 

to a Boolean expression that can be analysed by SAT solvers 

embedded within the Alloy Analyzer. A user-specified scope 

on the model elements is used to bound the domain. The scope 

is a positive integer number, which limits the number of atoms 

for each signature in an instance of the system that is analysed 

by the solver. If an instance that violates the assertion is found 

within the scope, the assertion is not valid. However, if no 

instance is found, the assertion might be invalid in a larger 

scope. For more details on the notion of scope, please refer to 

[4, Sec. 5]. 

Alloy is ideal for analysing structural properties of systems 

[4] and can therefore be considered a natural choice for 

statically analysing UML Class Diagrams. In particular, 

existing work has transformed UML and OCL to Alloy 

manually for analysis. For example, Dennis et al. [35] use 

Alloy to expose hidden flaws in the UML design of a radiation 

therapy machine.  

3) UML2Alloy 

UML2Alloy works by automatically transforming UML 

Class Diagrams enriched with OCL constraints into an Alloy 

model. This Alloy model can then be automatically analysed 

using the Alloy Analyzer.  There are clear similarities between 

UML Class Diagrams and Alloy. From a semantic point of 

view both Alloy and UML models can be interpreted by sets 

of tuples [4], [25]. Alloy is based on first-order logic and is 

well suited for expressing constraints on Object-Oriented 

models. Similarly, OCL has extensive constructs for 

expressing constraints as first-order logic formulas. In spite of 

such similarities, the UML and the Alloy have some 

fundamental differences [26]. For example, Alloy makes no 

distinction between sets, scalars and relations, while the UML 

distinguishes between the three. To bridge some of those 

semantic differences between UML and Alloy model elements 

a UML profile for Alloy has been developed [26].  

III. NL2ALLOY: SKETCH OF THE SOLUTION 

To address the above challenges we have integrated our 

existing tools and developed new modules to create a multi-

paradigm NL-based approach that generates Alloy code via 

UML, SBVR and OCL. The NL to Alloy transformation is 

performed by using a chain of transformations as NL/UML to 

SBVR, SBVR to OCL, and OCL to Alloy. NL2Alloy 

architecture is shown in Figure 3.  

NL2Alloy approach takes two input documents: an English 

text document and a UML model document. Then the tool 

produces and SBVR representation. This representation is 



used by the user to double-check if the correct English is 

produced. This is a step towards curbing the complexities 

associated to the ambiguities of the Natural Languages []. This 

is the only semi-automated part of our approach. The 

remaining steps of the transformation are fully automated.  

SBVR is transformed into OCL and then into the Alloys 

module. These steps are discussed in the following chapters.   

It is possible to produce the UML diagram via one of the 

many Class diagram extraction tools. However, this step, 

which is a minor extension of work remains a task for future.  
 

 

 

 

 

 

 

 

 

Figure 3. Architecture of NL2Alloy 

1)  NL to SBVR Transformation 

This is the most important phase of NL2Alloy 

transformation as we generate a semantically unambiguous 

representation such as SBVR business rules from NL 

specification of Alloy code. To overcome ambiguity of a 

natural language, basic natural language processing (NLP) 

(lexical analysis [27], syntax analysis [35], and semantic 

analysis [33]) phases are applied to understand the actual 

meanings of the NL statement and then map NL statement to a 

SBVR statement. Following sections explains the 

transformation of NL text to SBVR rules. 

a) Lexical Analysis. First phase in analysis of natural 

language specification of Alloy text is lexical analysis. 

Following steps are performed to extract lexical information: 

i. POS Tagging. In this step, the input English text is 

tokenized and part-of-speech (POS) tagging is performed 

using the Stanford POS tagger (Toutanova, 2003).  
 

English: There is exactly one directory that has no parent. 

Tags:    [A/DT] [directory/NN] [object/NN] [is/VBZ]  

             [assigned/VBN] [to/TO] [all/DT] [files/NNS]  

              [with/IN] [directory/NN] [./.] 

Figure 4. Part-of-Speech tagged text 

ii. Lemmatization. In lemmatization phase, the inflectional 

endings are removed and the base or dictionary form of a word 

is extracted, which is known as the lemma. We identify lemma 

(base form) of the tokens (all nouns and verbs) by removing 

various suffixes attached to the nouns and verbs e.g. in Figure 

4, verb “assigned” is analyzed as “assign+ed”. Similarly, the 

noun “files” is analyzed as “file+ s”. 

b) Syntactic Analysis. We have used the Stanford parser to 

parse the pre-processed English text. The Stanford parser is 

84.1% accurate (Cer, 2010). However, the Stanford parser is 

not capable of voice-classification. Hence, we have developed 

a small rule-based module classifies the voice in English 

sentences. In syntax analysis phase, three steps are performed 

as below: 

i. Generating Syntax Tree. We have used the Stanford 

parser to generate parse tree and (typed) dependencies 

(Marneffe, 2006) from NL text. To address the identified cases 

of attachment ambiguity, discusses in the Section 1, we need 

the context of the NL statement that is a UML class model is 

the context of the Alloy code. Therefore, we have used the 

UML class model shown in Figure 6 to correct dependencies. 

We have used the given relationships in the UML class model 

such as the associations (directed and un-directed) to deal with 

the attachment ambiguity. For example in Figure 6, it is shown 

that „Bonus‟ is associated to „Pay‟ and there is no association 

in Variable and Memory classes. By using this associations 

among these classes, we can correct the dependency as 

prep_with(files-8, Directory-10)instead of the 

prep_with(object-8, Directory-10) identified by the 

Stanford Parser. 
 

Typed Dependency (Collapsed):  

      det(Object-3, A-1) 

      nn(Object-3, Directory-2) 

      nsubjpass(assigned-5, Object-3) 

      auxpass(assigned-5, is-4) 

      root(ROOT-0, assigned-5) 

      det(files-8, all-7) 

      prep_to(assigned-5, files-8) 

      prep_with(object-8, Directory-10) 

Figure 5. Corrected (typed) dependencies  

 

ii. Voice Classification. In Alloy generation, an active voice 

sentence is treated differently from a passive voice sentence. 

The Stanford Parser does not classify the voice of English 

sentences. Various grammatical features manifest passive-

voice representation such as the use of past participle tense 

with main verbs can be used for the identification of a passive-

voice sentence. Similarly, the use of „by‟ preposition in the 

object part is also another sign of a passive-voice sentence. 

However, the use of by is optional in passive-voice sentences.  

c) Semantic Analysis. In semantic analysis phase, we aim 

to understand the exact meanings of the input English text; to 

identify the relationships in various chunks and generate a 

logical representation. For semantic analysis English 

constraints, we have to analyze the text in respect of particular 

context such as UML class model. Our semantic analyzer 

performs following three steps to identify relations in various 

syntactic structures: 

i. Shallow Semantic Parsing: In shallow semantic parsing, 

the semantic or thematic roles are typically assigned to each 

syntactic structure in a English sentence. We use SBVR 

vocabulary as the target semantic roles due to the fact that the 

mapping of SBVR vocabulary to OCL is easy and 

straightforward. We have identified mappings of English text 

elements to SBVR vocabulary (see Table 1). 
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Table 1: Mapping class model to English 

English Text elements SBVR Vocabulary 

Common Nouns Object Type 

Proper Nouns Individual Concept 

Generative Noun, Adjective Characteristic 

Action Verbs Verb Concepts 

Subject + verb + Object Fact Type  
 

Following is the procedure used for semantic role labeling 

of English constraints: 

To identify predicates, first of all system identifies the 

words in the sentence that can be semantic predicates or 

semantic arguments. In English text, a predicate can be in the 

form of a simple verb, a phrasal verb or a verbal collocation. 

Similarly, the predicate arguments can be nouns in subject and 

object part of a sentence. In English, nouns can have pre-

modifiers such as articles (determiners) and can also have 

post-modifiers such as prepositional phrases, relative (finite 

and non-finite) clauses, and adjective phrases. 

Once the predicates are identified, semantic roles are 

assigned by using the mappings given in Table 2. Role 

classification is performed as the syntactic information (part of 

speech and syntactic dependencies). The output of this phase 

is shown in Figure 7. 

 

A  Object_Type[directory object] verb_concept[is assigned] to all 

Object_Type [files] with Object_Type [directory].  

Figure 7. Semantic roles assigned to input English sentence 

ii. Deep Semantic Analysis. The computational semantics 

aim at grasping the entire meanings of a natural language 

sentence, rather than focusing on text portions only. For 

computational semantics, we need to analyze the deep 

semantics of the input English text. The deep semantic 

analysis involves generation of a fine-grained semantic 

representation from the input text. Various aspects are 

involved in deep semantics analysis. However, we are 

interested in quantification resolution (see Figure 8) and 

quantifier scope resolution: 
 

i. In English constraints, the quantifiers are most 

commonly used. We not only cover all two traditional types 

(Universal and Existential) of quantifications in FOL but also 

we have used two other types: Uniqueness and Solution 

quantification.. 

ii. Besides, the quantification resolution, we also need to 

resolve the scope of quantifiers in input English text.. 

Moreover, the multiplicity given in the target UML class 

model also helps in identifying a particular type of 

quantification. For example, in figure 7, the multiplicity 

„0…1‟ specifies that customer can get at most one credit card. 

This will be equal to At-most n quantification in SBVR. 
 

Univeral_Quantification[A] Object_Type[directory object] verb_concept[is 

assigned] to Univeral_Quantification[all] Object_Type [files] with Object_Type 

[directory].  

Figure 8. Semantic roles assigned to input English sentence 

iii. Semantic Interpretation: After shallow and deep 

semantic parsing, a final semantic interpretation is generated 

that is mapped to SBVR and OCL in later stages. A simple 

interpreter was written that uses the extracted semantic 

information and assigns an interpretation to a piece of text by 

placing its contents in a pattern known independently of the 

text. Figure 9 shows an example of the semantic interpretation 

we have used in the NL to OCL approach: 
 

    (assign 

(object_type = (∃=1X ~ (DirectoryObject ? X)) AND  

(object_type = (∃=1Y ~ (Directory? Y))) 

           (object_type = (∀Z ~ (Files ? Z)))) 

Figure 9. Semantic roles assigned to input English sentence. 

2) SBVR to OCL Transformation 

Once we get the SBVR based logical representation of 

English constraint, it is mapped to the OCL by using model 

transformation technology using SiTra. A set of model 

transformation rules were used for SBVR to OCL 

transformation (Bajwa, 2011).  For model transformation of 

NL to OCL, we need following two things to generate OCL 

constraints: 
 

i. Select the appropriate OCL template (such as invariant, 

pre/post conditions, collections, etc) 

ii. Use set of mappings that can map source elements of 

logical form to the equivalent elements in used OCL 

templates.  

a) OCL Templates: We have designed generic templates 

for common OCL expressions such as OCL invariant, OCL 

pre-condition, and OCL post-condition. User has to select one 

of these three templates manually. Once the user selects one of 

the constraints, the missed elements in the template are 

extracted from the logical representation of English constraint. 

Following is the template for invariant:  

In the all above shown templates, elements written in 

brackets „[ ]‟ are required. We get these elements from the 

logical representation of English sentence. Following 

mappings are used to extract these elements: 

i. UML-Package is package name of the target UML class 

model.  

ii. UML-Class is name of the class in the target UML Class 

model and UML-Class should also be an Object Type in the 

subject part of the English Constraint. 

iii. Class-Op is one of the operations of the target class (such as 

context) in the UML Class model and Class-Op should also 

be the Verb Concept in English constraint. 

iv. Param is the list of input parameters of the Class-Op and 

we get them from the UML class model. These parameters 

should be of type Characteristics in English constraint.  

v. Return-Type is the return data type of the Class-Op and we 

get them from the UML class model. The return type is the 

data-type of the used Characteristic in English constraint 

and this data type is extracted from the UML class model.  

vi. Body can be a single expression or combination of more 

than one expression. The details of Body are given in the 

next section. 



3)  OCL to Alloy Transformation  

The Alloy module maps an OCL expression to Alloy code 

by using model transformation that incorporates the mapping 

rules between OCL and Alloy. Every OCL invariant 

expression maps to an Alloy fact statement. OCL conjunction, 

disjunction and negation statements (i.e. and, or, not) have a 

direct mapping to the Alloy conjunction (&&), disjunction (||) 

and negation (!) operators.  Most of the OCL operations on 

collections have a corresponding Alloy expression. 

For example, the forAll() and exists() operations can be 

mapped to the all and some Alloy expressions respectively. 

Similarly the size() OCL operation can be represented by the 

Alloy set cardinality operator (#). The isEmpty() and 

notEmpty() operations are expressed using the no and some 

Alloy keywords. More detailed information on the OCL to 

Alloy transformation can be found in [30]. 

IV. A RUNNING EXAMPLE 

To explain the presented approach, we have applied our 

approach to the following NL text: 

Consider a model of file system in which every entity is a 
DirectoryObject. A DirectoryObject could be a File or a 
Directory. Each Directory may include a number of 
DirectoryObjects, which are the entries of the directory. If a 
DirectoryObject has a Directory as its entity, it is its parent. 
A DirectoryObject is assigned to all Files with Directory. 
There is a root Directory without any parents. A directory 
cannot not be a parent of itself. 

The above example was used described in Section 3. Figure 

6 UML Class Diagram of a Simple File System Model depicts 

a UML class diagram of the file system. This UML Class 

Diagram model was generated manually from the text 

description, but tools like CM-Builder [] can be used to 

automate this task. 
 

 
Figure 6 UML Class Diagram of a Simple File System Model 

In the following we present the transformation of the NL 

statements to SBVR, then to OCL and finally to Alloy. 
 

 

Constraint1: 

English: There is exactly one directory that has no parent. 

SBVR: It is obligatory that there is exactly one directory 

that has no parent. 

OCL: context Directory  
inv oneRootDirectory : Directory.allInstances() ->      

select ( d : Directory | d.parent -> isEmpty() ) ->   

      size() = 1 

Alloy:  
fact { Directory_oneRootDirectory[]} 

         pred Directory_oneRootDirectory[]{ 

   # { d: Directory | no d . parent } = 1}  

 

 

Constraint2: 

English: A directory may not be a parent of itself. 

SBVR: It is possibility that a directory may not be a parent 

of itself. 

OCL: context Directory  

     inv: self.parent -> excludes (self) 

Alloy: 
   fact{all self: Directory | 

Directory_notAncestorOfItself[ self ] } 

pred Directory_notAncestorOfItself[self: Directory]{ 

self !in self.parent }  
 

1) Analysis 

The analysis of the model can be carried out from within the 

NL2OCL, using the UML2Alloy and the Alloy Analyzer 

APIs. More specifically, the UML class diagram and the 

automatically generated OCL constraints were automatically 

transformed to Alloy using the API of the UML2Alloy.  

Once the Alloy model is automatically generated, we can 

analyse it with the help of the Alloy Analyzer API. First we 

try to simulate the model with a scope of [31]. This means that 

the Alloy Analyzer will attempt to find instances, which 

conform to the model and its constraints using combinations 

of up to four File and Directory instances. After producing a 

number of acceptable instances, the Alloy Analyzer returned 

the instance depicted in Figure 7. This was automatically 

transformed from the Alloy Analyzer analysis notation to 

UML Object Diagrams by UML2Alloy. The instance shows a 

directory (Directory0), which is not part of the directories 

hierarchy. Moreover we see that Directory1 is indirectly a 

parent of itself (through Directory2).  

 

 
Figure 7 Instance provided by the Alloy Analyzer 

This is clearly an instance that is not desirable. Inspecting 

our initial model, we can assume that Constraint 2 needs to be 

augmented to express that a directory may not be directly or 

indirectly a parent of itself (i.e. we need to express that the 

parent association is acyclic). In order to do that we would 

need to express transitive closure using natural language in the 

NL2Alloy tool. However, we cannot do that since the OCL 

itself is missing a transitive closure operation. Instead of 

transitive closure the UML standard uses recursion to express 

transitive closure. More precisely, in [32 p. 55] recursion is 

used to express the allParents() operation to express that a 

Generalization relation between UML Classes is acyclic and 

directed.  

In a similar approach we use an auxiliary self association on 



the Directory class as shown in Figure 7. This self association 

relates a Directory to all its direct and indirect parents 

(through the allParents association end). We replaced 

Constraint1, so that instead of the "parent" it uses the 

"allParents" reference. After this change, simulating the 

system provided only valid instances.  

V. EVALUATION  

NL2Alloy tool was used to translate 10 examples, similar as 

solved in section 4. All examples were containing a UML 

mode and different English descriptions of examples to 

generate Alloy code. The largest English example was 

composed of 23 words and the smallest sentence was 

composed of 9 words. We calculated total required (sample) 

elements in all 10 examples and extracted (correct, incorrect, 

missing) elements from English description. The Calculated 

recall, precision and f-values of the solved examples are 

shown in table I. 

Table I:  Evaluatin results of NL to Alloy 

Type Nsample Ncorrect Nincorrect Nmissing Rec Prec F-Value 

Data 48 43 4 1 89.58 91.48 90.07 
 

The average F-value is calculated 82.78 that is encouraging 

for initial experiments. We cannot compare our results to any 

other tool as NL-based constraint tool is a novel idea. 

However, we can note that other language processing 

technologies, such as information extraction systems, and 

machine translation systems, have found commercial 

applications with precision and recall figure well below this 

level. Thus, the results of this initial performance evaluation 

are very encouraging and support both NL2Alloy approach 

and the potential of this technology in general. 

VI. CONCLUSION  

This research paper presents a framework for dynamic 

generation of the Alloy code from the NL specification 

provided by the user. Here, the user is supposed to write 

simple and grammatically correct English. The designed 

system can find out the required information to generate a 

SBVR representation and then transform to a complete SBVR 

rule, after mapping with the input UML model. The SBVR 

rules are transformed to OCL expressions and finally 

translated to Alloy code. 
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