
Int. J. Business Process Integration and Management, Vol. 4, No. 1, 2009 5

Copyright © 2009 Inderscience Enterprises Ltd.

A methodology for domain-specific business
process modelling and implementation

Steen Brahe*
Danske Bank,
Holmens Kanal 2-12,
1092 Copenhagen K, Denmark
E-mail: stbr@danskebank.dk
*Corresponding author

Behzad Bordbar
School of Computer Science,
University of Birmingham,
Edgbaston, Birmingham,
B15 2TT, UK
E-mail: B.Bordbar@cs.bham.ac.uk

Abstract: Design and implementation of a business process in an enterprise often requires three
groups of experts: business analysts, solution architects and developers. They collaborate to
transform a high-level business process to a final executable system based on e.g. BPEL. Since
enterprises often utilise their own domain concepts and use technologies in their own specific
ways, standard modelling notations and transformations are insufficient. In this paper, we present
a methodology to support and semi-automate the transformation of models into an
implementation. It advocates the use of a set of domain-specific modelling languages explicitly
designed for an enterprise where each language is tailored for the use of one of the three groups
of experts. This enables creation of precise and machine-readable models by using domain
concepts familiar to the experts. Further, the domain knowledge required for transforming models
from one language to another is captured as reusable transformation patterns.

Keywords: model driven development; MDD; domain-specific modelling languages; DSML;
transformations; patterns; business process management; service composition; SOA; BPEL.

Reference to this paper should be made as follows: Brahe, S. and Bordbar, B. (2009)
‘A methodology for domain-specific business process modelling and implementation’, Int. J.
Business Process Integration and Management, Vol. 4, No. 1, pp.5–17.

Biographical notes: Steen Brahe is an Industrial PhD candidate at Danske Bank and IT
University of Copenhagen. He has worked within the software industry for several years,
particularly with SOA, MDD and BPM. His primary research topic is model driven development
of business processes.

Behzad Bordbar is a Lecturer at the School of Computer Science, Birmingham University, UK.
His current research is focused on model driven development techniques and their applications to
large distributed systems.

1 Introduction

Information technology is undergoing a rapid change of role
from being a mere provider of support for the business, to
an active role in driving the revenue and profit (Wagner et
al., 2006). Enterprises are beginning to adopt web services
to become better equipped to evolve and adapt to changes in
their environments (Alonso et al., 2004). In particular, the
speed and precision in adapting an IT infrastructure to
support a new business idea are crucial factors. To transfer a
business idea into an IT system often requires a

collaborative effort of a team of experts, many of whom
with no or little IT expertise.

A common scenario is the implementation of a business
process in web services, which mostly involves three groups
of people: business analysts, solution architects and system
developers. Firstly, business analysts must describe the
business process; a set of logically related tasks performed
to achieve a defined business outcome. A task is an atomic
activity handled by either an application or a human. Such
descriptions which are mostly captured in informal
representations (e.g., in English and graphical depictions)

6 S. Brahe and B. Bordbar

must be refined by a solution architect to incorporate
information about the IT infrastructure and systems
supporting the company. Finally, the development team
further refines the design to a format suitable for the
creation of executable code such as BPEL (BPEL, 2003).

This paper presents new methodology and framework
for business process modelling and implementation that
aims at automating the repetitive part of the above process,
resulting in shorter implementation time and better quality
of the implemented process. As a proof of concept, a
prototype tool has been developed to implement the
methodology and is described in the paper.

The presented framework relies on domain-specific
modelling languages (DSML) for capturing business
processes at different abstraction levels. In this context, an
enterprise defines and utilises its own modelling languages
for modelling its business processes. This builds on Brahe
and Østerbye (2006), who describe a method of using
DSMLs for specifying business processes using the UML
profiling mechanism and activity diagrams (UML2.0,
2004). The argument is that models based on enterprise
specific languages are more precise compared to models
based on a general process modelling language like BPMN
(White, 2006).

A major challenge for the automation is that, since, a
model created by a business analyst is at a higher level of
abstraction, it lacks information regarding the architecture
of the system. Such extra information must be incorporated
during the transformation from the language of the business
analyst to the language of the solution architect. A similar
situation arises when transforming from the language of the
architects to the language of the developers. To overcome
the above obstacle, the proposed methodology and
framework rely on design patterns (Gamma et al., 1994; van
der Aalst et al., 2003) to capture knowledge required for
transforming a model from one abstraction level to another.
In this context, patterns are parameterised. Hence, to
conduct our transformations, the value of parameters must
be specified. This poses a new challenge, as the
conventional model transformation methods in model
driven development (MDD) must be extended to handle the
parameters. We shall describe a prototype software tool that
implements our approach by incorporating the value of
parameters and conduct the transformation automatically.

We illustrate our methodology and framework by using
an example of mortgage approval process in an imaginary
enterprise called ‘Estate Bank’. We define three modelling
languages each tailored for the use of a group of experts
within Estate Bank and illustrate that the process of
‘implementing a new business idea’, which starts from a
design created by the business analysts and terminates in the
final code, can be seen as a series of model transformations.
Firstly, of models created in the language designed for the
business analysts to the language for the solution architects,
and subsequently, from the language for the solution
architects to the language for the developers.

The paper is structured as follows. Preliminary
information is given in Section 2. Section 3 describes the

challenges that we address in the paper and introduces our
methodology. It is followed by a detailed description of the
methodology in Section 4. Section 5 applies the
methodology to the mortgage process in Estate Bank.
Section 6 describes a prototype implementation, which is
developed on the basis of the presented framework.
Section 7 contains related work and Section 8 includes
concluding remarks and future work.

2 Preliminaries

MDD (Stahl et al., 2006; Kleppe et al., 2003) provides an
approach to application design and implementation, where
systems and applications are specified through models
based on meta-model representations. A meta-model for a
specific domain is also called a DSML as it can be used as a
language for creating models.

The model driven architecture (MDA) initiative (MDA,
2007) is an implementation of the general MDD approach
for developing software around a set of standards like
Meta-Object Facility (MOF), UML, CWM, etc. UML is set
of visual languages for specifying, constructing and
documenting software systems (UML2.0, 2004). One of
these, the activity diagram, has modelling of organisational
processes as one of its purposes. UML is defined by the
MOF. MOF is a meta-meta model because it is used for
defining other meta-models like UML. When using MDA
standards, there are two possible approaches for creating a
DSML. The first approach is the definition of a new
language based directly on MOF. Such a language becomes
an alternative to UML. The second approach is based on
specialisation of the existing UML entities using UML
profiles. The intention of profiles is to give a
straightforward mechanism for adapting UML with
constructs that are specific to a particular domain, platform
or method. Business process models are sufficiently similar
to the fundamental abstractions of activity diagrams.
Therefore, we will use UML activity diagrams and profiles
to describe DSMLs defined throughout the paper. However,
the presented method is independent of the use of UML and
profiles.

Central to MDD is the automated model transformation.
In this paper, we shall deal with transformations between
models compliant to a UML profile of activity diagrams. In
such transformations, a source model, ms must be
transformed to a target model, mt, as depicted in Figure 1.
Source and target represent meta-representation of the
models ms and mt, respectively. A transformation definition
includes a set of transformation rules that specify mapping
between elements in the source and target language. Several
tools and technologies exist for defining meta-models and
transformation rules. The Eclipse Modelling Framework
(EMF), an implementation of a subset of the MOF
specification, is widely used for creating tool based
meta-models in Eclipse. The Eclipse UML model, which is
used by the prototype in this paper is, e.g., implemented
using EMF. Transformation rules can be specified in
specialised transformation languages as ATL (Jouault and

 A methodology for domain-specific business process modelling and implementation 7

Kurtev, 2005) and QVT (QVT, 2007) or in, e.g., plain Java.
The transformation rules are executed by a transformation
engine, which generates the target model from the source
model.

Figure 1 MDA model transformation (see online version for
colours)

target

Conforms To

Transformation
Definition

ms mt

source
meta representation
of a DSML: UML
profile for Activity
Diagram

model
Transformation

Conforms To

Transformation rules

3 Domain-specific customised tools

In this section, we first describe challenges of using
standard modelling notations, tools and transformations for
an enterprise that requires its own modelling notations and
uses implementation technology in specific ways. Then, we
introduce our methodology which addresses these
challenges by combining DSML and MDD techniques.

3.1 Challenges

Various software development methodologies identify the
role of the three groups of experts introduced in Section 1
and provide support for them. For example, using Rational
Unified Process (Kroll and Kruchten, 2003), the business
analyst models the business process in the inception phase
of the project, while, the architect and the developer create
their models at the elaboration and construction phases,
respectively.

An enterprise that has defined it own development
process and domain concepts often has a development
process as illustrated in Figure 2. Transformation of models
and generation of code is handled manually by humans.
Three challenges exist that have to be addressed with the
current approach to achieve an efficient development
process:

1 How to define precise models. Domain-specific
concepts cannot be modelled precisely in a general
modelling language as, e.g., BPMN (White, 2006).
Such languages only contain general modelling
concepts. Furthermore, information related to a
domain-specific concept in form of attribute values
may be required for precise models. For instance, a
business analyst may often have to model a risk task
and provide attribute values such as the kind of risk
calculation to be executed and a responsible
department.

2 How to achieve automated model transformations. The
transformation of a business model or an architectural
model requires domain-specific knowledge from an
architect or a developer. Such domain knowledge about
how to transform a model from one abstraction level to
the next must therefore be captured by tools to allow
automatic model transformations.

3 How to refine models without losing the additional
information at next transformation. Additional
information has to be provided by the architect and the
developer when they create their models. This
information must be persisted to be used by future
model transformations.

Figure 2 An enterprise-specific development process without
customised tool support (see online version for colours)

Business
Model

Architectural
Model

Implementation
Model

Code

Business analyst Solution Architect System Developer

Interprets

creates

creates Interprets
Refines with

additional data

Domain
Knowledge

creates

Refines with
additional data

Domain
Knowledge

G
enerate

Now, let us look into how our methodology may address
these challenges.

3.2 Combining DSML and model transformations

Most recently the use of DSML has received considerable
attention. The underlying idea is to capture knowledge and
expertise within an enterprise in precise languages for the
different groups of experts. The use of a DSML enables

• creation of precise, machine-readable models
applicable for automated model transformations

• customised tool support to enhance usability and
performance by, e.g., allowing specific wizards for data
collection and validation rules

• easier creation of models as the experts can use domain
concepts and graphical representations familiar to them.
Such models will also be easier to understand.

Hence, the use of DSMLs addresses the first challenge
described above.

Our research builds on the idea of combining DSML
and MDD transformation techniques and provides a
methodology for developing a chain of languages and tools
to support the collaborative effort of the three groups of
experts with the goal to generate an implementation of the
business process. In this context, MDD is now widely
accepted; methodologies such as business-driven
development (Mitra, 2005) advocate the use of model
transformations to develop IT solutions that directly satisfy
modelled business requirements.

An outline of our methodology is depicted in Figure 3.
A business analyst produces a model of the business process

8 S. Brahe and B. Bordbar

captured in business analyst language. An automatic
transformation that incorporates domain knowledge
previously held by the solution architect is able to transform
the model into an architectural model defined in the solution
architect language. The transformation also uses another
model which contains additional information required for
completing the architectural model. This information was
previously entered directly into the architectural model
when the solution architect refined it. By merging these two
models into the architectural model, the solution architect
can be sure that the refinement information is not lost when
executing the transformation next time. Similarly, a
transformation is defined to generate the implementation
model based on the architectural model and additional
information required for the implementation. Code can be
generated directly from the implementation model.

Figure 3 Using several DSMLs in a MDD process (see online
version for colours)

Business
Model

Architectural
Model

Implementation
Model

Business analyst Solution Architect System Developer

Additional
Information

Additional
Information

Transformation Transformation

Code

G
enerate

Defines Defines

Executes Executes

While business process models capture the behaviour of the
business, information models capture static information
related to it. The business analyst needs, e.g., to know about
the organisation structure, the architect needs information
about process metrics and the developer needs details about
transaction scopes. The additional information models in
Figure 3 refer to models of such information. In this paper,
we restrict the use of information models to capture domain
knowledge required for implementing a business process.

To underpin the methodology Brahe and Østerbye
(2006) presents an approach and introduces two Eclipse
based tools, ADModeler and ADSpecializer, for creating
such languages and additional editors. Hence, for the
method depicted in Figure 3 we are able to create DSMLs
and supporting tools for each of the three groups of experts.
The primary focus of this paper is to deal with the last two
challenges presented above by defining a transformation
framework that allows definition of customised model
transformations and required additional information.

4 A methodology for customising languages and
transformation

In this section, we present a framework for addressing the
last two challenges previously described. The framework
enables capturing knowledge required for the
transformation of a model from a high-level to a lower-level
of abstraction by introducing reusable patterns into the
transformation mechanism. Derived from the work by

Alexander (1964) on architectural patterns and now
commonplace in software engineering (Gamma et al.,
1994), they have been embraced by the workflow and
business process community (Eriksson and Penker, 2000;
van der Aalst et al., 2003). A pattern describes a recurring
problem that occurs in a given context and based on a set of
guiding principles, suggests a solution. However, using
conventional patterns would not be sufficient to address the
third challenge described above; we shall introduce the
notion of parameters into the patterns and their use in the
model transformation. Hence, we shall use the phrase
parameterised patterns (MacDonald et al., 2002) to
distinguish such patterns from high level patterns described
by Gamma et al. (1994). We use ‘patterns’ to describe
recurring solutions within one enterprise. This is in contrast
to the well-known and general patterns described by
Gamma et al. (1994) and van der Aalst et al. (2003). We
shall include three pieces of information in each
parameterised pattern: a pattern template, some additional
parameters and transformation rules. A pattern template
capture the overall structure of a task type in the source
language represented at a lower level of abstraction and is
defined in the target language. In the context of this paper, a
structure is defined as a number of tasks connected within a
control flow. Additional parameters specify information
required for fitting and customising the pattern template for
a specific task. Transformation rules use values of the
additional parameters and attribute values of the task to
change and fit the pattern template into the target model.

The use of parameterised patterns will capture the
knowledge of how to transform a domain-specific task type
from one abstraction level to another and hence, addresses
the two challenges. Having defined a parameterised pattern
for a specific task type, tools can now collect the required
information. This information has to be provided by the
developer or architect, but they are not required to
remember or know details about the patterns and which
additional parameters are required, as the tool can prompt
the user to include such information. A model
transformation framework can be used to execute the
transformation of a model to the lower abstraction level.
Hence, the repetitive manual part of the development
process is eliminated, resulting in faster development cycle
and better quality models and implementation.
Consequently, the challenge of modelling and implementing
business processes then becomes one of identifying and
defining domain-specific task types, DSMLs and
transformations between different DSMLs.

Now, we shall introduce a transformation framework
based on two DSMLs and knowledge captured by patterns,
rules and additional transformation data. The framework is
applicable for control flow based DSMLs like, e.g., UML
activity diagrams extended by UML profiles. Figure 4
depicts an outline of our approach for conducting model
transformation between different DSMLs, which results in
refinement of a model to a lower level of abstraction.

 A methodology for domain-specific business process modelling and implementation 9

Figure 4 Methodology with a pattern based model
transformation between two DSMLs (see online
version for colours)

target
Ls Lt

E1

E2

T1

T2

T

Conforms To

...

Task types at
the source

S1

S2

...

Created structure
at the destination

...

Transformation
Definition

Pattern Templates
PT1, PT2, ...

Value of Additional Parameters
VoAP1, VoAP2, … added

ms mt

source

Additional Parameters
AP1, AP2, ...

Conforms To
Transformation

Transformation rules

Let us consider a source DSML Ls and a target DSML
language Lt. Suppose that Ls consists of a number of
domain-specific task types E1, E2, ….The aim is to
transform a source model ms defined in the language Ls to a
target model mt defined in the language Lt. To achieve this,
a general transformation definition T, is used. It recursively
traverses the source model to produce the target model. It
does not contain any transformation rules. The
transformation definition T uses a number of
subtransformations Tj that contain the transformation rules.
A subtransformation is responsible for the transformation of
one task type Ej in the source model to a structure Sj in the
target language Lt. When transforming a source model ms
the global transformation T orchestrates and coordinates
which subtransformations should be executed at the
different tasks contained in ms, collects all generated
structures by the subtransformations and connects the
generated structures together to the target model mt. During
the transformation, values of additional parameters, VoAPj,
must be provided. These values are instances of the
metadata descriptions of required additional parameters APJ
that are required for the different subtransformations.

A subtransformation Tj captures and represents a
parameterised pattern and hence, it represents
domain-specific knowledge of how to represent a task type
at a lower level of abstraction in the target language Lt. This
makes the sub transformations the most essential part of the
transformation. The sub transformation Tj is defined by the
following elements:

1 Pattern template PTj. A model template defined in the
target language Lt. The model template represents the
structure of the source task Ej transformed to Lt.

2 Additional parameters APj. When transforming a
source task Ej to a lower abstraction level Lt, additional
information may be required to enrich and customise
the pattern template so, the structure Sj defined in Lt can
be generated.

3 Transformation rules. Rules that specify how the
pattern template PTj is customised into the structure Sj.
The rules make use of values of additional parameters
VoAPj and values of attributes at the source task Ej.

Next, we shall describe the methodology with the help of an
example of a mortgage approval process in the imaginary
‘Estate Bank’.

5 Example of a mortgage process

Figure 5 depicts various tasks in a mortgage process as it is
handled in Estate Bank via a UML activity diagram. The
first task is to collect the applicant’s personal details and
information (GetCustomerInfo). Then, a number of parallel
tasks occur:

• the applicant’s details and her/his financial situation are
verified with the help of a credit reference agency
(CreditReferenceAgency)

• details of the property, including the property
ownership status, are verified (CheckHouse)

• if the applicant is a current customer of the bank an
internal credit check is made (CheckCredit).

In case of a major problem with the house or the applicant’s
financial/credit status, the application is rejected and a
rejection letter is sent to the customer (SendReject). A risk
analysis is conducted (AccessRisk) after the three tasks have
been completed. If the risk is high, the decision about
approval or rejection is handed to a manager
(SendToManager). If the risk is low the requested loans are
created (CreateLoans) and a confirmation letter is sent to
the customer (SendConfirmation).

To illustrate the different DSMLs and how to map from
one model to the next, we shall apply our methodology to
the CreateLoans task from Figure 5:

CreateLoans task

When a customer applies for a mortgage, it is possible for
him/her to apply for more than one loan for the same
property. For example, the mortgage can be divided into
several smaller loans, each with a specific interest rate and
financial terms. As a result, when the business analyst
defines a CreateLoan task, the description may be along the
following lines: ‘…several loans should be created
depending on the information provided on the mortgage
application by the customer…’

10 S. Brahe and B. Bordbar

Figure 5 Activity diagram of the mortgage approval process
(see online version for colours)

GetCustomerInfo

CheckHouse CrediitReference
Agency CheckCredit

SendReject

AssessRisk

CreateLoans

SendToManager

SendConfirmation SendRejection

[Yes]

[No]

[No]

[Yes]

[No] [Yes]

[Yes]

[No]

Problem with house?

Bad payer?

High Risk?

Approved?

The solution architect uses this description to infer that the
services/applications responsible for the creating loan
should be executed iteratively, until all loans requested on
the application form are created. In addition, the solution
architect must obtain the name and version of the service
responsible for creating a loan and add this information to
the architectural model.

The system developer interprets the architectural model
for creating an implementation model based on BPEL. The
developer knows that an iteration of multiple tasks at the
architectural level is implemented as an assign node
followed by a loop node. The service task described in the
architectural model is transformed to a suitable assign node
followed by an invocation node. The developer has to find
or create a WSDL file based on the service name and
version, which are specified by the architect and annotate
the invocation node suitably.

We start by defining subsets of three languages, one for
the business analyst, one for the architect and one for the
developer. The languages are meant to be specific to estate
bank, i.e., they are not designed for the use in other
enterprises. Then, we define required domain-specific
patterns for Estate Bank at the architectural and the
development level, to allow transformation of the mortgage
process first to the architectural level and then to the
implementation.

Transformations rules can be specified using an exiting
formalism like QVT, ATL or Java (QVT, 2007; Jouault and
Kurtev, 2005; Akehurst et al., 2006). However, producing
such specifications is not a focus of this paper. Hence, we
describe the transformations in plain text.

We describe in detail how one task, CreateLoans, from
the mortgage process can be generalised as a
domain-specific task type, which we refer to as a Bundle at
the business level. Using subtransformations, we
demonstrate transformation of the CreateLoans task, first to
the architectural level and then, to the development level
with only limited interference from the architect and the
developer. Using the bundle task type to model the
CreateLoans task in the business model helps the business
analyst to create a precise model and the architect and
developer does not have to manually transform the task to
their abstraction level.

5.1 A DSML for business analysts

In this section, we shall present a DSML for the business
analysts affiliated to Estate Bank. Table 1 depicts a set of
five task types and their corresponding tasks from the
mortgage example at Figure 5. To define the task types Ej,
we have used illustrative names as follows.

Table 1 Business analyst task types and application at the
mortgage process tasks

Task type Ej Task in mortgage process

AutomaticB CheckCredit, GetCustomerInfo
HumanActivityB SendToManager, CheckHouse,

CreditRefAgency
RiskB AssessRisk
SendLetterB SendReject, SendConfirmation
BundleB CreateLoans

An AutomaticB task type is any task which can be executed
by Estate Bank’s IT system, whereas, a HumanActivityB task
type is any manual activity handled by an employee. A task
of type RiskB estimates the risk involved in giving a loan of
a certain amount, on a property at a specific location to a
specific customer. The BundleB task type is used for
executing an activity several times. In the mortgage process,
this type can be used to model the CreateLoans task to
create several loans. We call the business analyst language
LB, where index B stands for business. Using this language
and specific task types, the business analyst can model the
mortgage process as illustrated in Figure 6. Here,
stereotypes are used visually to indicate different task types.

The task types are exclusive to Estate Bank. They can be
used for modelling many different business process
scenarios and provide business analysts in the Bank with a
common domain-specific vocabulary to be used in
modelling business processes. The use of domain-specific
types helps the analyst to reuse common types and ensure
that required information for that type is defined. This
means precise machine-readable models, which are easier to

 A methodology for domain-specific business process modelling and implementation 11

understand and which are applicable for semi-automated
model transformations.

Figure 6 The mortgage process modelled in the business analyst
language (see online version for colours)

GetCustomerInfo

CheckHouse CrediitReference
Agency

CheckCredit

SendReject

AssessRisk

CreateLoans

SendToManager

SendConfirmation SendReject

[Yes]

[No]

[No]

[Yes]

[No] [Yes]

[Yes]

[No]

Problem with house?

Bad payer?

High Risk?

Approved?<<Bundle>>

<<Automatic>>

<<Automatic>><<HumanActivity>><<HumanActivity>>

<<HumanActivity>>

<<SendLetter>> <<SendLetter>>

<<SendLetter>>

<<Risk>>

5.2 A DSML for solution architects

The solution architect refines a model created by a business
analyst. As a result, the DSML used by the solution
architect requires more details than the DSML used by the
business analyst. In this section, we shall explain only three
of the task types used by the solution architects; LoopA,
ServiceA and ReceiveA, which are used in refining the task

type BundleB, explained in previous section. We call the
architect language LA, where A stands for architect.

The LoopA task type indicates that an iteration should be
executed over a sequence of tasks. The architect may, for
example, use a loop task to indicate that a certain service
must be called a few times. The ServiceA task type indicates
calling a specific service available for the use of Estate
Bank. Such services are identified by their name and
version. The architect determines which service to be
executed and specifies the name and version for the service
task. For instance, the service could be responsible for
calculating a risk profile for a customer or creating a
specific loan. The ReceiveA type indicates that the process is
waiting for external events to occur. For example, the
ReceiveA type can be used in a process to indicate waiting
for a customer to accept conditions send by e-mail. When
the customer accepts the condition, for example, by logging
into a website and confirming, the process can continue.

5.3 DSML for developers

The developer uses a language similar to BPEL. Hence, the
DSML for the developer requires more details than the one
for the solution architect. The language is not specific to
Estate Bank as it is similar to the BPEL language. We
present four exemplary task types: AssignD, InvokeD, LoopD
and ReceiveD. We call the developer language LD, where
index D stands for developer.

An AssignD task type maps data between variables and
is used to initialise input data to service invocations. An
InvokeD task type is similar to BPEL’s invoke and is
described by a WSDL document. A LoopD task type iterates
over a sequence and can be compared with a ‘for’ or a
‘while’ loop in traditional programming languages. A
ReceiveD task type waits to be called from outside the
process and is defined as a web service. Using a ReceiveD
task type makes it possible for others services and processes
to call the process from the outside. Models created in this
DSML can be compiled directly to BPEL code without any
additional parameters required. The models must be defined
completely, i.e., the models must be rich enough to be
‘executable’.

Table 2 Task types and their attributes

DSML Task types Attributes Description

Business LB BundleB Description A description of what is bundled
 Iteration The number of iterations, if it is known
Architect LA LoopA Iterations The number of iterations
 KnownAtBuildTime Number of iterations is known in build time?
 ServiceA Name The name of the service to invoke
 Version The version of the service to invoke
Developer LD AssignD Data mappings Mapping of data between variables
 InvokeD wsdl Document describing the service to call

12 S. Brahe and B. Bordbar

5.4 Attributes at task types

Now, we have defined fractions of three languages at three
different abstraction levels where each language consists of
a number of task types. Each task type is identified by its
name and contains a number of attributes. When a modeller
is creating a task of a certain type, he/she must specify
values of the required attributes defined for the task type.
Attributes for the defined task types in our languages can be
found in Table 2. Only task types relevant to the
CreateLoans task example have been illustrated.

As mentioned in Section 5.1, the CreateLoans task,
which creates multiple loans, is of type BundleB. In the next
section, the above task types are used to model pattern
templates for, firstly transforming a Bundle task type to the
architectural level and then, to transform the result to the
development level.

5.5 Sample of patterns in Estate Bank

Each task type B
jE in the business DSML has a pattern

representation BA
jPT in the architectural DSML. Equally

has each task type A
jE in architectural DSML a pattern

representation AD
jPT in the developer DSML. The super

indices BA and AD indicates transformation from LB to LA and
from LA to LD. The architectural and development pattern
templates are illustrated in Table 3 and Table 4.

Table 3 Architectural pattern templates for business analyst
task types (see online version for colours)

Analyst type Architectural pattern template BA
jPT

AutomaticB

HumanActivityB

RiskB

SendLetter

BundleB

The architectural pattern for the AutomaticB type is a
ServiceA task which refers to service in Estate Banks IT
systems. For the HumanActivityB type, the pattern consists
of two tasks; a ServiceA task, responsible for calling a
human activity system and a ReceiveA task waiting for the
human activity system to signal back, that the activity has

been completed. The pattern for a RiskB type contains
several nodes; first, an automatic risk calculation is made. If
the result from this task indicates a high risk, the human
activity system is called to let a person manually evaluate
the risk calculation. If the risk is low, no further action is
required. For the SendLetterB type, the pattern consists of
two ServiceA tasks; First, a content service is called to create
the content and layout of the letter. Second, a send letter
service is called to create the physical letter and send it by
mail. The BundleB type and the types and patterns found in
Table 4 are described in details in the following paragraphs.

All patterns are modelled using UML activity diagrams
and profiles.

In the next section we describe how the BundleB task
type first can be transformed to the architectural language
and second to the development language by use of
subtransformations containing pattern templates,
transformation rules and additional transformation data.

Table 4 Developmental pattern templates of architectural task
types (see online version for colours)

Architect
type

Pattern template BA
jPT

ServiceA

LoopA

5.6 Bundle task type and pattern

Whenever a business analyst models a task as a BundleB
type, for example CreateLoans, he must specify values of
the required attributes of the task as listed in Table 2.
Firstly, the description attribute clarifies the purpose of the
Bundle. Secondly, the iterations attribute, if the number of
iterations is known at modelling time, specifies the number
of times the Bundle should execute. The architectural
pattern BA

BundlePT for modelling the equivalent to a BundleB is
a LoopA task type, and inside the loop, a ServiceA task type
is present. The LoopA task type requires values for two
attributes to be completely defined:

1 knownAtBuildTime: Boolean if the iteration numbers is
known at build time

2 iterations: the number of times the iteration should run.

Both these attributes can be extracted from the attributes of
the BundleB task type, so no additional information is
required here. The ServiceA task type also requires data for
two attributes:

1 Service name: The name of the service which the
bundle invokes multiple times.

2 Service version: The version of the service to be
invoked.

 A methodology for domain-specific business process modelling and implementation 13

Table 5 Subtransformation for BundleB task type from business to architectural level (see online version for colours)

Pattern template BA
BundlePT Add. parameters BA

BundleAP Rules

• Service name

• Service version Set name and version at << Service >> attribute

Table 6 Subtransformation of ServiceA and LoopA task type from architect to developer level

Task type Pattern template Add. params. Rules

ServiceA

WSDL file Change the invoke node

to use WSDL

LoopA

logic Set iteration number at
loop

Figure 7 CreateLoan task transformed from business level, to architect level and to development level (see online version for colours)

14 S. Brahe and B. Bordbar

These attributes cannot be extracted from the BundleB task
type at the business level, so they must be provided as
additional parameters BA

BundleAP during the transformation of
a task of the BundleB type. The business analyst has only
provided a description of the purpose of the task of type
BundleB. The architect must based on this description
localise which service and what version to call and specify
the attribute values of the service task. A subtransformation

BA
BundleT can be defined for transformation of the BundleB

task type at the business level to the architectural level.
Table 5 shows the pattern template, a textual description of
the transformation rules and the required additional
transformation parameters. The Bundle subtransformation
generates a model structure A

BundleS defined in the architect
language. This structure contains two tasks, one of type
LoopA and one of type ServiceA. The structure can be
transformed to the development level by use of two
different subtransformations, one sub transformation AD

LoopT

for the LoopA task type and one AD
ServiceT for the ServiceA task

type.
As illustrated in Table 6, a loop task at the architectural

level is transformed to an assign task and a loop task at the
development level. The service task at the architectural level
is transformed to a sequence of an assign task followed by
an invoke task at the development level. The two assign
nodes at the development level both need additional
parameters for determining how to map data for variables to
the loop node and the invoke task respectively. This
information can be provided at modelling time, however,
since the focus of the paper is on the control flow part of the
models, we will not deal with this aspect here. The loop
node needs logic to determine when is should terminate and
the invoke node need to know the WSDL document
defining the service to invoke. The logic and the document
have to be provided for the transformations as values of
additional parameters, VoAPBundle.

Figure 7 illustrates how the CreateLoans task from the
mortgage approval process, if modelled as a BundleB type,
can be transformed into code with only limited work done
by the architect and the developer. The architect has to
provide the service name and version of the service that in
the IT systems fulfils the requirements specified by the
business analyst. The developer has to provide a WSDL
document based on the service name and version and logic
for when the loop should terminate. Based on these
additional transformation data, the described
subtransformations in Table 5 and Table 6 handle the rest of
the work of transforming the business model to an
implementation. Using the illustrated languages and
subtransformations, the mortgage process can be
transformed to an architectural and an executable model.

5.7 Discussion

By applying our proposed transformation framework at the
CreateLoans task from the mortgage example, we have

shown that knowledge of how to transform models between
different abstraction levels can be formalised by definition
of domain-specific task types, pattern templates, additional
transformation parameters and transformation rules. By
formalising this information, it becomes easier for the
business analyst to create precise models, the architect and
the developer does not have to remember dozens of
different patterns and they do not need to remember what
information to provide. Hence, the proposed methodology
and framework has addressed the challenges previously
described.

In the next chapter we briefly present a tool, that
implements the presented transformation framework and
that successfully has been applied at the mortgage approval
example.

6 Prototype tool implementation

Brahe and Østerbye (2006) use UML activity diagrams as
the semantic base for business process modelling and are
using profiles to create DSMLs for different purposes inside
an enterprise. They also present two Eclipse based tools,
ADSpecializer and ADModeler, which are able to generate
new DSMLs and customised tool support based on UML
activity diagrams and the extension mechanism of Eclipse.

To implement the proposed methodology, we are
developing a tool called ADTransformer. It is able to
transform a model from a source language to a target
language, that are both based on UML activity diagrams and
profiles. ADTransformer therefore, suits well with
ADModeler and ADSpecializer. The three tools together
form a prototype of a complete language and transformation
workbench, which supports creation of languages and
modeling tools, creation of models using these languages
and tools, and transformation of models between languages.

6.1 Implementation

ADTransformer has been implemented as an Eclipse based
tool and consists of two parts. The first part is used by a tool
developer to create a transformation definition. It uses the
concepts of subtransformations and parameterised patterns
and provides an extension point, which allows the definition
of a transformation between a source and a target language.
The transformation is specified by defining a
subtransformation for each of the task types in the source
language. The second part is used by a solution architect or
a system developer to execute the transformation definition
at a concrete model. It contains an execution engine that
implements the global transformation T as a generic
transformation. It recursively iterates through the control
flow graph of the source model. For each task in the source
model, the generic transformation executes the
corresponding subtransformation that has been defined by a
tool developer. The subtransformation generates a structure
of a process model in the target language, which the generic
transformation collects and puts into the target model.

 A methodology for domain-specific business process modelling and implementation 15

6.2 Defining a transformation

ADTransformer has a wizard that allows a tool developer to
generate an Eclipse plug-in containing empty definitions of
all subtransformations between two languages. The wizard
has three pages; The first page is used to select the source
and target language. The second wizard page is used for
information purposes only. It shows the names and locations
of empty pattern templates and transformation rules that
will be generated for each of the task types in the source
language. The third wizard page is used to specify
additional parameters needed by the transformation for
transforming a task of a certain type from the source
language to the target language (Figure 8). After finishing
the wizard, the tool developer models the pattern templates
in the target language (Figure 9) and defines transformation
rules for the subtransformations in the generated Java
classes. The generated Eclipse plug-in can now be
distributed to architects and developers.

Figure 8 Wizard page for defining additional parameters
required by the transformation (see online version for
colours)

Note: The transformation of a Bundle task type requires

a service name and a service version

Figure 9 Architectural pattern template for the Bundle task type
modelled in the architectural language in ADModeler
(see online version for colours)

6.3 Executing a transformation

Solution architects and system developers use
ADTransformer to execute the transformation definitions.
For instance, a solution architect right-clicks at the business
model of the mortgage process and selects ‘transform
model’. A dialogue (Figure 10) is presented which requires
definition of values of the additional parameters specified in
the subtransformation.

Figure 10 Values of additional parameters are defined during the
model transformation (see online version for colours)

Note: An architect has specified the service name and

version for a Bundle task type as defined in Figure 8

The architect or developer presses the Finish button after
entering values of additional parameters. ADTransformer
then executes the transformation definition through the
subtransformations and generates the architect or the
developer model.

6.4 Generating code

The generated developer model contains all necessary
information to be executable. Hence, BPEL code can be
generated directly from it. We have therefore developed a
utility tool, which generates BPEL code from the developers
model. For this purpose we used SiTra (Akehurst et al.,
2006) which is a simple, Java based transformation
framework.

7 Related works

Recently, the introduction of SOA and its popularity within
the industry (Erl, 2005) has caused much attention in
discovery of methods for modelling, analysis, specification
and implementation of business processes. Our research
aims to support such methods by providing a flexible
framework feasible for tool implementation.

MDD and the MDA (MDA, 2007; Stahl et al., 2006)
have been used extensively in transforming business process

16 S. Brahe and B. Bordbar

models to implementations, particularly from UML activity
diagrams to service composition languages. Bézivin et al.
(2004) uses the ATL transformation languages to transform
UML models into three different target platforms; Java, web
services and Java web service developer pack. Bordbar and
Staikopoulos (2004) studies transformation of activity
diagrams to BPEL and based on MOF compliant meta
models. Skogan et al. (2004) proposes a method that uses
activity diagrams to design web service compositions and
transform them into different service composition
languages. The method also builds on transforming WSDL
descriptions into UML, which can then be used to build the
service compositions. Koehler et al. (2003, 2005) has
worked on model driven generation of BPEL
implementations based on activity diagrams using
techniques originating from compiler theory and
declarations of rules in the Object Constraint Language. The
BMNM specification contains a chapter that specifies how
BPMN models can be mapped to BPEL. Using BPMN
ensures using a language which is specifically designed for
business process modelling. Moreover, the transformation
to BPEL allows implementation of the business process.

Pokraev et al. (2007) focus on the use of MDD for
application integration. Starting from high-level models of
existing applications, the business expert models the
interaction in a constraint-oriented style with the help of
State machines. Then applying MDD, the proposed
interaction is mapped and implemented to realise interaction
of the services. Dirgahayu et al. (2008) extend this approach
by allowing definition of multiple level of abstraction and
allowing the business analysis to check if the applications
can be integrated prior to the integration.

Dirgahayu et al. (2007) make use of pattern to map
business process models into their implementations. In the
context of this paper, a pattern is a representation of
structure depicting the relationship between the activities.
The paper decouples the process of transformation into
pattern recognition and pattern realisation. By creating an
intermediate model between the two task of recognising and
realisation, the presented approach ensure reusing patterns
and their realisations in different model transformations
resulting in lower development cost, shorter time-to-market
and better quality of implementation with fewer bugs.

Shishkov et al. (2007) present an application design
process for refactoring of business models and mapping
them to platform specific models in order to create loosely
coupled service oriented applications.

8 Conclusions and future work

This paper has described a methodology for a smoother
implementation of business processes. The methodology
provides a framework for bridging the gaps between models
at different abstraction levels of a business process. The
main idea of the methodology is to capture domain or
enterprise, specific knowledge of the coherence between
one abstraction level and another as parameterised patterns

consisting of pattern templates, additional transformation
parameters and transformation rules.

We have used an example of a mortgage approval
process to illustrate the challenges of creating models at
different abstraction levels and to describe our approach
which simplifies and semi-automates the transformation
from the business level to the architectural level and from
the architectural level to the development level. The
presented framework can be implemented as a software tool
to allow

1 shorter software development cycle

2 better synchronisation of models at different levels of
abstraction

3 higher quality of code and design through reuse

4 improved development process.

A pre-requisite for applying the methodology is the use of
different modelling languages for different abstraction
levels. A business analyst, an architect and a developer for a
specific enterprise each needs his or her own language to
create models with required precision and information
details.

The methodology and prototype tool has not yet been
evaluated and validated. As future work, we therefore plan
to make an empirical evaluation through case studies. The
methodology and prototype tool should be applied in three
different domains. A number of languages and tools at
different abstraction levels are build for each domain.
Successively, the languages and tools are used to model and
implement two different kinds of business processes in each
of the domain. The empirical evaluation should also include
a number of analysts, architects and developers that use the
languages and tools.

We will further explore transformation rules in the
global transformation and in the subtransformations and we
will examine approaches to model refactoring which will
allow survival of manually introduced changes in generated
models. The concept of additional parameters will be
extended to include separate information models. This will
result in a reduction of the complexity of modelling and the
possibility to represent the business from multiple
viewpoints.

References
Akehurst, D., Bordbar, B., Evans, M., Howells, W. and

McDonald-Maier, K. (2006) ‘SiTra: simple transformations in
Java’, in ACM/IEEE 9th International Conference on Model
Driven Engineering Languages and Systems, Lecture Notes in
Computer Science, Vol. 4199, pp.351–364.

Alexander, C. (1964) Notes on the Synthesis of Form, Harvard
University Press. Harvard University Press, Cambridge,
Massachusetts.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004) Web
Services: Concepts Architectures and Applications,
Springer-Verlag.

 A methodology for domain-specific business process modelling and implementation 17

Bézivin, J., Hammoudi, S., Lopes, D. and Jouault, F. (2004) ‘An
experiment in mapping web services to implementation
platforms’, Technical report, LINA, University of Nantes.

Bordbar, B. and Staikopoulos, A. (2004) ‘On behavioural model
transformation in web services’, in Conceptual Modelling for
Advanced Application Domain (eCOMO), pp.667–678,
Shanghai, China.

BPEL (2003) Business Process Execution Language for Web
Services (BPEL4WS), Version 1.1, available at http://www-
128.ibm.com/developerworks/library/specification/wsbpel/.

Brahe, S. and Østerbye, K. (2006) ‘Business process modeling:
defining domain specific modeling languages by use of UML
profiles’, in Rensink, A. and Warmer, J., (Eds.), ECMDA-FA
2006, LNCS, Vol. 4066, pp.241–255, Springer, Heidelberg.

Dirgahayu, T., Quartel, D. and Sinderen, M. (2007) ‘Development
of transformations from business process models to
implementations by reuse’, in 3rd International Workshop on
Model-Driven Enterprise Information Systems, MDEIS 2007,
pp.41–50.

Dirgahayu, T., Quartel, D. and Sinderen, M. (2008) ‘Designing
interaction behaviour in service-oriented enterprise
application integration’ in ACM Symposium on Applied
Computing, pp.1048–1054.

Eriksson, H. and Penker, M. (2000) Business Modeling with UML.
Business Patterns at Work, John Wiley & Sons, Inc.

Erl, T. (2005) Service Oriented Architecture: Concepts,
Technology and Design, Prentice Hall.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994) Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley.

Jouault, F. and Kurtev, I. (2005) ‘Transforming models with ATL’,
in Proceedings of the Model Transformations in Practice
Workshop at MoDELS 2005, Montego Bay, Jamaica.

Kleppe, A., Warmer, J. and Bast, W. (2003) MDA Explained: The
Model Driven Architecture–Practice and Promise, The
Addison-Wesley Object Technology Series. Addison-Wesley.

Koehler, J., Hauser, R., Kapoor, S., Wu, F. Y. and Kumaran, S.
(2003) ‘A model-driven transformation method’, in 7th
International Enterprise Distributed Object Computing
Conference (EDOC 2003), pp.186–197.

Koehler, J., Hauser, R., Sendall, S. and Wahler, M. (2005)
‘Declarative techniques for model-driven business process
integration’, IBM Systems Journal, Vol. 44, No. 1, pp.47–65.

Kroll, P. and Kruchten, P. (2003) The Rational Unified Process
Made Easy. A Practitioner’s Guide to the RUP, Addison
Wesley.

MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., Bromling, S.
and Tan, K. (2002) ‘Generative design patterns’, in IEEE
International Conference on Automated Software
Engineering, pp.23–34.

Mitra, T. (2005) ‘Business-driven development’, IBM developer
works article, available at
http://www.ibm.com/developerworks/webservices/library/ws-
bdd.

Model Driven Architecture (MDA) (2007) Object Management
Group, available at www.omg.org/mda/.

Pokraev, S., Quartel, D., Steen, M., Wombacher, A. and Reichert,
M. (2007) ‘Business level service-oriented enterprise
application integration’, in 3rd International Conference on
Interoperability for Enterprise Software and Applications,
pp.507–518.

QVT (2007). Object Management Group: MOF 2.0
Query/Views/Transformations, Final adopted specification
ptc/07-07-07, available at Object Management Group at
www.omg.org.

Shishkov, B., Sinderen, M. and Tekinerdogan, B. (2007)
‘Model-driven specification of software services’, in ICBE
’07: Proceedings of the IEEE International Conference on
E-business Engineering, pp.13–21.

Skogan, D., Grønmo, R. and Solheim, I. (2004) ‘Web service
composition in UML’, in Eighth IEEE International
Enterprise Distributed Object Computing Conference
(EDOC’04), pp.47–57.

Stahl, T., Völter, M., Bettin, J., Haase, A. and Helsen, S. (2006)
Model-Driven Software Development: Technology,
Engineering, Management, Wiley.

UML2.0 (2004) ‘UML 2.0 superstructure specification,
final adopted specification’, available at
http://www.omg.org/docs/formal/05-07-04.pdf.

van der Aalst, W.M.P., Hofstede, A.H.M., Kiepuszewski, B. and
Barros, A.P. (2003) ‘Workflow patterns’, Distributed and
Parallel Databases, Vol. 14, No. 1, pp.5–51.

Wagner, H-T., Beimborn, D., Franke, J. and Weitzel, T. (2006) ‘IT
business alignment and IT usage in operational processes: a
retail banking case’, in Proceedings of the 39th Annual
Hawaii International Conference on System Sciences
(HICSS’06), Vol. 8, pp.172–194.

White, S. (2006) Business Process Modeling Notation, Version
1.0, Final adopted version, available at
http://www.bpmn.org/Documents/OMG-02-01.pdf.

