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Abstract

This paper deals with the on-line monitoring of large systems modeled as Petri Nets under partial observation.
The plant observation is given by a subset of transitions whose occurrence is (always) acknowledged by emitting a
label received by the monitoring agent at the time of the occurrence. Other transitions not in this subset are silent
(unobservable). Usually on-line applications require the computation of how the systezndhasdfrom the last
known (or estimated) marking(s) by enumerating the setllofhe explanations of the observation received by the
monitoring agent, i.e. the set of all allowable traces, such that the execution of these traces from the initial marking
would generate the sequence of observed labels in the correct order. This can be accomplished by a forward search
algorithm starting from the initial marking. However, the application of forward search techniques to large systems
has several disadvantages. Firstly, the set of current allowable markings of the system can be large. Hence, its
enumeration can be computationally demanding. Secondly, forward search techniques require knowing the exact
initial marking, which can be a problem in case of systems with uncertain initial marking e.g. when only a lower
bound on the initial marking is known. To alleviate these drawbacks, we propose a backward search method,
which, starting from observation(s), enumerates a subset of explanations callset theminimal explanations
The set of markings that are reached from the initial marking firing minimal explanations has the property that its
unobservable reach (the markings obtained by firing legal, unobservable strings from any of its marking) is equal to
the entire set of current estimated markings. Moreover, the faults are typically not predictable i.e. at every reachable
marking there is at least one non-fault transition that is enabled. Making this assumption that the faults are not
predictable allows us to conclude that the set of minimal explanations obtained via a reduced observer analysis
detects the occurrence of all faults that must have happened for sure according to the complete set of explanations.
Furthermore, the presented approach can deal with Petri Nets with an uncertain initial marking, which is a common
situation in a distributed setting. In this case, local components modeled by Petri Nets and supervised by local

agents interact unobservably by exchanging tokens via common places.
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I. MOTIVATION AND INTRODUCTION

This paper deals with model based approaches to the centralized estimation of the states of large plants
We assume that the plant evolves over time satisfying constraints expressed by an abstract, discrete ever
dynamical systems modeled via Petri Nets (PNs). The set of transitions in the PN, which represents
events of the physical plant, is partitioned into two disjoint subsets: observable and unobservable events.
We assume that the occurrence of an observable event is always reported (a label is emitted) correctly tc
the supervisory agent whereas the occurrence of an unobservable events is never reported.

The plant monitoring at any time requires knowledge of the PN model of the plant, and knowledge of
the ordered sequence of observable labels that have been recorded up do $itae observers combine
this model information with the on-line plant observation in order to derive the set of possible current
states the plant can be in, and the set of traces the plant model can have executed from the last knowr
or estimated state(s) up to the current tithe

The monitoring of any Discrete Event System (DES) under partial observation requires typically
the implementation of an observer automaton [MBLOO] that is used then for on-line applications like
supervisory control. An observer automaton for a PN model is simply an automaton whose set of events
is represented by the set of labels of the observable transitions of the PN model. The legal traces in
the observer automaton are strings of labels that can be generated by the plant. A state of the observer
automaton stores all the markings of the PN model that can be reached from the initial marking of the
PN model by firing traces that would generate the same observation as the corresponding sequence o
events in the automaton.

When monitoring systems under partial observation the use of a classical (off-line derived) observer-
automaton is hardly possible because of the high spatial complexity (e.g. exponential in the number of
places for a DES modeled as an automaton [OW90]). Moreover any change in the plant structure requires
the recalculation of the off-line observer-automaton.

A natural solution for the monitoring of PN models under partial observation is to construct on-line the
branch of the off-line observer-automaton that corresponds to the received observation. This simply means
that after each observation generated by the plant we calculate the set of markings the plant can be in.
Thus a state of an on-line classical observer-automaionijcludes all the possible states (markings) the
plant can be in after observing a string of labels. However the on-line construction of the branch of the
CO that corresponds to the received observation may not be feasible when monitoring large PN because
the set of estimated markings can be huge and the calculation of the set of markings that correspond to
the current state of the on-lirgd can be computationally prohibitive.

To overcome this limitation we propose the on-line construction of a reduced observer autorgton (



that contains in a given state fewer markings than the ondin& he idea is simple, instead of computing

all the possible markings the plant can be in after observing a string of labels, we compute a subset of
possible current markings (a set of basis markings [GCS05]) such that the rest of the possible current
markings that are not computed can be reached by firing legal strings of unobservable transitions starting

from a marking that belongs to the subset of markings generated.by

We show that this subset of possible current markings can be obtained by generating minimal
explanations of the received observation [JB04] via backwards induction starting form an observable
transition whose occurrence would have emitted the latest observed event. Methods based on backwarc
calculations for PNs were proposed in [LA94], [SJ94], [CKV95] for diagnosis purpose, in [N8H
[AINOO], [FRSBO02], [DRvB04] for model checking, and in [GS02], [GCS05] for state estimation of a

PN model with uncertain initial marking.

Backward search operates as follows. When the first observation (the label of some event occurrence) is
received by the monitoring agent, it determines the minimal (partial) marking required by an observable
transition (whose occurrence would have emitted the observed label) to fire. Unobservable transitions
are recursively backfired (removing tokens from the output places and adding tokens to the input places
of the backfired transition) until either we obtain backwards a marking that is smaller than or equal to
the initial marking (in this case a minimal explanation is obtained) or a decision to stop the backward
search is evaluated true. The set of minimal explanations enumerates the subset of markings that must b

considered in the current state of the reduced obs&wer

The computational complexity of the algorithms to derive the onibeespectively the on-lin@0 can
not be compared. The reason is twofold. First of all the two algorithms (the forward search respectively
the backward search) explore different state spaces. SecondBOtldentifies states in its state space
with only a small subset of the complete set of possible current markings that identify states in the state
space of thec0. However the price paid for this simplification of the definition of individual stateg0in
is that the number of states required ky may be larger than fo€0. Nevertheless we demonstrate in
this paper the following advantages k. Firstly the computational complexity of the backward search
depends on the size of the largest sub-net of the PN model that contains only unobservable transitions
and on the degree on non-determinism of the observation labeling function (i.e. the number of observable
transitions that emit the same label when they are executed). Secondly the backward calculations can
be made even though the initial marking is partially known (i.e. one only knows a lower bound on the
marking of some places). This is a typical case in a distributed setting when components (modeled as
PNSs) interact via shared places [GL03],[FBHJO5] where the interactions are unobservable, i.e. tokens can

unobservably exit from one component and unobservably enter another component [JBO5].



A special observer-automaton is designed in [S$#] in order to detect faults in a plant. Given the
observation generated by the plant a diagnoser-automaton answers the question whether a fault ever
happened in the plant or not. A fauttay have occurred there is at least one allowed trace leading from
an initial state to any plant state that is possible according to the current state of the observer automaton.
If all the traces from a possible initial state of the plant to a possible current state of the plant contain
the fault, then the faultnust have occurredor sure. Based on the set of minimal explanations of the
observation generated by the plant we design in this paper a reduced diagnoser having the property tha
any fault that is detected by the classical diagnoser that for sure occurred in the plant is also detected by
the reduced diagnoser to have happened for sure.

It should be noted that the claims in this paper do not guarantee that a fault that occurred will indeed
be detected. This diagnosability property [SSb] would require strong assumptions on the plant model,
assumptions that are probably not verifiable for the large plants we consider. The on-line observers designec
in this paper will detect a fault with an observable effect provided the explanation of this observable effect
must include the fault. However in general no off-line method can be devised to state beforehand whether
this diagnosability will indeed be satisfied or not, without a computational effort that is larger than the
effort required for the on-line fault detection itself.

The paper is organized as follows. Section Il introduces the mathematical notation and the preliminary
definitions used throughout the paper. Then in Section Il we present the monitoring of large PNs models
under partial observation and we provide an algorithm to derive a reduced observer based on a backwarc
search. In Section IV we formalize the diagnosis problem and we show how the reduced observer can
be used to derive the on-line plant diagnosis of faults that must have occurred for sure. The paper is

concluded in Section V with final remarks and future work.

Il. PRELIMINARIES
A. Sets and relations

Let X andY be sets. We writeX C Y if X is a subset oft’, including the caseX =Y. X C Y
denotes thatk C Y and X # Y. X \ Y denotes the set of elements &f that do not belong td". | X |
denotes the cardinality ok and Pwr(X) is the power set ofX, that is, the set of all subsets of.
Given a functionf : X — Y and A C X then f(A) = |J,., f(z). N denotes the set of natural numbers
including 0. N, denotes the set of natural numbers exceptingiven two vectorsA, B of dimension
m, we write A < B, iffor ¢ =1,...,m, Alq] < Blq]. A < B meansA < B anddq s.t. A[¢] < Blq.

A set X is a collection of distinct elements. Given a non-empty Zeaind a functiony : X — N
we say thatX, is a multi-set overX where X, = {(z, u(x)) | z € X} and i represents the number of

appearances of in X,,. Thus a set can be understood as a multi-set that has no repeated elements.



Let < be binary relation onX. <C X x X is a partial order relation oX if i) < is reflexive,ii) <
is transitive, andiii) < is antisymmetricY{z, 2’ € X) (x X 2") A (2/ 2 2) = (v =2'). f Vo2’ € X
eitherz < 2’/ or 2/ < = then < is a total order onX. Denote by(X, <) a partial order relation<
on a nonempty seX. Thenmax~(X) andmin<(X) denote the set of maximal respectively minimal
elements ofX w.rt. <, that ismax<(X) = {r € X | (' €e X Az 22') =2’ =z} andming(X) =
{freX|(@eXANd 2x)=2 =z}

B. Petri Nets - notation, definitions, and properties

Definition 1: A Petri Net is a structurdy” = (P, 7, F) where: i) P denotes the finite set of places,
i1) 7 denotes the finite set of transitions such t#ath 7 = 0, and i) FF C (P x 7)U (7 x P) is the
incidence (flow) relation that specifies the arcs from places to transitions and from transitions to places.
F can be represented as a pair of functioRse : P x 7 — {0,1} and Post : 7 x P — {0, 1}.

DenoteX = P U 7. Then forz € X we use the standard notations = {y € X | zFy}, *z =
lye X |yFa}, X* =,ex2® and*X =,y *z.

The incidence relatiorf’ can also be represented in a matrix form, with dimengidn | x | T |,
having a—1 in the (7, j)-th element if Pre(p;,t;) = 1, a 1 in the (7, j)-th element if Post(t;, p;) = 1,
and a0 everywhere else.

A marking M of a PN is represented by g P | -vector that assigns to each plageof P a
non-negative number of tokend : P — N.

A PN system is a paifV, M,) where A/ is a connected graph having at least one place and one
transition andM/, is a marking of\/ called the initial marking.

In the following we treat a marking also as a multi-d8ét= {(p, M (p)) | p € P and M(p) # 0} where
M (p) is the number of tokens presentznn the markingM (M (p) stands foru(p) when talking about
a marking seen as a multi-set of tokens).

Given a PNN and a marking)/, a transitiont € 7 is enabled inM if Vp € *t, M(p) > Pre(p,t).
Denote byEnbl(M) the set of all the enabled transitions in the marking An enabled transition
Enbl(M) in a marking)/ fires atM and produces the marking’, that isA’ = M — Pre(-,t)+ Post(t, -),
where abusing notatio#®re(-,t) and Post(t,-) are the| P |-vectors whose co-ordinate is Pre(p,t)
respectivelyPost(t, p).

In the following we use the notatioh/ L M for the firing of a transitiont transforming the marking
(state) of the PN from\/ to the new marking\/’. A legal tracer in the PN system{(V, M) is defined
ast = My 5 My 2 ... 2 M, where inductively for. = 1,2,..., v, M,_; > Pre(-,t,). My = M,
denotes that the enabling conditions are satisfied sortltan be executed legally, and wherfires at
M, vyields M,,.



Given a PN system(N,M,) the set of all legal traces in(N,M,) is denoted by
Ly (My) = {T|MOL>M} while the set of reachable markings is denoted By (M) =
{M | 37 € La(My) s.t. My = M}.

Consider a legal trace € L(M,). The Parikh vector associated with is denoteds and is a
| 7T | — wector whose:-th element corresponding to transitione 7 is given by, (¢,) that is the
number of appearances gfin the legal traces.

Lemma 1 (marking equation): ¥/, = M then the following Marking Equation holds:
My+F-o=M 1)

(with the incidence relatiorf’ expressed in a matrix representation).

Notice that in a general PN/, the marking equation is a necessary but not a sufficient condition for
checking if a markingM is reachable from\/, by firing a traces. However if A/ is acyclic then the
marking equation is a necessary and sufficient condition for the reachability problem [Mur89].

Consider two PNsV, = (P, 71, F1) and Ny = (P,, To, Fy). Then (N, My, ) is called a sub-net of
(Na, My,) if: 4) Py C Py; ii) Ty C To; iii) Pre; = Prey |pyx7; iv) Posty = Posty |1xp,; and
v) My, = My, |p,-

Conditionsi) — iv) state thatV; is a sub-graph ofV> where conditiongii) andiv) state thatPre;
and Post, are the restriction oP’re,, respectivelyPost, to the domainsP; x 7;, respectivelyZ; x P;.
Conditionv) states that the initial marking/,, is the restriction of the marking/,, to the placesP;.

Definition 2 ([Mur89]): Given a PNV = (P, T, F) a subset of place® C P is a trap, respectively
a siphon ifP’* C *P’, respectively*P’ C P’s.

A trap has the property that if it is marked (i.e. it has at least one token) under some marking, then it
remains marked under each successor marking. A siphon has the property that if it has no token under
some marking, then it remains token free under each successor marking.

A path of a PN NN is a non-empty sequenceg = =z;...z, of nodes that satisfies
(x1,22),...,(Ty_1,2,) € F. A pathp = ...z, is said to lead fromz;, to z,. A path p leading
from a nodez, to a nodez, is a circuit if no element occurs more than once in it dnd, z,) € F.
Notice that a sequence containing one element is a path but not a circuit(singeZ F.

Definition 3 ((Mur89]): A PNN = (P, 7, F) is called:

- trap-circuit PN if the set of places in every directed circuit is a trap
- siphon-circuit PN if the set of places in every directed circuit is a siphon.

From the definition of firing, it is straightforward to infer the following lemma.

Lemma 2 (monotonicity): Given the PN systef§, M;) and (N, M{) such thatM, < M then
L (Mo) S L (Mp).



Denote by7™* the Kleene closure of the sé&t i.e. the set of all traces of elements Df of arbitrary
length, including the empty trace Then letoc € Ly (My) C 7* and 7’ C 7. The projectionllz :
Ly (My) — T is defined asi) Il (e) = ¢; 4) Ly (t) =t if t € T'; 4ii) Ml (t) =€¢ if t €T\ T
andiv) Iz (ot) = Uz (o)ll7(t) for o € Ly (M) andt € 7.

A PN (N, M) is bounded if for every placg € P there is a natural numbére N, s.t. M(p) <K
for any M € Ry (M,). GivenN = (P, 7T, F) and7’ C 7 then(N, M) is bounded w.r.t7" if Vr € 7"
we have that{M, = M) and (M, < M) = (My = M).

C. Occurrence Nets and Net Unfolding

In this section, we shall present a method of monitoring large PNs based on partial orders. This allows us
to provide a rigorous mathematical definition of a minimal explanation in terms of minimal configurations
in a net unfolding.

The complexity of the PN reachability analysis has been proven to be EXPSPACE-hard in the general
case [Lip76],[Kos82]. This is because in the standard reachability algorithm (the Karp-Miller algorithm
[KM69]) all the possible interleavings of the concurrent transitions are considered.

The proposed methods for reducing the state-space explosion problem are based on the observation the
for reachability analysis not all interleavings of a given set of concurrent transitions need to be considered.
Various methods that avoid considering all interleavings of concurrent transitions have been proposed,
among otherstubborn setfval90], persistent setg5W93] andnet unfoldinggEng91],[McM92], [Esp94].

The unfolding of a PN is an occurrence net (i.e. a PN without cycles) that is behaviorally equivalent
with the original net. Unfoldings are usualigfinite nets since the sef,(M,) of legal traces is usually
infinite. However it is always possible to construct a finpeefix of the unfolding which captures its
entire behavior [McM92]. Theprefix of the unfolding has the property that it contains all the reachable
states of the whole unfolding, and being finite, it can be handled by a computer. Initial prefixes can be
constructed such that they are never larger and in general a lot smaller than the state space of the origina
PN [ERV96]. The unfolding approach is a powerful technique for attacking the state explosion problem
for PN models whose degree of concurrency is high compared to their degree of (forward) branching. The
unfolding method reduces the cost of the analysis from exponential in the size of Petri Net to polynomial
dependence on its size.

Two nodes (places or transitiong)andb of a PNA = (P, T, F) are in conflict, denotedfb if there
are distinct transitions, ¢’ € 7 such that *t N *t' # () anda <t andb <t where< denotes the reflexive
transitive closure of?". If N is acyclic then< is a partial order.

Definition 4. An occurrence net is a n€&t = (B, £, G) such that:



1) O is acyclic
2) every nodex € B U FE has a finite number of predecessors, |.€b: a < b} |< 0o
3) O has no backward conflicts, i.€b € B : | *b|< 1

where < denotes the reflexive transitive closure(of

In an occurrence net two nodesb € (B U E) x (B U E) are concurrent, denoted|b, if neither afb
nora < b norb < a. In the following B is referred as the set @onditions £ is the set ofevents and
min< () denotes the set of minimal elements@fw.r.t. <.

Definition 5: A homomorphism from an occurrence get= (B, £, G) to a PN system{\/, M) is a
mapping¢ : BU E — P U7 such that:

1) ¢(B)CPand¢(E)C T

2) Ve € FE, the restriction ofp to ®e is a bijection betweerfe and *¢(e)

3) Ve € E, the restriction of¢ to e* is a bijection between® and ¢(e)®

4) the restriction of¢ to min<(O) is a bijection betweemin~(9O) and M,

5) Ve,e' € E: (*e= ) A (¢(e) = ¢(e)) = e=¢€.

Definition 6: A branching proces® of a PN (N, M) is a pair B8 = (9, ¢) where© is an occurrence
net and¢ is @ homomorphisng : O — N.

Definition 7: Given a PN, M) and two branching processés, B’ of PN (N, M,) then®’ C B
if there exists an injective homomorphism 9’ — O s.t. p(min(O’)) = min(O) andpo ¢ = ¢'.

There exists (up to an isomorphism) an unique maximum branching process [W.that is the
unfolding of (N, M,) and is denoted/ (M) [McM92],[Esp94].

Definition 8: A configurationC' = (B¢, E¢, G¢) in the occurrence neD is defined as follows:

1) C'is a proper sub-net oD (C C O)

2) C'is conflict free, i.eVa,b € (Bc U E¢) X (Be U E¢) = —(afb)

3) C is causally upward-closed, i.&b € BcUEs :a€ BUE anda =<b = a € BcU E¢

4) min<(C) = min(O)

5) and G¢ is the restriction ofG to (B¢ U E¢) x (Ec U Be)

Denote byCt = (Bgi,Eq1,Gey) the initial configuration of the occurrence n€t. B.. =
{b e B: *b= 0} is the set of condition-nodes i that correspond to the places that contain a token in
initial marking (B¢ = min<(9)) and Eo. = 0.

For a configuration”' in © denote byCUT(C) the maximal (w.r.t. set inclusion) set of conditions
in C that have no successors @, i.e. CUT(C) = ((U,ep,. €*) U (min<(0)) \ (U,.cp, *e¢) Denote by
mark(C) the marking in\V that corresponds t6'UT(C) (mark(C) = ¢(CUT(C))). Obviously we have
that CUT(C*) = B = min<(9) andmark(C*) = ¢(CUT(C*)) = M, (where a marking is seen as



a multi-set of tokens).

Denote byEnbl(C) the set of transitions that are enabledNffrom the markingmark(C'). For an
enabled transitiom € Enbl(C) append taC' an evente s.t.t = ¢(e). We say thatU is extended by and
denote the configuration that is thus obtaineddy= C' ® e. We have that’’ = (B¢, Ecr, Gor) Where
Ber = BocU{e*} and Eqr = E¢ U {e}.

Consider two configuration§’ and C”’ s.t. C' is obtained fromC' by appending the events, ..., ¢,
(C"=C0Oe ®...0¢,). ThenC is a proper sub-net af” and we say that’ is a prefix ofC’. This is
denotedC C C'. Denote byC the set of all the configurations Wy (M,).

Definition 9: Given the unfolding{,-(M,) of a PN (N, M) thenC(e) = (Bg(e), Ec(e), Ec(e)) is the
minimal configuration that explains the executionedf Eq() = {¢' € E : ¢’ <¢() €}.

As already mentioned unfoldings are usuatifinite nets. As shown in [McM92] it is always possible
to construct a finitanitial prefix of the unfolding which captures its entire behavior by deriving the set
of cut-off events. An event is a cut-off event in the unfolding if there exists another evérguch that
i) p(C(e)) = o(C(e)) andii) C(¢') C C(e). The idea is that the continuations &@f,(M,) from C(e)
andC(e’) are isomorphic.

Definition 10: Given a partially ordered se€®:, <), the strings = ajaz...a, is a linearization of
(3, =) if v=| ¥ | andVa,,ay € ¥ theni) a, = ay = ¢+ = A and ) for . # A, if a, < a, then, < A. In
words, s is a string obtained considering all the symbols of the Setwhere each symbol appears once
in the strings and for any two different elements Bfs.t. a, < a, thena, is considered ins beforea,.
Denote by(>)< the set of all the strings that are linearizations ofX, <).

Consider a configuration of' = (B¢, Ec,G¢) in the net unfoldingldy (My). =¢ is the reflexive
transitive closure of7¢, i.e. a partial order defined onto the set of elemé&sis) E-. Denote by(E¢) <,
the set of all the linearizations of the partial ordered(¢&t, < ). Strings that belong tdE-)<. can be
obtained one from the other by shuffling (interleaving) the order of the concurrent events.

Let o be a linearization of E¢, <¢), i.e. 0 € (E¢)<.. We have thatr = ¢(o) is a legal trace in
(N, My) where foro =e;...ep, ¢(0) = d(er) ... ¢(ex). Denote byL(C) the set of all the traces that
are obtained viay from the linearizations of the partial ordered $&, <¢).

We have that all the traces in the &{-(C) have the same Parikh vector, i, 7' € L(C), T = .
Thus a configuratio” compactly represents a set of traces that are equivalent under the interleaving of
concurrent events. Sind@y(Mo) = Uqce La(C), we have that the PN systefV/, M) and its unfolding
Up (M) are behaviorally equivalent.

In the following, whenever clear from the context, we drop the lower indewhen we refer to the

partial order relation< defined in a configuratiod'.
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Fig. 1.

Example 1: Consider the occurrence net= (B, E, ) displayed in Fig. 1-left. We have that:

- by e X b3 <X e3, etc.

- esfley; eqfles; eglies Sincees < eg and esfey, etc.

- e || ea, €3 || eo, €tc.

min(O) = {by, by}

Consider the PNV = (P,7,F) displayed in Fig. 1-right. Lety be a homomorphism from the

occurrence neP onto (N, M) be defined as:
- ¢(b1) = p1; ¢(b2) = pa3; d(bs) = p2; P(bs) = pa
P(bs) = ¢(bs) = p1; d(by) = B(bs) = p3; d(by) = pa; P(b1o) = pa
ole,) =t, for v =1,2,3, ¢peg) = t5, Pples) =ty
P(es) =t1; dler) =12
We have tha(9, ¢) is a branching process fa\N = (P, 7, F). C; is the initial configuration with

Be, = {b1,b2} and E¢, = (). C5 is the configuration obtained appending €4 the event; i.e. B¢, =
{b1,b2,b3} and E¢, = {e1}.

(s is the configuration obtained appending to the initial configuration the evanésde, i.e. Bo, =
{b1,b2,b3,b,} and Ec, = {ey,e2}. CUT(C1) = {b1,bo}; CUT(Cy) = {by,b3}; CUT(C3) = {bs,by}.

Cy is obtained appending t@’; the eventey, i.e. Be, = {b1,bs, b3, by, bs, b7} and E¢, = {e1, ea,e4}.
The partially ordered setEc,, <) has two linearizationsg; = ejeqse, and oy = eqeqey that differ by the
way the concurrent events and e, are interleaved. Thus two traces = titst5 and 7, = totqt5 are

compactly represented ky, without interleaving the two concurrent transitionsand ¢.

[11. THE ON-LINE MONITORING OF PETRI NET MODELS UNDER PARTIAL OBSERVATION

In this section we shell present firstly the standard algorithm for constructing a classical observer-

automaton of a given PN model. The method is similar to the construction of a classical observer for
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DES modeled as automata [MBLOO]. Then we show how to construct a reduced observer automaton (basis
reachability tree in [GCSO05]) that is based on the computation of the set of minimal explanations of the
observation generated by the plant. The idea is simple. The set of all the markings that can be reached
from the initial markings by firing strings of transitions that obey the received observation (explanations)
can be characterized as follows. First a set of (basis) markings is computed calculating backwards the se
of minimal explanations of the received observation. All the markings that are not included in this set of

basis markings are then reachable from a basis marking firing a string of unobservable transitions.

A. The classical observer automaton

Consider a PN modeN = (P,7,F) and partition the set of transitions into disjoint subsets of
observable7Z, and unobservable transitiors,, i.e. 7 = 7, U 7,, and7, N 7, = (. Given an arbitrary
marking M denote byUR, (M) the unobservable reach @f that is the set of markings that can be

reached starting fromd/ by firing only strings of unobservable transitions:
URn (M) = {M' | 30w € T2, St M 22, M'} @)

For a set of markings\, define:URyn (M) = Uyen URN(M).
Consider a PN, M) with labeling function/, : 7, — Q where is a set of labels that are emitted
by the observable events. The definition/pfextends to strings in the obvious manner i.e. do€ 77,
o =tity...ty We havel, (o) = l,(t1)l,(ts) ... Ly(ty).
Definition 11: The classical observer-automatti{ (N, M,)) for the partially observable PNV, M,),
T =T,UT, is CO(N, Mo)) = (Xeo, Eeo, feo, T, 0co) Where:
- X, is the set of states @fo((N, Mp))
- 0eo : Xeo — Pwr(Ry(My)) is a function that associates to each statg € X, a set of reachable
Markings ., () € Pwr(Ry(Mo))
- E., = is the set of events of the classical observef(\, M))
- 0eo(25°) = URp (M) is the set of markings iV, M,) estimated in the initial state of the classical
observerCo((N, My))
- feo : Xeo X E¥, — X, is the transition function o€0((N, M,)) that is defined as follows:
for z° € X, a state ofc0O((\/, My)) and a string of observable labelse E we havef,,(z§°, w) =
2% if 0,0(%°) 2 O Where po(2°°) = {ML Mo 5 M, A Ly(TTz. (7)) = w}.

B. The reduced observer automaton

It is possible to obtain an observer automaton that is easier to work with by modifying the read-out

map o., to another, simpler read-out map, that, for the same observed traceenumerates only a
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Fig. 3. The reduced observer (left) and the classical observer (right) for PN model of Example 2

subset of the PNV, My)-markings ing.,. This modification may require a change in the state space of
the observer automaton as well. To illustrate the rationale behind the construction of a reduced observer
automatorr0 consider a state® € X, of theC0 and then letM’(z¢°) be a subset of the set of markings
0c0(2¢°) of CO corresponding ta:° s.t. U Ry (M (x°)) = peo(x°). We follow [GS02] and callM’ ()
a set of basis markings far.,(x) if URx(M'(2°)) = 0c0(25°).

Definition 12: RO((N, M) = (X0, Ero, fros Trogs 0r0) 1S @ reduced observer-automaton of the PN
(N, M) if Vw € EZ,,
1) YM, € 0,0(27°),37 € Lpr(My) s.t. My = M, and £,(Il7,(7)) = w
2) and UR(0,0(2]%)) = 0eo(2}?) Where fo(a}’, w) = 2§
Example 2: Consider the PN model displayed in Fig. 2. The set of observable transiti@ps=s

fro(zhe,w) = a7 implies that:

{t13, t14, t15, t16, L17, L13, t10} While all the other transitions are unobservable. The observation labeling
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function is defined as followg,(t13) = €,(t14) = Co(t1s) = a, Lo(t15) = Lo(tis) = Lo(t17) = Lo(t19) = b.

For the initial state theRO (Fig. 3-left) considers only the initial markind/, = {p1,p2,ps}, i.€.
o(z}’) = {My} (since the PN model is 1-safe we denote the initial marking by simply enumerating the
places that contain a token).

The c0 (Fig. 3-right) considers for its initial state all the markings that can be reached fidm
firing strings of unobservable transitions, i.@x{’) = UR(M,). In total o(z5°) comprisesl25 markings
that correspond to all the triplegp;, p;,p,) of marked places that belongs (@, pa, ps, P10, P11) X
(P2, P6, D7, P12, P13) X (D3, D8, P9, P14 P15)-

Suppose the first observed labeldsThe stater}® of RO considers the markingd/; = {p,, ps, P16}
and My = {ps, p17, p1s}, i-€. o(z7°) = { My, Ms}.

The statex{® of the CO on the other hand considers all the markings that can be reached frfam
firing strings that contain only one observable transition that is labeled(x°) = UR(M;) UU R(Ms).
In total o(x$°) contains35 markings that correspond to all the triples of marked pla¢esp;, p,) that
belong to eithemis X (p2, pe, pr, P12, P13) X (D3, Ps; P9, P14, P15) OF (P16, P17) X pis X (P3, Pss P9s P1a P1s)-

Notice that the set of markings considered by the states &thg” andz’° have the same unobservable
reach, i.e.UR(Mj3) = UR(M,) where M; = {p3,p17,p19} and My = {ps,p19, p21}. TheCO considers
only one stater® where o(25°) = UR(o(2%°)) = UR(p(x%°)). Similarly for 25° we have that(z5°) =
UR(o(x})) = UR(o(x%)) = UR(o(xy)), for a5 we have thatp(z§") = UR(o(a%%)) = UR(o(a3)),
for z{° we have thato(z°) = UR(o(xy°)) = UR(o(273)) = UR(o(z}9)) and for z® we have that
o(x3?) = UR(o(233)) = UR(o(273))-

Denote byL(RO((N, My))) and L(CO((N, My))) the language of the reduced obsergef (N, M,))
respectively the language of the classical obse€@€(N', M,)). Both languages are subsetshf and
must be identical since they both must accept the set of all possible observed sequences of labels generate
by the PN modek\, M,). By construction of thek0 we have that the reduced obser®®((N, M,))
and the classical observed((N, M,)) of a partial observable PN modéN, M,) are such that:

1) LERO(N, My))) = £(GO(N My))

2) | Xeo I<] Xoo |

3) andVw € LRO((N, Mo)))(= L(CO((N, My)))) = o(2]°) € o(z5)) andUR(o(x7°)) = o(«5’)
wherez!° and z$° are the states that are reached from the initial st§teof RO respectively the initial
statex§’ of CO by executing the string of labels, i.e. z/° = f.,(z{°,w) andz§® = foo (2§, w).

Thus the number of states of a classical observer is smaller than the number of states of the reducec
observer but the number of markings that are considered by the classical observer for any of its states is

usually a lot bigger than the number of markings considered by the reduced observer for its corresponding
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state(s). This means that the state space of the reduced observer may be larger than the state space of t
classical observer. However this drawback vanishes when the observer is derived on-line, computing the

current state of the observer based on the last observation generated by the plant.

C. On-line monitoring of PNs under partial observation

Assume from now on that the size of the plant under investigation is large. This typically means that
the off-line derivedCO considers for any of its states a very large number of reachable markings and
moreover that the size @ (seen as automaton) may be also very big. Furthermore assume that changes
of the plant structure (e.g. changesZnwhen a sensor fails) occur from time to time. This implies that
the CO, derived off-line, must be modified from time to time. Given the effort required for the off-line
synthesis of the0 and given the size of theQ this is hardly possible in practice.

This difficulty can be partly avoided by constructing the observer on-line, constructing only those
branches of the observer graph that are necessary according to the observation, and doing that only whe
those branches become necessary. This leads to the following recursive on-line implementation of an
observer (both foco and forR0):

1) the on-line observer starts in the initial state

2) as soon an observable transitisne 7, is executed in the plant (we assume that no two observable
events are executed exactly at the same time) the sensor associateédimitinediately informs the
supervisory system (we assume that the sensor odgptt) that is emitted, when any observable
transitiont! € 7 is executed, is never lost and never delayed)

3) a new state of the observer is calculated by enumerating a set of possible markings the plant can
be in after observing the labél(t°)

4) return to2 with the newly calculated state (the set of new markings) as the initial state

Basically an on-line observer is obtained by deriving only the branch of the off-line observer-automaton
that explains the on-line plant observation.

From now on we make the following assumption unless otherwise stated:

Assumption 1:The labeling functiorY, is injective, i.e.l(t,) = ((t,) = t, =t,.

It is easy to extend the algorithms derived in this paper to the case Whisra@ot injective, by carrying
out the backwards search for all the transitions that share the same label, and tacking unions of sets of
reachable markings.

Below O,, = t{...t2 denotes a string of. observable events}, € 7) that are known to have
happened in the plant.

The classical on-line observed((\, M,)) considers for its initial state’ in stepl) the set of markings
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given by o.,(z5°) where: ., (x’) = {M : My 2% M Aoy, € Tu*o}. Then inductive calculations in step

2), 3), 4) evaluate, for an observed strif®, = ¢ ..., the stater{’:
0eo(25?) = { M s My &> M ATl (7) = O }

The on-line computation of a (minimal) reduced obsem®e{(\, M,)) can be performed backwards
by calculating the minimal explanations of the received string of observatipns t; .. .t,. Recall that
a minimal explanation is a trace that considers only transitions that must have happ@aretw the
execution of the last received observation.

Consider the PN modé€lV, M) and its net unfoldind/, (M) as defined in Section II-C.

Definition 13: Given the unfolding{, (M) of a PN (N, M,) and the first observed eved; = ¢
thenC(t7) = (Bce), Ecwe), Geowey) is @ minimal configuration that allows for the executiontdfif.

i) e € Egue) S.t.¢(t]) = ef and
ii) Ve € Egqey, if e # €f theng(e) € T, and e < ¢f.

Denote byC(O,) the set of all minimal configurations that satisfy Definition 13 for observatior= ¢

and denote by (O,) the set of all minimal explanations @?;:

E(01) = {0 | o€ (Ecug) NC(O1) €C(O1)}

Denote byL,(O;) the set of traces i\, M,) that correspond to the minimal explanatiahg), ):
Ly(01) ={7 |7 =¢(0) No € £(O1)}

Definition 13 can be extended recursively for a given a sequence of observed @yents) ... 12, as
follows.

Definition 14: Given the unfolding{, (M) and a sequence of observed evefts = t9...t° then
C(0,) = (B, Ec(o,), Geo,)) is a minimal configuration that obeys the observat@p if:

1) there aren events inE¢ (o, that have images vig observable transitions andk, 1 < k < n,

there exists an unique;, € E¢(o,) S.t. ¢(e}) = 17

2) (Vg,k: 1<qg<k<n)= (e <e} orenler)

3) Ve € E, ¢(e) € T, = ey such thate < 9.

Denote byC(O,,) the set of all minimal configurations that minimally explai®, and let £(0O,,),

respectivelyL,-(O,,) be defined as above.

D. Backward computation of an on-line reduced observer

The backward computation of the minimal explanations can be seen as a forward search in the reverse

net\,., (obtained from\ by reversing the direction of all the arcs) using modified firing and enabling
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rules. The backward search algorithm that we use for deriving the reduced observer is an adaptation of
the algorithm presented in [AINOO], [FRSBO0Z2] for checking the coverability property. The problem in
[AINOO], [FRSBO02] is to check (backwards) if, given a bad markihf,,, there is a trace allowable

from the initial marking)M, that leads to a marking greater thas,, or equal. The difference is that

for observer design and for fault detection one must calculate all the minimal traces, whereas in checking
the coverability property, it is sufficient to prove the existence of one single trace.

Formally we have the following way of defining the reverse net dynamics. Defineéh = a — b if
a > b, anda © b = 0 otherwise and extentl© ” to multi-sets in the natural manner [AINOO].

Definition 15: Backwards enabling ruleA transitiont is backward enabled in a markingy/ € NI if
Jp € t* s.t. M(p) > 1. Backwards firing rule’A backward enabled transitionin a marking M € N/7!
fires backwards fromd/ producing M’ (denotedM ~» M’) where M’ = M © Post(t,-) + Pre(-,t).

A sequence of transitions = ¢, ...t; is backward allowable from\/, (denotedM, ~~ M, ) if for
t=wv,...,0, 7, =t,...t,41, andt, is backward enabled ifZ, where M, <5 M, i.e. IM,_1,... M,
such that:M, 2% M, "' M, ... "“5 M.

Definition 16: Given a PNV, M,) and a marking)M, then M is covered byM, if M’ < M, s.t
M % M.

Definition 17: Consider a PNV = (P, 7, F) and a partiton7 = 7, U 7,,. Then given an initial
marking M, and a final marking)/;, denote byl/Cx(My;,, My) the set of all markings\/ < M, that
cover My, by finite unobservable strings:

UCN (M, My) = {M < Mo | My 8 M A0y € T;;}

Let UL (Myin, M) be the set of unobservable strings that are backwards feasibleMfgmand lead

to a markingM < Mj:

UL (Min, Mo) = {70 € T | 3M € UCK(Miin, Mo) s.t. Mpin % M |

Proposition 1: We have that:

(@) Given a PN(N, M,) and a markingM that is not covered by, thenvVM’' > M, M’ is not
covered byM.
(b) Given a PNV, a partition 7 = 7, U 7,,, a final marking);,,, and an initial marking)/, then:

Proof. The proof is straightforward. [ |
Lett° € 7 be the first observable event. We explain below how the set of minimal explanatig(ts)

is calculated backwards.



Alg _min _exp: Algorithm to calculate the set of minimal explanations

INPUT: (N, Mo), To, Tuo, t°
OUTPUT: L,(t°)

1 label My, as the root and tag it "new" where My, = Pre(-,t°)
2 while new markings exist do the following:
2.1 select a new marking M s.t.
2.1.1 there does not exist another marking M st. M < M and M’ is tagged either

as "new" or "unknown"

2.1.2 M has no a predecessor marking M’ such that there exists a marking
as "unknown" and M" < M

M" tagged

2.2 if no unobservable transitions are backwards enabled at M then
221 if M < M, then tag M as "solution end" and tag all the markings from the
root to M as "solution"

2.2.2 else tag M as "no solution”

2.2.3 repeat until no more markings are tagged with "no solution"
2.2.3.1 for all visited markings s.t. M'> M, tag M’ as "no solution"
2.2.3.2 remove from the tree the markings that are reached backwards only from
markings tagged as "no solution"
2.2.3.3 for all markings M’" that have the tag "unknown" and have their successors
tagged as "no solution" tag them as "no solution"
2.3 else tag M as "solution-end" if M < M, otherwise tag M as "unknown" and for
each unobservable transition t enabled at M:

2.3.1 calculate M ~5 M’
2.3.2 if there exits a marking M" such that M’ > M" then
2.3.21if M" is tagged as  "no solution" then remove M’
2322 else if M'=M" then draw an arc from M to M"
2.3.3 else introduce M’ as a node, draw an arc with label t from M to M’, and tag

M// as unewn

2.4 if no new marking can be selected at 2.1 then a fix point is achieved and the
calculation ends
ULN(Myin, My) is obtained as the set of unobservable strings that start in a marking
tagged as solution-end and end in the root marking.
4 Ly@)={r|7=0t’ and o € UL (Mysin, Mo)}

17
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Fig. 4. A part of a PN model and the backward coverability treelfir= Pre(-,t°)

Example 3: Consider in Fig. 4-left a part of a PN model (the dots placed next, i@, pspi1, pi2, P14
andt, indicate this). Transitiong,, t;; andt;, are observable transitions whereas all the other transitions
that are displayed are unobservable.

Let ¢, be the transition that is observed first/; = {p;} is the root marking, i.e. the partial marking
that allows for the execution af,.

At M; we havet; andt, as the backwards enabled transitions and they leadforespectivelyMs;.
Assume thatl/; is selected at stefd.1. ¢3 and ¢, are backfired fromM; in step2.3 of Alg_min_exp
and lead toM, and M; respectively. The set of markings tagged’asw” is {Mjs, M,, Ms5}. Consider
that M5 is selectedts and t; are backfired and we obtain/; and Ms. At this point the set of markings
tagged as’new” is now equal to{ M3, My, M7, Ms}. Notice that at this step/s cannot be selected since
Mg > M3 and M3 has the tag’new”.

Next select), in step2.1. t5 is backfired from\/, obtaining Mg while the marking obtained backfiring
t, is M. After the next execution of st@pthe set of markings tagged asew” is { M3, Mg, Mg}. Select
in the iteration of2.1 the marking);. ¢y is backfired in ste.3 and we obtain the marking/Zy = {p1;}
that is smaller than the initial marking. Thus = tgt3ty is a minimal explanation), is tagged as
"solution-end”and M3 is marked as'solution”. ¢, is backfired and we obtain the markidd;, = {p13}.

The set of markings tagged &sew” is { Mg, Ms, My, Mio}. Now Mg can be selected at steépl since
Ms is tagged as'solution”.

At M, there are no unobservable transitions backwards enabled and in the initial magking
unmarked. Thusl/,, is tagged’no solution”™ The computation continues in this manner until either the
set of new markings becomes empty or no selection can be made &tis{epfix point is achieved and
the computation ends).

Remark 1:In the algorithmAlg_min_exp, the interleaving of the concurrent events is not filtered out.

l.e. atMs, t3 andt, are concurrent events that are interleaved obtaining backwdyds the same manner
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as the unfolding method [McM92] is used to search forward from the initial marking, the backwards

unfoldings proposed in [AINOO] can be used to filter out the interleaving of concurrent events.

Remark 2:In step2 of Alg_min_exp the computation continues even if a marking smaller thanis
found and a minimal explanation is derived. This is necessary because we must calculate the entire se
of minimal explanation< ,/(¢°) to guarantee that the unobservable re&ldi(M ,(t°)) of the subset of
current possible markings that we deritd ,-(¢°) for the current state of the reduced observer is indeed
equal to the entire set of possible current markings,(¢°), the current state of the classical observer.
In order to guarantee this, it is necessary to explore also paths that lead from one initially marked place
to another initially marked place, since these paths may provide additional minimal explanations for the

observed event.

The preceding remarks indicate that the on-line computational cost of calculating all the minimal
explanations for a reduced order observer is still quite large. However we show in Section IV-D that
for a subclass of PN models, namely PN models with trap unobservable circuits, there is possible to
design a very efficient algorithm that derives a subset of minimal explanafigig’) C L,(t°) s.t.
UR(M)(t)) = URMM (1)) = M ().

Theorem 1: Given a partially observed PN moddl’, M,) that is bounded w.r.t. the unobservable
evolution, and given any observable evénthat can be generated first by the plant, th&lg_min_exp
derives in finite time the entire set of minimal explanatighs(t°).

Proof: First we prove thaflg_min_expterminates. Since the PN modéV’, M) is bounded w.r.t. the
unobservable evolution we have that the set of minimal explanations is finite (notice that the unobservable
cycles that repeat the markings are filtered out). Any infinite sequence created from a finite number of
elements must include a copy of an element, infinitely many often. This is in contradictior’adlith
the predecessor markings are either bigger or incomparabldéénce the algorithm must stop after a
finite number of steps. Thus after a finite number of markings have been generatdd hyin_exp,
the algorithm either finds a minimal explanations or cannot select a new marking & stefince the
number of minimal explanations is finite it results thlty_min_exp cannot select a new marking and

terminates.

To prove thatAlg_min_exp computesC,/(t°) requires:) to prove that any trace that is calculated is a
minimal explanation andi) to prove that all the minimal explanations are calculated.

i) can be proven straightforwardly by induction constructing a minimal configuration such that the trace
that is calculated byAlg_min_expis a linearization of its set of events. The proofiofis straightforward
since at any step we consider all the unobservable transitions that are backwards enabled. =

Given the received observatidd,, = t¢...t° the computation of an on-line reduced obsemefO,,)
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is performed recursively as follows:

1) initialize the initial state in the reduced observet, (Oy) = { My} and o(z{°) = M, (Op)
2) thenfork=1,....,n
a) Mgy, = Pre(-,t3)
b) for all M1 € M, (Ok_1)
i) computeUCn(Myin,, Mx—1) that is the set of markings that cover unobservahly;,, ,
with initial marking M;._; executingAlg_min_exp
i)y derive ULy (M, , M) that is the set of minimal unobservable traces that can be
executed fromM/,_; s.t. the resulting marking covere/;,,

iii) derive the set of minimal explanation8, (Oy) and the set of markinga1 ,/(Oy):

Ly (Ok) = {1 | e = Thm10w0ts, Tke1 € Lar(Ok) A 0uo € ULN (M pin,, Mi—1)}
My (Og) = { My | My ™ My A € L,o(On)}

3) create the new stat€’ in RO(Oy), o(z}°) = M, (Oy) and draw an arc from}°’ | to x}° labeledt;,

The main drawbacks of the backward search methods are that the computation terminates when
a fix-point is achieved and that unreachable states are visited during the computation. Even though
incomparable to the forward search (since the backward and the forward search explore different state
spaces) the backward search was found more efficient than the forward search for DES models of large size
[NAH *98]. As shown in [FRSBO02], the computational efficiency of the backward search can be increased
by using place invariants (i.e. the visited markings satisfy the P-invariants) or other heuristics to avoid
unreachable markings as well as the backward unfolding technique [AINOQ] to avoid the consideration
of all the possible interleavings of the concurrent events. Moreover for real-life applications, the size of

the unobservable sub-net that is processed is in general small, so that the calculation is efficient.

IV. THE DIAGNOSIS OFPN MODELS

In this section we present two algorithms for the centralized diagnosis of a large plant. We present in
Section IV-B the classical diagnosis algorithm based on the calculation of the complete explanations of
the received observation. We call it classical since the diagnosis is performed based on the calculations
derived by a classical observer as presented in Section IlI-A.

Then in Section IV-C we propose a diagnosis algorithm based on the calculations of the minimal
explanations of the received observation (see Section 1lI-B). We show that the diagnosis result based on

minimal explanations is sufficient for reliably detecting the faults that happened for sure in the plant.
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A. The setting and problem formulation

The plant model represents the normal plant behavior as well as the abnormal (usually undesirable)
behavior that can occur after a fault has occurred. The abnormal behavior is initiated by the occurrence
of some unobservable (silent) transitions that represent the fault events that may happen in the plant.
A diagnoser uses the plant model, the plant observation, and in the distributed setting of [JBB] the
information received from its neighbouring agents, in order to answer the following questimidsa
fault happen or not?{fault detection);Which kind of fault happened if any?(fault isolation) andHow
did it happen?{explanations [Mcl98]).

The diagnosis task should be seen as part of a centralized supervisory architecture where the diagnosi
result is used on-line for taking some control action that guarantee the safe operation of the plant. In this
respect and taking into account that the plant under investigation is assumed to have a large size it is
important to specify, before designing the algorithms, what are the specifications for the plant diagnostic.
For example, the user should specify whether the diagnostic is concerned with finding all the fault-events
that"could have happened in the plant without contradicting the plant observatamniith finding only
the fault events thainecessarily must have happened for explaining the received observatigithi the
CO diagnoser the first specification can be specified, whilerRtheliagnoser can only satisfy the second
type of specification.

We consider in this section the synthesis of on-li@eandR0 diagnosers, under the following structural

and functional assumptions:

the PN model of the overall plat” = (P, 7, F') is completely known, and it is bounded w.ff,,;

in particular we assume that the model is completely correct, without any errors, and that there are
no unmodelled (hidden) external interactions (the closed world assumption)

- the initial marking M, is precisely known

- the plant observation is represented by a subset of observable trangjiong

- the occurrence of an observable transition 7, is always reported correctly and without delays

- the faults are represented by a sulifebf unobservable (silent) transitiong(< 7,,)

- no-fault-masking.e. the occurrence of a fault transition must have effects on the resulting marking

and consequently on the future plant behavior.

In this paper we do not formalize the last assumption since we do not deal with diagnosability in itself.
This paper answers the question of when and in what sense there exists a reduced bbdkaiatetects
those faults that, according to tl#® observer, must have happened for sure. Conditions foiCth&
detect all the faults that must have happened for sure can be found in papedg®8L"95].

In this work the faults in the PN models are represented as (fault) transitions whose occurrence indicates
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a malfunction in the plant behavior [SS85]. Obviously the set of fault transitions (denot@g) is a
subset of the set of unobservable transitiodhs{ 7,,) since otherwise the fault detection problem would
be trivial.

Beside the fact that a fault must be unobservable, it must also be unpredictable, i.e. for any state the
plant can be in before the occurrence of a fault at least one no-fault event must be legal according to
the plant model(\, M,) used for synthesizing the diagnoser; otherwise the imminent fault would be
predictable and, consequently, the model would not correctly represent the occurrence of the fault (an
earliest event should have been labeled as a fault). We formalize this as follows.

Assumption 2:Given a PN modelN, M) and7; (7; C 7,,) the set of fault transitions, then for any
reachable stat@/ € R,(M,), at least one non-fault transitiont € 7 \ 7; is enabled, that is:

VM € Ry (My), Enbl(M) € T;

In words Assumption 2 says thda fault is the choice of the plant of not respecting the good (designed)
behavior” which is a subset of the behaviour that is legal according to the model used for designing the
diagnoser. Since the condition that the faults are unpredictable requires to check for every reachable
marking if there are enabled non-fault transitions or not, it is computationally impossible to check for a
large PN model whether Assumption 2 holds true or not. However it is very natural to assume that for
every fault event € 7;, there exists a non-fault evetite 7 \ 7; such that't’ C *t. This is a sufficient
condition for the fault to be unpredictable since whenever a fault event is enabled, at least one non-fault

event is enabled as well.

B. Centralized diagnosis based on complete explanations

Consider the plant model given as a PN= (P, 7, F’) with given initial marking)/,. Then consider
the partition of the transition sé&t in two disjoint subsetd, observable and respectively, unobservable
transitions and lef; C 7,, be the subset of the unobservable transitions that model the faults. The plant
observation available at tin®, is given by the ordered sequence of observable ev@pts: ¢ .. .t.

Since O,, is correctly and without any delay received by the diagnoser-agent, the possible plant
evolutions up to the timeé, are given by the set of all the possible traces in the PN mddehat

start from the known initial marking/, and that obey the observatid@n,:
Ly (On) = {1 € Ly(Mo) | Uz, () = On}
The set of the possible states (markings) the plant can be in is:

Mp(0,) = {M | 37 € La(0,) st My Z M}
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Consequently the plant diagnosis after observirg is obtained by projecting the set of possible

evolutions onto the set of fault everffs :

Dn(On) = {0y | oy =Tg, (1) AT € L (On) } 4)
The centralized diagnosis result is:
N if Da(O,) = {e}
DRn(On) = § F if € € Da(O,) (5)
UF if {e} € Dr(O,)
whereN, F andUF represent the diagnoser statmal (no fault has happenedjure faultand respectively
uncertain(a fault may have happened) [SSR5].

C. Centralized diagnosis based on minimal explanations

Let the set of minimal explanations, (O,,) and the set of estimated markings 8f(0,,) be as
presented in Section 11I-B. The minimal plant diagnosis after obser@ngdenotedD, (O,,)) is obtained

by projecting the set of minimal explanations onto the set of fault evénts

Dy (On) = {oy | o =T, (1) AT € Ln(On)} (6)

Then the diagnosis result based on the set of minimal explanations is:

N if Dy (On) = {e}
DR\ (On) = { F if € & Dy (On) (7)
UF if € C Dy (Oy)
Theorem 2:If the plant model\V obeys Assumption 2 then we have the following relationship between
the diagnosis resulDR ,/(O) derived based on the set of complete explanations and the diagnosis result

DR ,(O) derived based on the set of minimal explanations:

La(On) 2 Ly(On) DRy (On) ~r DR\ (On)

| | m o=

{N,UF} <« {N}
7, (Lar(On)) 2 Tz (£yr(On)) UF} = [N, UF}
l l {UF} <« {UF}

DR (On) ~r DRy (On) {F} & {F}

Fig. 5.
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Proof: Given the observatio®; = t{...t%, consider the set of configuratiods$t®) in Uy (O,,). We
have that a fault is diagnosed that for sure happened based on the received obséryatnmhusing the
set of explanations generated BYIff VO € C(t°), de € E¢ s.t. ¢(e) = t; ande = e7 for some event
eq € E¢ that corresponds to an event that was observége | = t7, 1 < g < n).

This is true because by Assumption 2 in any reachable marking at least a non-fault event is enabled
thus the necessary condition for a fault event to be diagnosed that for sure happened is that for every
configurationC' € C(t°) there exists at least an eventhat is the image of fault transitioty (¢(e) = ¢y)
that is a predecessoe < ¢7) of an observed event).

Hence by deriving only the set of minimal configurati6(t®) all the faults that can be diagnosed that
for sure have happened are indeed detected. T, = {F} < DR, = {F}. The other relations
betweenDR, and DR, are trivial. u

L, (0,) is in general a lot smaller thafi,(O,,), thus the efficiency oR0 diagnoser relies on the
computational effort for enumerating backwards the set of minimal explanations. This computational
complexity depends on the size of the backward reachable state space for unobservable sub-nets, explainin
the different faults one is interested in. Even though the computational effort for degypi@,,) is not
explicitly comparable to the computational effort for derividg (O,,) (since the forward respectively
the backward search explore different and incomparable state spaces), in practice one can expect that th
backwards implementation of the minimal explanations will be quite efficient. Indeed in many applications
there are no sub-nefg’ of the PN mode]\ having a large size and comprising only unobservable events.
Moreover the efficiency of the diagnosis algorithm based on the (backward) calculation of the minimal
explanations - the on-line reduced order observer algorithm - of the plant observation can be further
improved if there isa priori knowledge of plant dynamics that allows the use of some heuristics to drive
the backward search [FRSBO02].

D. The case of PNs with unobservable trap circuits

In this section we treat the case when all the unobservable circuits in the PN model are traps (see
Definition 3) showing that this class of PNs allows to compute a (often small) subset of minimal
explanations such that the diagnoser designed based on this subset of minimal explanations has the samr
performance as the diagnoser designed based on the entire set of minimal explanations. We show how
additional termination conditions can be used in algorithig_min_exp presented in Section 1lI-D (that
calculates the set of minimal explanations) in order to calculate this small subset of minimal explanations.

Theorem 3: Consider a trap circuit PNV, M,). Then, given a trace that is legal from the initial

marking M,, o € L(M,) we have that:
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i) o' € L(My) anda <o together |mply that

i) 30" st.o’o” € La(My) ando’ + 0" =0
(whereo’c” is the trace obtained by catenation @f and ).

To prove Theorem 3 we need the following result that can be found as Theorem 17 in [Mur89].

Theorem 4:([Mur89]) In a trap-circuit netN', M, is reachable from\/, iff:

i) there existsy a non-negative integer solution of the marking equation Eq. 1

i) and (N-, M0?> has no token-free siphons
where V- denotes the sub-net &f consisting of transitions s.t. o (t) > 0 together with their input and
output places and/, - denotes the sub-vector o, for places in\-..

Proof: [Theorem 4]-sketch«= We have thatV-. has not a token-free siphon. Then inductively one
can prove that after firing a sequence of transitiehighe remaining sub-ne\/;” of N2 with o= O_)'/—FOT;’
has not a token-free siphon.

= The proof is trivial. [ |

Remark 3: In the following we present the proof of Theorem 3 that basically constitutes a detailed
proof of the induction step of the proof of Theorem 4.

Proof: [Theorem 3] Sinces € Ly (M,) denote byM,; the marking obtained firingr from M,
(My 5 M,). We have thaE;’ s.t. Mo+ F'- (;; +F- ;’ = My. Theno' € L (M) and M, < M imply
that: M’ + F - o = M.

To prove that there exists a legal tracethat can be executed frod’ we need to prove tha.tz\/’;/, M)
has no token-free siphons Whe/Ké;” is the sub-net ofV' consisting of transitions that are executeéﬂ‘n
together with their input and output places am is the sub-vector marking af/’ for places inN;”.

For My = My we have thatV,(p) > 0 and: 0

Z ) 4+ Mo(p Z (8)

te®p tep®
that in words means that for any plapec P the number of executions of the transitions that remove

tokens fromp in o is smaller than or equal to the number of tokens plus the number of executions of
transitions inc that add tokens tg.

Consider now a set of placégin the sub-ne(/\/;”, M~ ) s.t.Q is a siphon in<N;”, M’ ).i.e. Assume
that ) is token-free in the marking that results after ?iringfrom My, 1.e. Mé(@) = O.GWe would have

then for any place € @ that:
Y o1+ Mo(p) =Y o'(1) (9)

te®p tep®

S o) >3 (10)

te®p tep®

From (8) and (9) we obtain:
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Now consider a place; € Q. We have thap ¢ = thus inN;” either*p; # 0 or p$ # 0.

From (10) we have tha}_,.. ;”(t) > (. Since(@ is a siphon we have that:
Vte T, (0"(t) >0andp; € *t) = p; € Q

The for eachp; we have thad ;..  o"(t) > 0. Two cases must be considered:

Case 1 p; andp; belong to a circuit.
Case 2 there exists a placg; such thato”(t) > 0, andt € *p; N p5.

Case 1 We have the following two cases:
Case 1.1 neitherp; nor p; have input transitions iW;H other than transitions that are part of the
circuit in V-,
Case 1.2eitherp, or p; has input transitions iN;H other than transitions that are part of the circuit
in NV,

Case 1.1 We have the following two cases:
Case 1.1.1neitherp; nor p; have input transitions that belong M;

Case 1.1.2eitherp; or p; has input transitions that belong 16-.

Case 1.1.11In this case{p;,p;} is an empty siphon igV-. that contradicts the initial assumption.
Case 1.1.21n this case eithep, or p; would have become marked firing the transitions that belong to
o’. Since all the circuits in\" are traps it results thap contains tokens.

For Case 1.2and Case 2consider a place,; and apply the same reasoning as above. By a simple
induction argument one can prove considering all the place® d¢ihat either a place that belongs to
circuit has been marked firing a transition considered in the stringnd thus() is not empty in/\/;//
or there is a siphor)’ C @ that was empty in\-.. Thus the statement of the theorem is proven by
contradiction since) was assumed empty aod_. cannot contain an empty siphon. [ |

Then we have the following corollary:

Corollary 1: Consider a trap circuit PN, Mj). Then, given two traces, and o, that are legal from
the initial marking My, o1 € Ly (My) and oy € Ly(M,) we have that:

o109 € Ly (My) implies that
do} s.t.oy0) € Ly (M) and ;’1 =
Proof: Straightforward applying Theorem 3. [ |

We now show that the following additional assumption greatly reduces the computational effort required
to calculate all the minimal explanations for an observed sequence of &lgnts

Assumption 3:All the unobservable circuits in the PN model of the plant are trap circuits.

Based on Assumption 3 and Theorem 3 we obtain the following result:
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Proposition 2: Consider a PNA/, M) satisfying Assumption 3; the first observed event in the plant
is t{. Then, given two unobservable strings,, , 0., € 7,5 that are both legal from the initial marking
My (040, 0L, € Ln(My)), S.t.:

1) My 2% M > Pre(-,t9)

2) My 22 M’ > Pre(-,19)

3) and O’ZO < Ouo

—

there always exists an unobservable strifig), € 7.} s.t.i) o) 00, € La(My) andii) o), + UZO = Cuo-
Proof: The proof is straightforward applying Corollary 1 t&/,,,, M{°) whereN,,, denotes the sub-

net of A/ comprising the unobservable transitiofis, and MY denotes the sub-vector df/, restricted

to places in\,,. [ ]
Consider the seL,/(¢°) of minimal explanations of the first observed eveéhiexecuted in the plant

N. We say thatr € £,/(t°) is a strictly minimal explanation of’ if V7' € L,(t°), r<T s =T

Denote byL}/(t°) the set of strictly minimal explanations ¢f. For a sequence of observed evefits

denote byL}/(O,) the set of strictly minimal explanations of the received observation. Denot&tRy

the set of markings that result firing strictly minimal explanations from the initial marking:
Mi(0n) = {M | My © M A7 € £3(0,)}

Denote byDR(O,,) the diagnosis result based on the set of strictly minimal explanatign®,,).

Theorem 5:Consider a PN model that has the property that all the unobservable circyits, it/,)
are traps and any observatidh, that can be generated by the plant. We have that:

1) DR (On) = {F} < DRy (On) = {F}

2) andUR(M(O,,)) = M (O,,)
whereDR (O,,) is the diagnosis result based on the entire set of explanationdan@D,,) is the entire
set current estimated of markings.

Proof: The proof is straightforward using Proposition 2 and Assumption 2. [ ]
We can derive the set of strictly minimal explanations of the first observed &je(’) running the

algorithm Alg_min_exp with the additional termination condition:
if there exist two markings\/;, M, that are reached backwards froid;, by firing o; ando;
(Min <5 M; and My, <> M;) such thatr; > o; then M, is deleted

This condition implies that:

1) the computation does not continue backwards frosolation-endnode
2) if a marking M; is reached backwards from/;;, firing o; and there is a minimal explanatian.
that is already derived such that > o, then M, is deleted
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The extension to a sequence of observed events is then straightforward.
Remark 4: Notice that the tabular algorithm proposed in [GCS05] to calculate the set of strictly
minimal explanations for a PN with acyclic unobservable sub-nets can be easily adapted for PN with

trap unobservable circuits.

Fig. 6. A a PN with trap unobservable circuits (left) and a general PN (right)

Example 4: Consider the PN modéV, M,) displayed in Fig. 6-left A/ is a PN with unobservable
trap circuits since\ has two unobservable circuitstop-ts and pstop;t; and both circuits contain the
set of placeqps, p7} that is a trap.t5 is the only observable transition, andts are the fault transitions.

The set of minimal explanations of the first occurrence;as:

Ly (t°) = {7'1 = tolats; T2 = litals; 73 = tolrtstls; T4 = telatals; 75 = tetalotrlsts; T6 = t6t2t6t2t4t5}

The set of strictly minimal explanations is:

Li(t°) = {71 = tolats; T2 = l1tals; 73 = tolrtsts; T4 = t6t2t4t5;}

75 is not a strictly minimal explanation becausg < 75. The strictly minimal explanation; can be
extended by firing the string = t2tg and 75 + o = 75.

Similarly 74 is not a strictly minimal explanation becausg 7. The strictly minimal extension, can
be extended by firing the string= t»ts and 7, + o = 7.

Consider now the PN modéN’, M,) displayed in Fig. 6-right which contains an unobservable circuit
that is not a trap s is the only observable transition, andtg are the fault transitions. The set of minimal

explanations of the first occurrence &fis:
L (t°) = {11 = totats; o = titats; T3 = totrtsts; Ta = tetatotrtsts; s = tatatatatotrtsts}
The set of strictly minimal explanations is:

éﬁ\/’(to) = {Tl = t0t4t5; Ty = t1t4t5; T3 = t0t7t3t5}
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Pout Pin

PN PN4

Fig. 7. The PN model of a component -left. Four components that interact via common places - right.

We have that; cannot be extendable neither by the stritig= .t nor by the stringe = t4t, and
consequenthyU R'(M?*) # M. This illustrates why Theorem 5 is not valid for PNs with unobservable

circuits that are not traps.

E. Final remarks

We have discussed in this section the detection for sure of a single fault. The extension to the detection
of the occurrence for sure of multiple faults is straightforward. Consider the set of fault events partitioned
as7; = T, U...Tg, Where a subset of fault transitiors, : = 1,...,m model a fault of kindF;.

Given the observation generated by the pl@nt we say that a fault of kind; happened for sure in the
plant at leask; times if any explanationr € £(O,,) contains at least; appearances of fault transitions
that belong toZg,, and equality holds for at least one explanatidne L, (O,), i.e.: V7 € L (O,),
Yier, (T(1) =k and3r' € Li(0n) 8437 (T(t)) = ki. Then it is easy to show that if the classical
diagnoser detects e.g. that a fault of kirdoccurred for sure at leagt; times, that a fault of kind";
occurred for sure at leagt times etc. then the reduced diagnoser detects the same thing.

In a companion paper [JBB] we will show why the backward search for minimal explanations of
local observations allows for a distributed implementation of the fault diagnosis algorithms. The main
property of the backward search that enables this decomposition is the fact that the initial marking does
not have to be known completely in order to apply the algorithm, unlike what is needed in the case
of the forward search and the centralized observer. In order to illustrate this distributed implementation,
consider the following simple scheme (see Fig. 7) where the overall plant description is given by a set of
components (each component modeled as a PN) and their interactions (modeled as shared places). Thi
example illustrates the application of the method that we presented in this paper to the modular/distributed

monitoring of a large plant.
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Fig. 7-right represents a plant comprising 4 interacting components. The components are similar except
for the partition of the set of observable and unobservable transitions of the components that may be
different. Consider an arbitrary component of the model (Fig. 7-left).

The normal sequence of operations of a component transfers a token recejygdoap,,; executing
tytstot;. However due to some internal failures each component may fail to accomplish this task. E.g. the
fault eventts removes the token froms and makes impossible the transfer of the input token via the
desired sequence of operations. Transitionand¢ts model recovery actions, whereasalso models a
fault.

As already mentioned each component has its own partition of the transitions into observable and
unobservable transitions, as well as its own observation labeling function. Assume for the component
displayed in Fig. 7-left that the set of observable transitiorig, is {¢,,¢3} while all the other transitions
are unobservable. Assume that the local agent that mortitarsp, displayed in 7-left observes the label
of ¢; and this is the first observation generated by the plant.

We have the set of minimal explanationstgfin the local component given byr; = tstoty; 72 = tety}
wherer; requires that one token has enteggg but , is a valid minimal explanation whatever happens
outside ofC'omp;.

Similarly if the label oft; is observed first in the plant, the set of minimal explanationg;ah the
local component is given byrs = t4t3; 74 = tetsts; 75 = tstalsts} wherers andry require that one token
was delivered from a neighbouring component whergasquires that two tokens were delivered from
neighbouring components.

We analyze then in the neighbouring components how the required token(s) can be delivered. For a
plant that comprises a large number of components there will be typically a small number of components
that need to be analyzed, i.e. only those components that contain places from which there are oriented
paths comprising only unobservable transitions that lead to the input places of the observable transition

whose label was emitted.

In a distributed setting where each component is supervised by a local agent [JB05], the agents exchange
information about the tokens that could have exited/entered different components, computing the set of
minimal explanations of the observation of the overall plant by consistent pairs of locally allowable
traces. E.g. for the local minimal explanations that require tokeng;yjahe local agent that supervises
the component displayed in Fig. 7-left must ask the neighbouring agents about the possibility that these
neighbouring components sent the required tokens to placef the local componentomp;.

Notice that local computations are possible even though the marking of a component is only partially

known (e.g. the marking op;, is not precisely known). Moreover under some technical conditions we
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have shown in [Jir06] that a local agent can derive in absence of any communication with its neighbours,
a local preliminary diagnosis that is an overdiagnosis of the diagnosis result derived by a centralized agent
for that component w.r.t. the detection of the faults that for sure happened in that component. This will

be the subject of a paper in preparation [JBB].

V. CONCLUSIONS

The research is motivated by the need to designing distributed fault diagnosis algorithms for large and
complex systems where inputs/output signals are sent/received by components placed in different locations
[GLO3],[FBHJO05],[JBO5]. The lack of observation of the interactions of a component with its neighbors,
the unreliability of the communication channels, as well as the requirement that the local agents should be
able to provide the diagnosis of their component in any situation make the distributed diagnosis problem
very difficult.

Beside its use for designing a distributed diagnosis algorithm the backward analysis obtained in this
paper can be deployed for the centralized monitoring of large PN models. It is well known that for large
plants a diagnoser-automaton may become too large to handle. This is because for a given sequenct
of observed labels the centralized monitoring requires the calculation of the entire set of complete
explanations, involving the enumeration of very large sets of markings. The method for the centralized
monitoring of large PN models proposed in this paper relies on the construction of a reduced observer that
considers in a given state fewer markings than the classical observer. However, all the markings considerec
by the classical observer can be obtained from the markings considered by a reduced observer, by firing
unobservable transitions. The size of the set of markings considered as states of the reduced observer i
in general a lot smaller than the size of the set of markings considered as states of the classical observer
Moreover, it is possible at any time if required to derive the set of markings estimated by the classical
observer.

We have shown that backward search for deriving the set of minimal explanations of the received
observation leads to a plant diagnosis result that equals the centralized diagnosis result based on the se
of complete explanations at least for the detection of the faults that for sure happened in the plant. This
makes possible the centralized monitoring of very large plants since the complexity of the calculations
does not depend on the entire plant size but only on the size of the largest sub-net that contains only
unobservable events.

In this paper we have considered the case of untimed PN models where an abstract notion of time is
introduced via the partial order relation between the events in the net unfolding. As a future work we
plan to extend the methodology presented in this paper for PN models that explicitly consider the time

as a continuous and quantifiable parameter (e.g. Time Petri Nets).
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Another direction to extend this research is to consider the case of a large plant with uncertain

observation [LZ02], i.e. the plant observation may be corrupted, randomly delayed or lost.
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