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George Jiroveanu, René K. Boel and Behzad Bordbar

Abstract

This paper deals with the on-line monitoring of large systems modeled as Petri Nets under partial observation.

The plant observation is given by a subset of transitions whose occurrence is (always) acknowledged by emitting a

label received by the monitoring agent at the time of the occurrence. Other transitions not in this subset are silent

(unobservable). Usually on-line applications require the computation of how the system hasevolvedfrom the last

known (or estimated) marking(s) by enumerating the set ofall the explanations of the observation received by the

monitoring agent, i.e. the set of all allowable traces, such that the execution of these traces from the initial marking

would generate the sequence of observed labels in the correct order. This can be accomplished by a forward search

algorithm starting from the initial marking. However, the application of forward search techniques to large systems

has several disadvantages. Firstly, the set of current allowable markings of the system can be large. Hence, its

enumeration can be computationally demanding. Secondly, forward search techniques require knowing the exact

initial marking, which can be a problem in case of systems with uncertain initial marking e.g. when only a lower

bound on the initial marking is known. To alleviate these drawbacks, we propose a backward search method,

which, starting from observation(s), enumerates a subset of explanations called theset of minimal explanations.

The set of markings that are reached from the initial marking firing minimal explanations has the property that its

unobservable reach (the markings obtained by firing legal, unobservable strings from any of its marking) is equal to

the entire set of current estimated markings. Moreover, the faults are typically not predictable i.e. at every reachable

marking there is at least one non-fault transition that is enabled. Making this assumption that the faults are not

predictable allows us to conclude that the set of minimal explanations obtained via a reduced observer analysis

detects the occurrence of all faults that must have happened for sure according to the complete set of explanations.

Furthermore, the presented approach can deal with Petri Nets with an uncertain initial marking, which is a common

situation in a distributed setting. In this case, local components modeled by Petri Nets and supervised by local

agents interact unobservably by exchanging tokens via common places.
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I. M OTIVATION AND INTRODUCTION

This paper deals with model based approaches to the centralized estimation of the states of large plants.

We assume that the plant evolves over time satisfying constraints expressed by an abstract, discrete event

dynamical systems modeled via Petri Nets (PNs). The set of transitions in the PN, which represents

events of the physical plant, is partitioned into two disjoint subsets: observable and unobservable events.

We assume that the occurrence of an observable event is always reported (a label is emitted) correctly to

the supervisory agent whereas the occurrence of an unobservable events is never reported.

The plant monitoring at any timeθ requires knowledge of the PN model of the plant, and knowledge of

the ordered sequence of observable labels that have been recorded up to timeθ. State observers combine

this model information with the on-line plant observation in order to derive the set of possible current

states the plant can be in, and the set of traces the plant model can have executed from the last known

or estimated state(s) up to the current timeθ.

The monitoring of any Discrete Event System (DES) under partial observation requires typically

the implementation of an observer automaton [MBL00] that is used then for on-line applications like

supervisory control. An observer automaton for a PN model is simply an automaton whose set of events

is represented by the set of labels of the observable transitions of the PN model. The legal traces in

the observer automaton are strings of labels that can be generated by the plant. A state of the observer-

automaton stores all the markings of the PN model that can be reached from the initial marking of the

PN model by firing traces that would generate the same observation as the corresponding sequence of

events in the automaton.

When monitoring systems under partial observation the use of a classical (off-line derived) observer-

automaton is hardly possible because of the high spatial complexity (e.g. exponential in the number of

places for a DES modeled as an automaton [OW90]). Moreover any change in the plant structure requires

the recalculation of the off-line observer-automaton.

A natural solution for the monitoring of PN models under partial observation is to construct on-line the

branch of the off-line observer-automaton that corresponds to the received observation. This simply means

that after each observation generated by the plant we calculate the set of markings the plant can be in.

Thus a state of an on-line classical observer-automaton (CO) includes all the possible states (markings) the

plant can be in after observing a string of labels. However the on-line construction of the branch of the

CO that corresponds to the received observation may not be feasible when monitoring large PN because

the set of estimated markings can be huge and the calculation of the set of markings that correspond to

the current state of the on-lineCO can be computationally prohibitive.

To overcome this limitation we propose the on-line construction of a reduced observer automaton (RO)
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that contains in a given state fewer markings than the on-lineCO. The idea is simple, instead of computing

all the possible markings the plant can be in after observing a string of labels, we compute a subset of

possible current markings (a set of basis markings [GCS05]) such that the rest of the possible current

markings that are not computed can be reached by firing legal strings of unobservable transitions starting

from a marking that belongs to the subset of markings generated byRO.

We show that this subset of possible current markings can be obtained by generating minimal

explanations of the received observation [JB04] via backwards induction starting form an observable

transition whose occurrence would have emitted the latest observed event. Methods based on backward

calculations for PNs were proposed in [LA94], [SJ94], [CKV95] for diagnosis purpose, in [NAH+98],

[AIN00], [FRSB02], [DRvB04] for model checking, and in [GS02], [GCS05] for state estimation of a

PN model with uncertain initial marking.

Backward search operates as follows. When the first observation (the label of some event occurrence) is

received by the monitoring agent, it determines the minimal (partial) marking required by an observable

transition (whose occurrence would have emitted the observed label) to fire. Unobservable transitions

are recursively backfired (removing tokens from the output places and adding tokens to the input places

of the backfired transition) until either we obtain backwards a marking that is smaller than or equal to

the initial marking (in this case a minimal explanation is obtained) or a decision to stop the backward

search is evaluated true. The set of minimal explanations enumerates the subset of markings that must be

considered in the current state of the reduced observerRO.

The computational complexity of the algorithms to derive the on-lineCO respectively the on-lineRO can

not be compared. The reason is twofold. First of all the two algorithms (the forward search respectively

the backward search) explore different state spaces. Secondly theRO identifies states in its state space

with only a small subset of the complete set of possible current markings that identify states in the state

space of theCO. However the price paid for this simplification of the definition of individual states inRO

is that the number of states required byRO may be larger than forCO. Nevertheless we demonstrate in

this paper the following advantages ofRO. Firstly the computational complexity of the backward search

depends on the size of the largest sub-net of the PN model that contains only unobservable transitions

and on the degree on non-determinism of the observation labeling function (i.e. the number of observable

transitions that emit the same label when they are executed). Secondly the backward calculations can

be made even though the initial marking is partially known (i.e. one only knows a lower bound on the

marking of some places). This is a typical case in a distributed setting when components (modeled as

PNs) interact via shared places [GL03],[FBHJ05] where the interactions are unobservable, i.e. tokens can

unobservably exit from one component and unobservably enter another component [JB05].
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A special observer-automaton is designed in [SSL+95] in order to detect faults in a plant. Given the

observation generated by the plant a diagnoser-automaton answers the question whether a fault event

happened in the plant or not. A faultmay have occurredif there is at least one allowed trace leading from

an initial state to any plant state that is possible according to the current state of the observer automaton.

If all the traces from a possible initial state of the plant to a possible current state of the plant contain

the fault, then the faultmust have occurredfor sure. Based on the set of minimal explanations of the

observation generated by the plant we design in this paper a reduced diagnoser having the property that

any fault that is detected by the classical diagnoser that for sure occurred in the plant is also detected by

the reduced diagnoser to have happened for sure.

It should be noted that the claims in this paper do not guarantee that a fault that occurred will indeed

be detected. This diagnosability property [SSL+95] would require strong assumptions on the plant model,

assumptions that are probably not verifiable for the large plants we consider. The on-line observers designed

in this paper will detect a fault with an observable effect provided the explanation of this observable effect

must include the fault. However in general no off-line method can be devised to state beforehand whether

this diagnosability will indeed be satisfied or not, without a computational effort that is larger than the

effort required for the on-line fault detection itself.

The paper is organized as follows. Section II introduces the mathematical notation and the preliminary

definitions used throughout the paper. Then in Section III we present the monitoring of large PNs models

under partial observation and we provide an algorithm to derive a reduced observer based on a backward

search. In Section IV we formalize the diagnosis problem and we show how the reduced observer can

be used to derive the on-line plant diagnosis of faults that must have occurred for sure. The paper is

concluded in Section V with final remarks and future work.

II. PRELIMINARIES

A. Sets and relations

Let X and Y be sets. We writeX ⊆ Y if X is a subset ofY , including the caseX = Y . X ⊂ Y

denotes thatX ⊆ Y andX 6= Y . X \ Y denotes the set of elements ofX that do not belong toY . | X |
denotes the cardinality ofX and Pwr(X) is the power set ofX, that is, the set of all subsets ofX.

Given a functionf : X → Y andA ⊆ X thenf(A) =
⋃

x∈A f(x). N denotes the set of natural numbers

including 0. N+ denotes the set of natural numbers excepting0. Given two vectorsA,B of dimension

m, we write A ≤ B, if for q = 1, . . . , m, A[q] ≤ B[q]. A < B meansA ≤ B and∃q s.t. A[q] < B[q].

A set X is a collection of distinct elements. Given a non-empty setX and a functionµ : X → N

we say thatXµ is a multi-set overX whereXµ = {(x, µ(x)) | x ∈ X} andµ represents the number of

appearances ofx in Xµ. Thus a set can be understood as a multi-set that has no repeated elements.
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Let ¹ be binary relation onX. ¹⊆ X ×X is a partial order relation onX if i) ¹ is reflexive,ii) ¹
is transitive, andiii) ¹ is antisymmetric (∀x, x′ ∈ X) (x ¹ x′) ∧ (x′ ¹ x) ⇒ (x = x′). If ∀x, x′ ∈ X

either x ¹ x′ or x′ ¹ x then¹ is a total order onX. Denote by(X,¹) a partial order relation¹
on a nonempty setX. Then max¹(X) and min¹(X) denote the set of maximal respectively minimal

elements ofX w.r.t. ¹, that is max¹(X) = {x ∈ X | (x′ ∈ X ∧ x ¹ x′) ⇒ x′ = x} and min¹(X) =

{x ∈ X | (x′ ∈ X ∧ x′ ¹ x) ⇒ x′ = x}.

B. Petri Nets - notation, definitions, and properties

Definition 1: A Petri Net is a structureN = (P , T , F ) where: i) P denotes the finite set of places,

ii) T denotes the finite set of transitions such thatP ∩ T = ∅, and iii) F ⊆ (P × T ) ∪ (T × P) is the

incidence (flow) relation that specifies the arcs from places to transitions and from transitions to places.

F can be represented as a pair of functionsPre : P × T → {0, 1} and Post : T × P → {0, 1}.
DenoteX = P ∪ T . Then forx ∈ X we use the standard notationsx• = {y ∈ X | xFy}, •x =

{y ∈ X | yFx}, X• =
⋃

x∈X x•, and •X =
⋃

x∈X
•x.

The incidence relationF can also be represented in a matrix form, with dimension| P | × | T |,
having a−1 in the (i, j)-th element ifPre(pi, tj) = 1, a 1 in the (i, j)-th element ifPost(tj, pi) = 1,

and a0 everywhere else.

A marking M of a PNN is represented by a| P | -vector that assigns to each placep of P a

non-negative number of tokensM : P → N.

A PN system is a pair〈N , M0〉 whereN is a connected graph having at least one place and one

transition andM0 is a marking ofN called the initial marking.

In the following we treat a marking also as a multi-setM = {(p,M(p)) | p ∈ P andM(p) 6= 0} where

M(p) is the number of tokens present inp in the markingM (M(p) stands forµ(p) when talking about

a marking seen as a multi-set of tokens).

Given a PNN and a markingM , a transitiont ∈ T is enabled inM if ∀p ∈ •t, M(p) ≥ Pre(p, t).

Denote byEnbl(M) the set of all the enabled transitions in the markingM . An enabled transitiont ∈
Enbl(M) in a markingM fires atM and produces the markingM ′, that isM ′ = M−Pre(·, t)+Post(t, ·),
where abusing notationPre(·, t) and Post(t, ·) are the| P |-vectors whose co-ordinatep is Pre(p, t)

respectivelyPost(t, p).

In the following we use the notationM
t−→ M ′ for the firing of a transitiont transforming the marking

(state) of the PN fromM to the new markingM ′. A legal traceτ in the PN system〈N ,M0〉 is defined

as τ = M0
t1−→ M1

t2−→ . . .
tυ−→ Mυ where inductively forι = 1, 2, . . . , υ, Mι−1 ≥ Pre(·, tι). M0

τ−→ Mυ

denotes that the enabling conditions are satisfied so thatτ can be executed legally, and whenτ fires at

M0 yields Mυ.
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Given a PN system 〈N ,M0〉 the set of all legal traces in〈N ,M0〉 is denoted by

LN (M0) =
{

τ | M0
τ−→ M

}
while the set of reachable markings is denoted byRN (M0) ={

M | ∃τ ∈ LN (M0) s.t. M0
τ−→ M

}
.

Consider a legal traceσ ∈ LN (M0). The Parikh vector associated withσ is denoted
→
σ and is a

| T | − vector whoseι-th element corresponding to transitiontι ∈ T is given byµσ(tι) that is the

number of appearances oftι in the legal traceσ.

Lemma 1 (marking equation): IfM0
σ−→ M then the following Marking Equation holds:

M0 + F · →σ = M (1)

(with the incidence relationF expressed in a matrix representation).

Notice that in a general PNN , the marking equation is a necessary but not a sufficient condition for

checking if a markingM is reachable fromM0 by firing a traceσ. However ifN is acyclic then the

marking equation is a necessary and sufficient condition for the reachability problem [Mur89].

Consider two PNsN1 = (P1, T1, F1) andN2 = (P2, T2, F2). Then 〈N1,M01〉 is called a sub-net of

〈N2,M02〉 if: i) P1 ⊆ P2; ii) T1 ⊆ T2; iii) Pre1 = Pre2 |P1×T1; iv) Post1 = Post2 |T1×P1; and

v) M01 = M02 |P1.

Conditionsi) − iv) state thatN1 is a sub-graph ofN2 where conditionsiii) and iv) state thatPre1

andPost1 are the restriction ofPre2, respectivelyPost2 to the domainsP1 × T1, respectivelyT1 × P1.

Conditionv) states that the initial markingM01 is the restriction of the markingM02 to the placesP1.

Definition 2 ([Mur89]): Given a PNN = (P , T , F ) a subset of placesP ′ ⊆ P is a trap, respectively

a siphon ifP ′• ⊆ •P ′, respectively•P ′ ⊆ P ′•.
A trap has the property that if it is marked (i.e. it has at least one token) under some marking, then it

remains marked under each successor marking. A siphon has the property that if it has no token under

some marking, then it remains token free under each successor marking.

A path of a PN N is a non-empty sequence℘ = x1 . . . xυ of nodes that satisfies

(x1, x2), . . . , (xυ−1, xυ) ∈ F . A path ℘ = x1 . . . xυ is said to lead fromx1 to xυ. A path ℘ leading

from a nodexι to a nodexυ is a circuit if no element occurs more than once in it and(xυ, xι) ∈ F .

Notice that a sequence containing one element is a path but not a circuit since(x, x) 6∈ F .

Definition 3 ([Mur89]): A PNN = (P , T , F ) is called:

- trap-circuit PN if the set of places in every directed circuit is a trap

- siphon-circuit PN if the set of places in every directed circuit is a siphon.

From the definition of firing, it is straightforward to infer the following lemma.

Lemma 2 (monotonicity): Given the PN systems〈N ,M0〉 and 〈N ,M ′
0〉 such thatM0 ≤ M ′

0 then

LN (M0) ⊆ LN (M ′
0).
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Denote byT ∗ the Kleene closure of the setT i.e. the set of all traces of elements ofT of arbitrary

length, including the empty traceε. Then letσ ∈ LN (M0) ⊆ T ∗ and T ′ ⊂ T . The projectionΠT ′ :

LN (M0) → T ′∗ is defined as:i) ΠT ′(ε) = ε; ii) ΠT ′(t) = t if t ∈ T ′; iii) ΠT ′(t) = ε if t ∈ T \ T ′;

and iv) ΠT ′(σt) = ΠT ′(σ)ΠT ′(t) for σ ∈ LN (M0) and t ∈ T .

A PN 〈N ,M0〉 is bounded if for every placep ∈ P there is a natural numberK ∈ N+ s.t. M(p) ≤ K

for anyM ∈ RN (M0). GivenN = (P , T , F ) andT ′ ⊆ T then〈N ,M0〉 is bounded w.r.t.T ′ if ∀τ ∈ T ′∗

we have that:(M0
τ−→ M) and (M0 ≤ M) ⇒ (M0 = M).

C. Occurrence Nets and Net Unfolding

In this section, we shall present a method of monitoring large PNs based on partial orders. This allows us

to provide a rigorous mathematical definition of a minimal explanation in terms of minimal configurations

in a net unfolding.

The complexity of the PN reachability analysis has been proven to be EXPSPACE-hard in the general

case [Lip76],[Kos82]. This is because in the standard reachability algorithm (the Karp-Miller algorithm

[KM69]) all the possible interleavings of the concurrent transitions are considered.

The proposed methods for reducing the state-space explosion problem are based on the observation that

for reachability analysis not all interleavings of a given set of concurrent transitions need to be considered.

Various methods that avoid considering all interleavings of concurrent transitions have been proposed,

among othersstubborn sets[Val90], persistent sets[GW93] andnet unfoldings[Eng91],[McM92], [Esp94].

The unfolding of a PN is an occurrence net (i.e. a PN without cycles) that is behaviorally equivalent

with the original net. Unfoldings are usuallyinfinite nets since the setLN (M0) of legal traces is usually

infinite. However it is always possible to construct a finiteprefix of the unfolding which captures its

entire behavior [McM92]. Theprefix of the unfolding has the property that it contains all the reachable

states of the whole unfolding, and being finite, it can be handled by a computer. Initial prefixes can be

constructed such that they are never larger and in general a lot smaller than the state space of the original

PN [ERV96]. The unfolding approach is a powerful technique for attacking the state explosion problem

for PN models whose degree of concurrency is high compared to their degree of (forward) branching. The

unfolding method reduces the cost of the analysis from exponential in the size of Petri Net to polynomial

dependence on its size.

Two nodes (places or transitions),a andb of a PNN = (P , T , F ) are in conflict, denoteda]b if there

are distinct transitionst, t′ ∈ T such that •t∩ •t′ 6= ∅ anda E t andb E t′ whereE denotes the reflexive

transitive closure ofF . If N is acyclic thenE is a partial order.

Definition 4: An occurrence net is a netO = (B, E, G) such that:
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1) O is acyclic

2) every nodea ∈ B ∪ E has a finite number of predecessors, i.e.| {b : a ¹ b} |< ∞
3) O has no backward conflicts, i.e.∀b ∈ B : | •b |≤ 1

where¹ denotes the reflexive transitive closure ofG.

In an occurrence net two nodesa, b ∈ (B ∪ E)× (B ∪ E) are concurrent, denoteda‖b, if neither a]b

nor a ¹ b nor b ¹ a. In the following B is referred as the set ofconditions, E is the set ofevents, and

min¹(O) denotes the set of minimal elements ofO w.r.t. ¹.

Definition 5: A homomorphism from an occurrence netO = (B, E, G) to a PN system〈N ,M0〉 is a

mappingφ : B ∪ E → P ∪ T such that:

1) φ(B) ⊆ P and φ(E) ⊆ T
2) ∀e ∈ E, the restriction ofφ to •e is a bijection between•e and •φ(e)

3) ∀e ∈ E, the restriction ofφ to e• is a bijection betweene• and φ(e)•

4) the restriction ofφ to min¹(O) is a bijection betweenmin¹(O) and M0

5) ∀e, e′ ∈ E : ( •e = •e′) ∧ (φ(e) = φ(e′)) ⇒ e = e′.

Definition 6: A branching processB of a PN〈N , M0〉 is a pair B = (O, φ) whereO is an occurrence

net andφ is a homomorphismφ : O → N .

Definition 7: Given a PN〈N ,M0〉 and two branching processesB, B′ of PN 〈N ,M0〉 thenB′ v B

if there exists an injective homomorphismψ : O′ → O s.t. ϕ(min(O′)) = min(O) and φ ◦ ϕ = φ′.

There exists (up to an isomorphism) an unique maximum branching process (w.r.t.v) that is the

unfolding of 〈N , M0〉 and is denotedUN (M0) [McM92],[Esp94].

Definition 8: A configurationC = (BC , EC , GC) in the occurrence netO is defined as follows:

1) C is a proper sub-net ofO (C ⊆ O)

2) C is conflict free, i.e.∀a, b ∈ (BC ∪ EC)× (BC ∪ EC) ⇒ ¬(a]b)

3) C is causally upward-closed, i.e.∀b ∈ BC ∪ EC : a ∈ B ∪ E and a ¹ b ⇒ a ∈ BC ∪ EC

4) min¹(C) = min¹(O)

5) and GC is the restriction ofG to (BC ∪ EC)× (EC ∪BC)

Denote by C⊥ = (BC⊥ , EC⊥ , GC⊥) the initial configuration of the occurrence netO. BC⊥ =

{b ∈ B : •b = ∅} is the set of condition-nodes inO that correspond to the places that contain a token in

initial marking (BC⊥ = min¹(O)) andEC⊥ = ∅.
For a configurationC in O denote byCUT (C) the maximal (w.r.t. set inclusion) set of conditions

in C that have no successors inC, i.e. CUT (C) = ((
⋃

e∈EC
e•) ∪ (min¹(O)) \ (

⋃
e∈EC

•e) Denote by

mark(C) the marking inN that corresponds toCUT (C) (mark(C) = φ(CUT (C))). Obviously we have

that CUT (C⊥) = BC⊥ = min¹(O) andmark(C⊥) = φ(CUT (C⊥)) = M0 (where a marking is seen as
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a multi-set of tokens).

Denote byEnbl(C) the set of transitions that are enabled inN from the markingmark(C). For an

enabled transitiont ∈ Enbl(C) append toC an evente s.t. t = φ(e). We say thatC is extended bye and

denote the configuration that is thus obtained byC ′ = C ¯ e. We have thatC ′ = (BC′ , EC′ , GC′) where

BC′ = BC ∪ {e•} andEC′ = EC ∪ {e}.
Consider two configurationsC and C ′ s.t. C ′ is obtained fromC by appending the eventse1, . . . , eq

(C ′ = C ¯ e1 ¯ . . .¯ eq). ThenC is a proper sub-net ofC ′ and we say thatC is a prefix ofC ′. This is

denotedC @ C ′. Denote byC the set of all the configurations inUN (M0).

Definition 9: Given the unfoldingUN (M0) of a PN 〈N ,M0〉 thenC(e) = (BC(e), EC(e), EC(e)) is the

minimal configuration that explains the execution ofe if EC(e) =
{
e′ ∈ E : e′ ¹C(e) e

}
.

As already mentioned unfoldings are usuallyinfinite nets. As shown in [McM92] it is always possible

to construct a finiteinitial prefix of the unfolding which captures its entire behavior by deriving the set

of cut-off events. An evente is a cut-off event in the unfolding if there exists another evente′ such that

i) φ(C(e)) = φ(C(e′)) and ii) C(e′) @ C(e). The idea is that the continuations ofUN (M0) from C(e)

andC(e′) are isomorphic.

Definition 10: Given a partially ordered set(Σ,¹), the string s = a1a2 . . . aυ is a linearization of

(Σ,¹) if υ =| Σ | and ∀aι, aλ ∈ Σ then i) aι = aλ ⇒ ι = λ and ii) for ι 6= λ, if aι ¹ aλ then ι < λ. In

words,s is a string obtained considering all the symbols of the setΣ, where each symbol appears once

in the strings and for any two different elements ofΣ s.t. aι ¹ aλ thenaι is considered ins beforeaλ.

Denote by〈Σ〉¹ the set of all the stringss that are linearizations of(Σ,¹).

Consider a configuration ofC = (BC , EC , GC) in the net unfoldingUN (M0). ¹C is the reflexive

transitive closure ofGC , i.e. a partial order defined onto the set of elementsBC ∪EC . Denote by〈EC〉¹C

the set of all the linearizations of the partial ordered set(EC ,¹C). Strings that belong to〈EC〉¹C
can be

obtained one from the other by shuffling (interleaving) the order of the concurrent events.

Let σ be a linearization of(EC ,¹C), i.e. σ ∈ 〈EC〉¹C
. We have thatτ = φ(σ) is a legal trace in

〈N ,M0〉 where forσ = e1 . . . ek, φ(σ) = φ(e1) . . . φ(ek). Denote byLN (C) the set of all the traces that

are obtained viaφ from the linearizations of the partial ordered set(EC ,¹C).

We have that all the traces in the setLN (C) have the same Parikh vector, i.e.∀τ, τ ′ ∈ LN (C),
→
τ =

→
τ ′.

Thus a configurationC compactly represents a set of traces that are equivalent under the interleaving of

concurrent events. SinceLN (M0) =
⋃

C∈C LN (C), we have that the PN system〈N ,M0〉 and its unfolding

UN (M0) are behaviorally equivalent.

In the following, whenever clear from the context, we drop the lower indexC when we refer to the

partial order relation¹C defined in a configurationC.
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Fig. 1.

Example 1: Consider the occurrence netO = (B,E, G) displayed in Fig. 1-left. We have that:

- b1 ¹ e1 ¹ b3 ¹ e3, etc.

- e3]e4; e4]e5; e6]e4 sincee3 ¹ e6 and e3]e4, etc.

- e1 ‖ e2, e3 ‖ e2, etc.

- min(O) = {b1, b2}
Consider the PNN = (P , T , F ) displayed in Fig. 1-right. Letφ be a homomorphism from the

occurrence netO onto 〈N ,M0〉 be defined as:

- φ(b1) = p1; φ(b2) = p3; φ(b3) = p2; φ(b4) = p4

- φ(b5) = φ(b6) = p1; φ(b7) = φ(b8) = p3; φ(b9) = p2; φ(b10) = p4

- φ(eι) = tι for ι = 1, 2, 3, φ(e4) = t5, φ(e5) = t4

- φ(e6) = t1; φ(e7) = t2

We have that(O, φ) is a branching process forN = (P , T , F ). C1 is the initial configuration with

BC1 = {b1, b2} and EC1 = ∅. C2 is the configuration obtained appending toC1 the evente1 i.e. BC2 =

{b1, b2, b3} and EC2 = {e1}.
C3 is the configuration obtained appending to the initial configuration the eventse1 and e2 i.e. BC3 =

{b1, b2, b3, b4} and EC3 = {e1, e2}. CUT (C1) = {b1, b2}; CUT (C2) = {b2, b3}; CUT (C3) = {b3, b4}.
C4 is obtained appending toC3 the evente4, i.e. BC4 = {b1, b2, b3, b4, b6, b7} and EC4 = {e1, e2, e4}.

The partially ordered set(EC4 ,¹) has two linearizations,σ1 = e1e2e4 and σ1 = e2e1e4 that differ by the

way the concurrent eventse1 and e2 are interleaved. Thus two tracesτ1 = t1t2t5 and τ1 = t2t1t5 are

compactly represented byC4 without interleaving the two concurrent transitionst1 and t2.

III. T HE ON-LINE MONITORING OF PETRI NET MODELS UNDER PARTIAL OBSERVATION

In this section we shell present firstly the standard algorithm for constructing a classical observer-

automaton of a given PN model. The method is similar to the construction of a classical observer for
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DES modeled as automata [MBL00]. Then we show how to construct a reduced observer automaton (basis

reachability tree in [GCS05]) that is based on the computation of the set of minimal explanations of the

observation generated by the plant. The idea is simple. The set of all the markings that can be reached

from the initial markings by firing strings of transitions that obey the received observation (explanations)

can be characterized as follows. First a set of (basis) markings is computed calculating backwards the set

of minimal explanations of the received observation. All the markings that are not included in this set of

basis markings are then reachable from a basis marking firing a string of unobservable transitions.

A. The classical observer automaton

Consider a PN modelN = (P , T , F ) and partition the set of transitions into disjoint subsets of

observableTo and unobservable transitionsTuo, i.e. T = To ∪ Tuo andTo ∩ Tuo = ∅. Given an arbitrary

marking M denote byURN (M) the unobservable reach ofM that is the set of markings that can be

reached starting fromM by firing only strings of unobservable transitions:

URN (M) =
{

M ′ | ∃σuo ∈ T ∗
uo s.t. M

σuo−−→ M ′
}

(2)

For a set of markingsM, define:URN (M) =
⋃

M∈M URN (M).

Consider a PN〈N ,M0〉 with labeling function`o : To → Ω whereΩ is a set of labels that are emitted

by the observable events. The definition of`o extends to strings in the obvious manner i.e. forσ ∈ T ∗
o ,

σ = t1t2 . . . tλ we have`o(σ) = `o(t1)`o(t2) . . . `o(tλ).

Definition 11: The classical observer-automatonCO(〈N , M0〉) for the partially observable PN〈N , M0〉,
T = To ∪ Tuo is CO(〈N ,M0〉) = (Xco, Eco, fco, x

co
0 , %co) where:

- Xco is the set of states ofCO(〈N ,M0〉)
- %co : Xco → Pwr(RN (M0)) is a function that associates to each statexco ∈ Xco a set of reachable

markings%co(xco) ∈ Pwr(RN (M0))

- Eco = Ω is the set of events of the classical observerCO(〈N ,M0〉)
- %co(x

co
0 ) = URN (M0) is the set of markings in〈N ,M0〉 estimated in the initial state of the classical

observerCO(〈N , M0〉)
- fco : Xco × E∗

co → Xco is the transition function ofCO(〈N ,M0〉) that is defined as follows:

for xco
ι ∈ Xco a state ofCO(〈N ,M0〉) and a string of observable labelsω ∈ E∗

co we havefco(x
co
0 , ω) =

xco
ι if %co(x

co
ι ) 6= ∅ where%co(x

co
ι ) =

{
Mι : M0

τ−→ Mι ∧ `o(ΠTo(τ)) = ω
}

.

B. The reduced observer automaton

It is possible to obtain an observer automaton that is easier to work with by modifying the read-out

map %co to another, simpler read-out map%ro that, for the same observed traceω enumerates only a
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Fig. 3. The reduced observer (left) and the classical observer (right) for PN model of Example 2

subset of the PN〈N ,M0〉-markings in%co. This modification may require a change in the state space of

the observer automaton as well. To illustrate the rationale behind the construction of a reduced observer

automatonRO consider a statexco
ι ∈ Xco of theCO and then letM′(xco

ι ) be a subset of the set of markings

%co(x
co
ι ) of CO corresponding toxco

ι s.t. URN (M′(xco
ι )) = %co(x

co
ι ). We follow [GS02] and callM′(xco

ι )

a set of basis markings for%co(x
co
ι ) if URN (M′(xco

ι )) = %co(x
co
ι ).

Definition 12: RO(〈N ,M0〉) = (Xro, Ero, fro, xro0 , %ro) is a reduced observer-automaton of the PN

〈N ,M0〉 if ∀ω ∈ E∗
ro, fro(x

ro
0 , ω) = xro

ι implies that:

1) ∀Mι ∈ %ro(x
ro
ι ),∃τ ∈ LN (M0) s.t. M0

σ−→ Mι and `o(ΠTo(τ)) = ω

2) and UR(%ro(x
ro
ι )) = %co(x

ro
λ ) wherefco(x

ro
0 , ω) = xco

λ

Example 2: Consider the PN model displayed in Fig. 2. The set of observable transitions isTo =

{t13, t14, t15, t16, t17, t18, t19} while all the other transitions are unobservable. The observation labeling
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function is defined as follows:̀o(t13) = `o(t14) = `o(t18) = a, `o(t15) = `o(t16) = `o(t17) = `o(t19) = b.

For the initial state theRO (Fig. 3-left) considers only the initial markingM0 = {p1, p2, p3}, i.e.

%(xro
0 ) = {M0} (since the PN model is 1-safe we denote the initial marking by simply enumerating the

places that contain a token).

The CO (Fig. 3-right) considers for its initial state all the markings that can be reached fromM0

firing strings of unobservable transitions, i.e.%(xco
0 ) = UR(M0). In total %(xco

0 ) comprises125 markings

that correspond to all the triples(pi, pj, pq) of marked places that belongs to(p1, p4, p5, p10, p11) ×
(p2, p6, p7, p12, p13)× (p3, p8, p9, p14, p15).

Suppose the first observed label isa. The statexro
1 of RO considers the markingsM1 = {p2, p3, p16}

and M2 = {p3, p17, p18}, i.e. %(xro
1 ) = {M1,M2}.

The statexco
1 of the CO on the other hand considers all the markings that can be reached fromM0

firing strings that contain only one observable transition that is labeleda. %(xco
1 ) = UR(M1)∪UR(M2).

In total %(xco
1 ) contains35 markings that correspond to all the triples of marked places(pi, pj, pq) that

belong to eitherp16 × (p2, p6, p7, p12, p13)× (p3, p8, p9, p14, p15) or (p16, p17)× p18 × (p3, p8, p9, p14, p15).

Notice that the set of markings considered by the states of theRO xro
2 andxro

3 have the same unobservable

reach, i.e.UR(M3) = UR(M4) whereM3 = {p3, p17, p19} and M4 = {p3, p19, p21}. The CO considers

only one statexco
2 where%(xco

2 ) = UR(%(xro
2 )) = UR(%(xro

3 )). Similarly for xco
3 we have that%(xco

3 ) =

UR(%(xro
4 )) = UR(%(xro

5 )) = UR(%(xro
6 )), for xco

4 we have that%(xco
4 ) = UR(%(xro

7 )) = UR(%(xro
9 )),

for xco
5 we have that%(xco

5 ) = UR(%(xro
8 )) = UR(%(xro

10)) = UR(%(xro
11)) and for xco

6 we have that

%(xco
6 ) = UR(%(xro

12)) = UR(%(xro
13)).

Denote byL(RO(〈N ,M0〉)) andL(CO(〈N ,M0〉)) the language of the reduced observerRO(〈N ,M0〉)
respectively the language of the classical observerCO(〈N ,M0〉). Both languages are subsets ofT ∗

o and

must be identical since they both must accept the set of all possible observed sequences of labels generated

by the PN model〈N ,M0〉. By construction of theRO we have that the reduced observerRO(〈N ,M0〉)
and the classical observerCO(〈N ,M0〉) of a partial observable PN model〈N ,M0〉 are such that:

1) L(RO(〈N ,M0〉)) = L(CO(〈N ,M0〉))
2) | Xco |≤| Xro |
3) and∀ω ∈ L(RO(〈N ,M0〉))(= L(CO(〈N ,M0〉))) ⇒ %(xro

ι ) ⊆ %(xco
λ )) andUR(%(xro

ι )) = %(xco
λ )

wherexro
ι and xco

λ are the states that are reached from the initial statexro
0 of RO respectively the initial

statexco
0 of CO by executing the string of labelsω, i.e. xro

ι = fco(x
ro
0 , ω) andxco

λ = fco(x
co
0 , ω).

Thus the number of states of a classical observer is smaller than the number of states of the reduced

observer but the number of markings that are considered by the classical observer for any of its states is

usually a lot bigger than the number of markings considered by the reduced observer for its corresponding
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state(s). This means that the state space of the reduced observer may be larger than the state space of the

classical observer. However this drawback vanishes when the observer is derived on-line, computing the

current state of the observer based on the last observation generated by the plant.

C. On-line monitoring of PNs under partial observation

Assume from now on that the size of the plant under investigation is large. This typically means that

the off-line derivedCO considers for any of its states a very large number of reachable markings and

moreover that the size ofCO (seen as automaton) may be also very big. Furthermore assume that changes

of the plant structure (e.g. changes inTo when a sensor fails) occur from time to time. This implies that

the CO, derived off-line, must be modified from time to time. Given the effort required for the off-line

synthesis of theCO and given the size of theCO this is hardly possible in practice.

This difficulty can be partly avoided by constructing the observer on-line, constructing only those

branches of the observer graph that are necessary according to the observation, and doing that only when

those branches become necessary. This leads to the following recursive on-line implementation of an

observer (both forCO and forRO):

1) the on-line observer starts in the initial statex0

2) as soon an observable transitionto ∈ To is executed in the plant (we assume that no two observable

events are executed exactly at the same time) the sensor associated withto immediately informs the

supervisory system (we assume that the sensor output`o(t
′o) that is emitted, when any observable

transitiont′o ∈ T is executed, is never lost and never delayed)

3) a new state of the observer is calculated by enumerating a set of possible markings the plant can

be in after observing the label`o(t
o)

4) return to2 with the newly calculated state (the set of new markings) as the initial state

Basically an on-line observer is obtained by deriving only the branch of the off-line observer-automaton

that explains the on-line plant observation.

From now on we make the following assumption unless otherwise stated:

Assumption 1:The labeling functioǹ o is injective, i.e.`(tι) = `(tν) ⇒ tι = tν .

It is easy to extend the algorithms derived in this paper to the case where`o is not injective, by carrying

out the backwards search for all the transitions that share the same label, and tacking unions of sets of

reachable markings.

Below On = to1 . . . ton denotes a string ofn observable events (On ∈ T ∗
o ) that are known to have

happened in the plant.

The classical on-line observerCO(〈N ,M0〉) considers for its initial statexco
0 in step1) the set of markings
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given by%co(x
co
0 ) where:%co(x

co
0 ) =

{
M : M0

σuo−−→ M ∧ σuo ∈ T ∗
uo

}
. Then inductive calculations in step

2), 3), 4) evaluate, for an observed stringOk = to1 . . . tk, the statexco
k :

%co(x
co
k ) =

{
M : M0

τ−→ M ∧ ΠTo(τ) = Ok

}

The on-line computation of a (minimal) reduced observerRO(〈N , M0〉) can be performed backwards

by calculating the minimal explanations of the received string of observationsOn = to1 . . . tn. Recall that

a minimal explanation is a trace that considers only transitions that must have happenedprior to the

execution of the last received observation.

Consider the PN model〈N ,M0〉 and its net unfoldingUN (M0) as defined in Section II-C.

Definition 13: Given the unfoldingUN (M0) of a PN 〈N ,M0〉 and the first observed eventO1 = to1

thenC(to1) = (BC(to1), EC(to1), GC(to1)) is a minimal configuration that allows for the execution ofto1 if:

i) e ∈ EC(to1) s.t. φ(to1) = eo
1 and

ii) ∀e ∈ EC(to1), if e 6= eo
1 thenφ(e) ∈ Tuo and e ¹ eo

1.

Denote byC(O1) the set of all minimal configurations that satisfy Definition 13 for observationO1 = to1

and denote byE(O1) the set of all minimal explanations ofO1:

E(O1) =
{
σ | σ ∈ 〈EC(to1)〉 ∧ C(O1) ∈ C(O1)

}

Denote byLN (O1) the set of traces in〈N ,M0〉 that correspond to the minimal explanationsE(O1):

LN (O1) = {τ | τ = φ(σ) ∧ σ ∈ E(O1)}

Definition 13 can be extended recursively for a given a sequence of observed eventsOn = to1 . . . ton, as

follows.

Definition 14: Given the unfoldingUN (M0) and a sequence of observed eventsOn = to1 . . . ton then

C(On) = (BC(On), EC(On), GC(On)) is a minimal configuration that obeys the observationOn if:

1) there aren events inEC(On) that have images viaφ observable transitions and∀k, 1 ≤ k ≤ n,

there exists an uniqueeo
k ∈ EC(On) s.t. φ(eo

k) = tok

2) (∀q, k : 1 ≤ q < k ≤ n) ⇒ (eo
q ≺ eo

k or eo
q‖eo

k)

3) ∀e ∈ E, φ(e) ∈ Tuo ⇒ ∃eo
k such thate ¹ eo

k.

Denote byC(On) the set of all minimal configurations that minimally explainOn and let E(On),

respectivelyLN (On) be defined as above.

D. Backward computation of an on-line reduced observer

The backward computation of the minimal explanations can be seen as a forward search in the reverse

netNrev (obtained fromN by reversing the direction of all the arcs) using modified firing and enabling
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rules. The backward search algorithm that we use for deriving the reduced observer is an adaptation of

the algorithm presented in [AIN00], [FRSB02] for checking the coverability property. The problem in

[AIN00], [FRSB02] is to check (backwards) if, given a bad markingMbad, there is a trace allowable

from the initial markingM0 that leads to a marking greater thanMbad or equal. The difference is that

for observer design and for fault detection one must calculate all the minimal traces, whereas in checking

the coverability property, it is sufficient to prove the existence of one single trace.

Formally we have the following way of defining the reverse net dynamics. Definea ª b = a − b if

a ≥ b, andaª b = 0 otherwise and extend”ª ” to multi-sets in the natural manner [AIN00].

Definition 15: Backwards enabling rule:A transition t is backward enabled in a markingM ∈ N|P| if

∃p ∈ t• s.t. M(p) ≥ 1. Backwards firing rule:A backward enabled transitiont in a markingM ∈ N|P|
fires backwards fromM producingM ′ (denotedM

tÃ M ′) whereM ′ = M ª Post(t, ·) + Pre(·, t).
A sequence of transitionsτ = tυ . . . t1 is backward allowable fromMυ (denotedMυ

τÃ M0 ) if for

ι = υ, . . . , 0, τι = tυ . . . tι+1, and tι is backward enabled inMι whereMυ
τιÃ Mι i.e. ∃Mυ−1, . . .Mι+1

such that:Mυ
tυÃ Mυ−1

tυ−1Ã Mυ−2 . . .
tι+1Ã Mι.

Definition 16: Given a PN〈N ,M0〉 and a markingM , thenM is covered byM0 if ∃M ′ ≤ M0 s.t

M
σÃ M ′.

Definition 17: Consider a PNN = (P , T , F ) and a partitionT = To ∪ Tuo. Then given an initial

markingM0 and a final markingMfin denote byUCN (Mfin,M0) the set of all markingsM ≤ M0 that

coverMfin by finite unobservable strings:

UCN (Mfin,M0) =
{

M ≤ M0 | Mfin
σuoÃ M ∧ σuo ∈ T ∗

uo

}

Let ULN (Mfin,M0) be the set of unobservable strings that are backwards feasible fromMfin and lead

to a markingM ≤ M0:

ULN (Mfin,M0) =
{

σuo ∈ T ∗
uo | ∃M ∈ UCN (Mfin,M0) s.t. Mfin

σuoÃ M
}

Proposition 1: We have that:

(a) Given a PN〈N ,M0〉 and a markingM that is not covered byM0 then ∀M ′ > M , M ′ is not

covered byM0.

(b) Given a PNN , a partition T = To ∪ Tuo, a final markingMfin, and an initial markingM0 then:

UCN (Mfin,M0) 6= ∅ if ∀M ′
fin < Mfin UCN (M ′

fin,M0) 6= ∅ (3)

Proof: The proof is straightforward.

Let to ∈ T be the first observable event. We explain below how the set of minimal explanationsLN (to)

is calculated backwards.
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Alg min exp: Algorithm to calculate the set of minimal explanations

INPUT: 〈N , M0〉, To, Tuo, to

OUTPUT: LN (to)

1 label Mfin as the root and tag it "new" where Mfin = Pre(·, to)

2 while new markings exist do the following:

2.1 select a new marking M s.t. :

2.1.1 there does not exist another marking M ′ s.t. M ′ ≤ M and M ′ is tagged either

as "new" or "unknown"

2.1.2 M has no a predecessor marking M ′ such that there exists a marking M ′′ tagged

as "unknown" and M ′′ ≤ M

2.2 if no unobservable transitions are backwards enabled at M then

2.2.1 if M ≤ M0 then tag M as "solution end" and tag all the markings from the

root to M as "solution"

2.2.2 else tag M as "no solution"

2.2.3 repeat until no more markings are tagged with "no solution"

2.2.3.1 for all visited markings s.t. M ′ ≥ M , tag M ′ as "no solution"

2.2.3.2 remove from the tree the markings that are reached backwards only from

markings tagged as "no solution"

2.2.3.3 for all markings M ′′ that have the tag "unknown" and have their successors

tagged as "no solution" tag them as "no solution"

2.3 else tag M as "solution-end" if M ≤ M0, otherwise tag M as "unknown" and for

each unobservable transition t enabled at M :

2.3.1 calculate M
t M ′

2.3.2 if there exits a marking M ′′ such that M ′ ≥ M ′′ then

2.3.2.1 if M ′′ is tagged as "no solution" then remove M ′

2.3.2.2 else if M ′ = M ′′ then draw an arc from M to M ′′

2.3.3 else introduce M ′ as a node, draw an arc with label t from M to M ′, and tag

M ′′ as "new"

2.4 if no new marking can be selected at 2.1 then a fix point is achieved and the

calculation ends

3 ULN (Mfin, M0) is obtained as the set of unobservable strings that start in a marking

tagged as solution-end and end in the root marking.

4 LN (to) = {τ | τ = σto and σ ∈ ULN (Mfin, M0)}
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Fig. 4. A part of a PN model and the backward coverability tree forM1 = Pre(·, to)

Example 3: Consider in Fig. 4-left a part of a PN model (the dots placed next top6, p7, p8p11, p12, p14

and t0 indicate this). Transitionst0, t11 and t12 are observable transitions whereas all the other transitions

that are displayed are unobservable.

Let t0 be the transition that is observed first.M1 = {p1} is the root marking, i.e. the partial marking

that allows for the execution oft0.

At M1 we havet1 and t2 as the backwards enabled transitions and they lead toM2 respectivelyM3.

Assume thatM2 is selected at step2.1. t3 and t4 are backfired fromM2 in step 2.3 of Alg min exp

and lead toM4 and M5 respectively. The set of markings tagged as”new” is {M3,M4,M5}. Consider

that M5 is selected.t3 and t7 are backfired and we obtainM7 and M8. At this point the set of markings

tagged as”new” is now equal to{M3,M4,M7,M8}. Notice that at this stepM8 cannot be selected since

M8 ≥ M3 and M3 has the tag”new”.

Next selectM4 in step2.1. t5 is backfired fromM4 obtainingM6 while the marking obtained backfiring

t4 is M7. After the next execution of step2 the set of markings tagged as”new” is {M3,M6,M8}. Select

in the iteration of2.1 the markingM3. t9 is backfired in step2.3 and we obtain the markingM9 = {p11}
that is smaller than the initial marking. Thusτ = t9t2t0 is a minimal explanation.M9 is tagged as

”solution-end”andM3 is marked as”solution”. t10 is backfired and we obtain the markingM10 = {p13}.
The set of markings tagged as”new” is {M6,M8,M9,M10}. NowM8 can be selected at step2.1 since

M3 is tagged as”solution”.

At M10 there are no unobservable transitions backwards enabled and in the initial markingp13 is

unmarked. ThusM10 is tagged”no solution”. The computation continues in this manner until either the

set of new markings becomes empty or no selection can be made at step2.1 (a fix point is achieved and

the computation ends).

Remark 1: In the algorithmAlg min exp, the interleaving of the concurrent events is not filtered out.

I.e. atM2, t3 andt4 are concurrent events that are interleaved obtaining backwardsM7. In the same manner
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as the unfolding method [McM92] is used to search forward from the initial marking, the backwards

unfoldings proposed in [AIN00] can be used to filter out the interleaving of concurrent events.

Remark 2: In step2 of Alg min exp the computation continues even if a marking smaller thanM0 is

found and a minimal explanation is derived. This is necessary because we must calculate the entire set

of minimal explanationsLN (to) to guarantee that the unobservable reachUR(MN (to)) of the subset of

current possible markings that we deriveMN (to) for the current state of the reduced observer is indeed

equal to the entire set of possible current markingsMN (to), the current state of the classical observer.

In order to guarantee this, it is necessary to explore also paths that lead from one initially marked place

to another initially marked place, since these paths may provide additional minimal explanations for the

observed event.

The preceding remarks indicate that the on-line computational cost of calculating all the minimal

explanations for a reduced order observer is still quite large. However we show in Section IV-D that

for a subclass of PN models, namely PN models with trap unobservable circuits, there is possible to

design a very efficient algorithm that derives a subset of minimal explanationsL′N (to) ⊆ LN (to) s.t.

UR(M′
N (to)) = UR(MN (to)) = MN (to).

Theorem 1: Given a partially observed PN model〈N ,M0〉 that is bounded w.r.t. the unobservable

evolution, and given any observable eventto that can be generated first by the plant, thenAlg min exp

derives in finite time the entire set of minimal explanationsLN (to).

Proof: First we prove thatAlg min exp terminates. Since the PN model〈N ,M0〉 is bounded w.r.t. the

unobservable evolution we have that the set of minimal explanations is finite (notice that the unobservable

cycles that repeat the markings are filtered out). Any infinite sequence created from a finite number of

elements must include a copy of an element, infinitely many often. This is in contradiction with”all

the predecessor markings are either bigger or incomparable”. Hence the algorithm must stop after a

finite number of steps. Thus after a finite number of markings have been generated byAlg min exp,

the algorithm either finds a minimal explanations or cannot select a new marking at step2.1). Since the

number of minimal explanations is finite it results thatAlg min exp cannot select a new marking and

terminates.

To prove thatAlg min exp computesLN (to) requiresi) to prove that any trace that is calculated is a

minimal explanation andii) to prove that all the minimal explanations are calculated.

i) can be proven straightforwardly by induction constructing a minimal configuration such that the trace

that is calculated byAlg min exp is a linearization of its set of events. The proof ofii) is straightforward

since at any step we consider all the unobservable transitions that are backwards enabled.

Given the received observationOn = to1 . . . ton the computation of an on-line reduced observerRO(On)
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is performed recursively as follows:

1) initialize the initial state in the reduced observerMN (O0) = {M0} and%(xro
0 ) = MN (O0)

2) then fork = 1, . . . , n

a) Mfink
= Pre(·, tok)

b) for all Mk−1 ∈MN (Ok−1)

i) computeUCN (Mfink
,Mk−1) that is the set of markings that cover unobservablyMfink

,

with initial marking Mk−1 executingAlg min exp

ii) derive ULN (Mfink
,Mk−1) that is the set of minimal unobservable traces that can be

executed fromMk−1 s.t. the resulting marking coversMfink

iii) derive the set of minimal explanationsLN (Ok) and the set of markingsMN (Ok):

LN (Ok) = {τk | τk = τk−1σuot
o
k, τk−1 ∈ LN (Ok) ∧ σuo ∈ ULN (Mfink

,Mk−1)}
MN (Ok) =

{
Mk | M0

τk−→ Mk ∧ τk ∈ LN (Ok)
}

3) create the new statexro
k in RO(Ok), %(xro

k ) = MN (Ok) and draw an arc fromxro
k−1 to xro

k labeledtok

The main drawbacks of the backward search methods are that the computation terminates when

a fix-point is achieved and that unreachable states are visited during the computation. Even though

incomparable to the forward search (since the backward and the forward search explore different state

spaces) the backward search was found more efficient than the forward search for DES models of large size

[NAH+98]. As shown in [FRSB02], the computational efficiency of the backward search can be increased

by using place invariants (i.e. the visited markings satisfy the P-invariants) or other heuristics to avoid

unreachable markings as well as the backward unfolding technique [AIN00] to avoid the consideration

of all the possible interleavings of the concurrent events. Moreover for real-life applications, the size of

the unobservable sub-net that is processed is in general small, so that the calculation is efficient.

IV. T HE DIAGNOSIS OFPN MODELS

In this section we present two algorithms for the centralized diagnosis of a large plant. We present in

Section IV-B the classical diagnosis algorithm based on the calculation of the complete explanations of

the received observation. We call it classical since the diagnosis is performed based on the calculations

derived by a classical observer as presented in Section III-A.

Then in Section IV-C we propose a diagnosis algorithm based on the calculations of the minimal

explanations of the received observation (see Section III-B). We show that the diagnosis result based on

minimal explanations is sufficient for reliably detecting the faults that happened for sure in the plant.
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A. The setting and problem formulation

The plant model represents the normal plant behavior as well as the abnormal (usually undesirable)

behavior that can occur after a fault has occurred. The abnormal behavior is initiated by the occurrence

of some unobservable (silent) transitions that represent the fault events that may happen in the plant.

A diagnoser uses the plant model, the plant observation, and in the distributed setting of [JBB] the

information received from its neighbouring agents, in order to answer the following questions:”Did a

fault happen or not?”(fault detection),”Which kind of fault happened if any?”(fault isolation) and”How

did it happen?”(explanations [McI98]).

The diagnosis task should be seen as part of a centralized supervisory architecture where the diagnosis

result is used on-line for taking some control action that guarantee the safe operation of the plant. In this

respect and taking into account that the plant under investigation is assumed to have a large size it is

important to specify, before designing the algorithms, what are the specifications for the plant diagnostic.

For example, the user should specify whether the diagnostic is concerned with finding all the fault-events

that ”could have happened in the plant without contradicting the plant observation”or with finding only

the fault events that”necessarily must have happened for explaining the received observation”. With the

CO diagnoser the first specification can be specified, while theRO diagnoser can only satisfy the second

type of specification.

We consider in this section the synthesis of on-lineCO andRO diagnosers, under the following structural

and functional assumptions:

- the PN model of the overall plantN = (P , T , F ) is completely known, and it is bounded w.r.t.Tuo;

in particular we assume that the model is completely correct, without any errors, and that there are

no unmodelled (hidden) external interactions (the closed world assumption)

- the initial markingM0 is precisely known

- the plant observation is represented by a subset of observable transitionsTo ⊆ T
- the occurrence of an observable transitiont ∈ To is always reported correctly and without delays

- the faults are represented by a subsetTf of unobservable (silent) transitions (Tf ⊆ Tuo)

- no-fault-maskingi.e. the occurrence of a fault transition must have effects on the resulting marking

and consequently on the future plant behavior.

In this paper we do not formalize the last assumption since we do not deal with diagnosability in itself.

This paper answers the question of when and in what sense there exists a reduced observerRO that detects

those faults that, according to theCO observer, must have happened for sure. Conditions for theCO to

detect all the faults that must have happened for sure can be found in papers onCO [SSL+95].

In this work the faults in the PN models are represented as (fault) transitions whose occurrence indicates
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a malfunction in the plant behavior [SSL+95]. Obviously the set of fault transitions (denotedTf ) is a

subset of the set of unobservable transitions (Tf ⊆ Tuo) since otherwise the fault detection problem would

be trivial.

Beside the fact that a fault must be unobservable, it must also be unpredictable, i.e. for any state the

plant can be in before the occurrence of a fault at least one no-fault event must be legal according to

the plant model〈N ,M0〉 used for synthesizing the diagnoser; otherwise the imminent fault would be

predictable and, consequently, the model would not correctly represent the occurrence of the fault (an

earliest event should have been labeled as a fault). We formalize this as follows.

Assumption 2:Given a PN model〈N ,M0〉 andTf (Tf ⊆ Tuo) the set of fault transitions, then for any

reachable stateM ∈ RN (M0), at least one non-fault transitiont, t ∈ T \ Tf is enabled, that is:

∀M ∈ RN (M0), Enbl(M) 6⊆ Tf

In words Assumption 2 says that:”a fault is the choice of the plant of not respecting the good (designed)

behavior” which is a subset of the behaviour that is legal according to the model used for designing the

diagnoser. Since the condition that the faults are unpredictable requires to check for every reachable

marking if there are enabled non-fault transitions or not, it is computationally impossible to check for a

large PN model whether Assumption 2 holds true or not. However it is very natural to assume that for

every fault eventt ∈ Tf , there exists a non-fault eventt′ ∈ T \ Tf such that•t′ ⊆ •t. This is a sufficient

condition for the fault to be unpredictable since whenever a fault event is enabled, at least one non-fault

event is enabled as well.

B. Centralized diagnosis based on complete explanations

Consider the plant model given as a PNN = (P , T , F ) with given initial markingM0. Then consider

the partition of the transition setT in two disjoint subsetsTo observable and respectivelyTuo unobservable

transitions and letTf ⊂ Tuo be the subset of the unobservable transitions that model the faults. The plant

observation available at timeθn is given by the ordered sequence of observable eventsOn = to1 . . . ton.

Since On is correctly and without any delay received by the diagnoser-agent, the possible plant

evolutions up to the timeθn are given by the set of all the possible traces in the PN modelN that

start from the known initial markingM0 and that obey the observationOn:

LN (On) = {τ ∈ LN (M0) | ΠTo(τ) = On}

The set of the possible states (markings) the plant can be in is:

MN (On) =
{

M | ∃τ ∈ LN (On) s.t. M0
τ−→ M

}
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Consequently the plant diagnosis after observingOn is obtained by projecting the set of possible

evolutions onto the set of fault eventsTf :

DN (On) =
{
σf | σf = ΠTf

(τ) ∧ τ ∈ LN (On)
}

(4)

The centralized diagnosis result is:

DRN (On) =





N if DN (On) = {ε}
F if ε 6∈ DN (On)

UF if {ε} ( DN (On)

(5)

whereN, F andUF represent the diagnoser statenormal (no fault has happened),sure faultand respectively

uncertain(a fault may have happened) [SSL+95].

C. Centralized diagnosis based on minimal explanations

Let the set of minimal explanationsLN (On) and the set of estimated markings ofM(On) be as

presented in Section III-B. The minimal plant diagnosis after observingOn (denotedDN (On)) is obtained

by projecting the set of minimal explanations onto the set of fault eventsTf :

DN (On) =
{
σf | σf = ΠTf

(τ) ∧ τ ∈ LN (On)
}

(6)

Then the diagnosis result based on the set of minimal explanations is:

DRN (On) =





N if DN (On) = {ε}
F if ε 6∈ DN (On)

UF if ε ( DN (On)

(7)

Theorem 2:If the plant modelN obeys Assumption 2 then we have the following relationship between

the diagnosis resultDRN (O) derived based on the set of complete explanations and the diagnosis result

DRN (O) derived based on the set of minimal explanations:

LN (On)

?

ΠTf
(LN (On))

?
DRN (On)

⊇

⊇

∼F

LN (On)

?

ΠTf
(LN (On))

?
DRN (On)

DRN (On)

{N}
{N, UF}
{UF}
{UF}
{F}

∼F

⇒
⇐
⇒
⇐
⇔

DRN (On)

{N}
{N}

{N, UF}
{UF}
{F}

Fig. 5.
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Proof: Given the observationO1 = to1 . . . ton, consider the set of configurationsC(to) in UN (On). We

have that a fault is diagnosed that for sure happened based on the received observationOn and using the

set of explanations generated byCO iff ∀C ∈ C(to), ∃e ∈ EC s.t. φ(e) = tf and e ¹ eo
q for some event

eo
q ∈ EC that corresponds to an event that was observed (φ(eo

q) = toq, 1 ≤ q ≤ n).

This is true because by Assumption 2 in any reachable marking at least a non-fault event is enabled

thus the necessary condition for a fault event to be diagnosed that for sure happened is that for every

configurationC ∈ C(to) there exists at least an evente that is the image of fault transitiontf (φ(e) = tf )

that is a predecessor (e ¹ eo
q) of an observed eventeo

q.

Hence by deriving only the set of minimal configurationC(to) all the faults that can be diagnosed that

for sure have happened are indeed detected. ThusDRN = {F} ⇔ DRN = {F}. The other relations

betweenDRN andDRN are trivial.

LN (On) is in general a lot smaller thanLN (On), thus the efficiency ofRO diagnoser relies on the

computational effort for enumerating backwards the set of minimal explanations. This computational

complexity depends on the size of the backward reachable state space for unobservable sub-nets, explaining

the different faults one is interested in. Even though the computational effort for derivingLN (On) is not

explicitly comparable to the computational effort for derivingLN (On) (since the forward respectively

the backward search explore different and incomparable state spaces), in practice one can expect that the

backwards implementation of the minimal explanations will be quite efficient. Indeed in many applications

there are no sub-netsN ′ of the PN modelN having a large size and comprising only unobservable events.

Moreover the efficiency of the diagnosis algorithm based on the (backward) calculation of the minimal

explanations - the on-line reduced order observer algorithm - of the plant observation can be further

improved if there isa priori knowledge of plant dynamics that allows the use of some heuristics to drive

the backward search [FRSB02].

D. The case of PNs with unobservable trap circuits

In this section we treat the case when all the unobservable circuits in the PN model are traps (see

Definition 3) showing that this class of PNs allows to compute a (often small) subset of minimal

explanations such that the diagnoser designed based on this subset of minimal explanations has the same

performance as the diagnoser designed based on the entire set of minimal explanations. We show how

additional termination conditions can be used in algorithmAlg min exp presented in Section III-D (that

calculates the set of minimal explanations) in order to calculate this small subset of minimal explanations.

Theorem 3: Consider a trap circuit PN〈N ,M0〉. Then, given a traceσ that is legal from the initial

markingM0, σ ∈ LN (M0) we have that:
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i) σ′ ∈ LN (M0) and
→
σ′ <

→
σ together imply that

ii) ∃ σ′′ s.t. σ′σ′′ ∈ LN (M0) and
→
σ′ +

→
σ′′ =

→
σ

(whereσ′σ′′ is the trace obtained by catenation ofσ′ and σ′′).

To prove Theorem 3 we need the following result that can be found as Theorem 17 in [Mur89].

Theorem 4:([Mur89]) In a trap-circuit netN , Md is reachable fromM0 iff:

i) there exists
→
σ a non-negative integer solution of the marking equation Eq. 1

ii) and 〈N→
σ
,M0→

σ
〉 has no token-free siphons

whereN→
σ

denotes the sub-net ofN consisting of transitionst s.t.
→
σ(t) > 0 together with their input and

output places andM0→
σ

denotes the sub-vector ofM0 for places inN→
σ

.

Proof: [Theorem 4]-sketch.⇐ We have thatN→
σ

has not a token-free siphon. Then inductively one

can prove that after firing a sequence of transitionsσ′, the remaining sub-netN→
σ′′

of N→
σ

with
→
σ =

→
σ′+

→
σ′′

has not a token-free siphon.

⇒ The proof is trivial.

Remark 3: In the following we present the proof of Theorem 3 that basically constitutes a detailed

proof of the induction step of the proof of Theorem 4.

Proof: [Theorem 3] Sinceσ ∈ LN (M0) denote byMd the marking obtained firingσ from M0

(M0
σ−→ Md). We have that∃

→
σ′′ s.t. M0 + F ·

→
σ′ + F ·

→
σ′′ = Md. Thenσ′ ∈ LN (M0) andM0

σ′−→ M ′ imply

that: M ′ + F ·
→
σ′′ = Md.

To prove that there exists a legal traceσ′′ that can be executed fromM ′ we need to prove that〈N→
σ′′

,M ′
→
σ′′
〉

has no token-free siphons whereN→
σ′′

is the sub-net ofN consisting of transitions that are executed inσ′′

together with their input and output places andM ′
→
σ′′

is the sub-vector marking ofM ′ for places inN→
σ′′

.

For M0
σ−→ Md we have thatMd(p) ≥ 0 and:

∑
t∈•p

→
σ(t) + M0(p) ≥

∑
t∈p•

→
σ(t) (8)

that in words means that for any placep ∈ P the number of executions of the transitions that remove

tokens fromp in σ is smaller than or equal to the number of tokens plus the number of executions of

transitions inσ that add tokens top.

Consider now a set of placesQ in the sub-net〈N→
σ′′

, M ′
→
σ′′
〉 s.t.Q is a siphon in〈N→

σ′′
,M ′

→
σ′′
〉. i.e. Assume

that Q is token-free in the marking that results after firingσ′ from M0, i.e. M ′
→
σ′

(Q) = 0. We would have

then for any placep ∈ Q that: ∑
t∈•p

→
σ′(t) + M0(p) =

∑
t∈p•

→
σ′(t) (9)

From (8) and (9) we obtain: ∑
t∈•p

→
σ′′(t) ≥

∑
t∈p•

→
σ′′(t) (10)
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Now consider a placep1 ∈ Q. We have thatp ∈ P→
σ′′

thus inN→
σ′′

either •p1 6= ∅ or p•1 6= ∅.
From (10) we have that

∑
t∈•p1

→
σ′′(t) > 0. SinceQ is a siphon we have that:

∀t ∈ T , (
→
σ′′(t) > 0 andpi ∈ •t) ⇒ pi ∈ Q

The for eachpi we have that
∑

t∈•pi

→
σ′′(t) > 0. Two cases must be considered:

Case 1 p1 andpi belong to a circuit.

Case 2 there exists a placepj such that
→
σ′′(t) > 0, andt ∈ •pi ∩ p•j .

Case 1 We have the following two cases:

Case 1.1 neitherp1 nor pi have input transitions inN→
σ′′

other than transitions that are part of the

circuit in N→
σ′′

Case 1.2eitherp1 or pi has input transitions inN→
σ′′

other than transitions that are part of the circuit

in N→
σ′′

Case 1.1 We have the following two cases:

Case 1.1.1 neitherp1 nor pi have input transitions that belong toN→
σ′

Case 1.1.2 eitherp1 or pi has input transitions that belong toN→
σ′

Case 1.1.1 In this case{p1, pi} is an empty siphon inN→
σ

that contradicts the initial assumption.

Case 1.1.2 In this case eitherp1 or pi would have become marked firing the transitions that belong to

σ′. Since all the circuits inN are traps it results thatQ contains tokens.

For Case 1.2and Case 2consider a placepj and apply the same reasoning as above. By a simple

induction argument one can prove considering all the places ofQ that either a place that belongs to

circuit has been marked firing a transition considered in the stringσ′ and thusQ is not empty inN→
σ′′

or there is a siphonQ′ ⊆ Q that was empty inN→
σ

. Thus the statement of the theorem is proven by

contradiction sinceQ was assumed empty andN→
σ

cannot contain an empty siphon.

Then we have the following corollary:

Corollary 1: Consider a trap circuit PN〈N ,M0〉. Then, given two tracesσ1 andσ2 that are legal from

the initial markingM0, σ1 ∈ LN (M0) and σ2 ∈ LN (M0) we have that:

σ1σ2 ∈ LN (M0) implies that

∃σ′1 s.t. σ2σ
′
1 ∈ LN (M0) and

→
σ′1 =

→
σ1

Proof: Straightforward applying Theorem 3.

We now show that the following additional assumption greatly reduces the computational effort required

to calculate all the minimal explanations for an observed sequence of eventsOn.

Assumption 3:All the unobservable circuits in the PN model of the plant are trap circuits.

Based on Assumption 3 and Theorem 3 we obtain the following result:
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Proposition 2: Consider a PN〈N ,M0〉 satisfying Assumption 3; the first observed event in the plant

is to1. Then, given two unobservable stringsσuo1 , σuo2 ∈ T ∗
uo that are both legal from the initial marking

M0 (σuo, σ
′
uo ∈ LN (M0)), s.t.:

1) M0
σuo−−→ M ≥ Pre(·, to1)

2) M0
σ′uo−−→ M ′ ≥ Pre(·, to1)

3) and
→
σ′uo <

→
σuo

there always exists an unobservable string∃σ′′uo ∈ T ∗
uo s.t. i) σ′uoσ

′′
uo ∈ LN (M0) and ii)

→
σ′uo +

→
σ′′uo =

→
σuo.

Proof: The proof is straightforward applying Corollary 1 to〈Nuo,M
uo
0 〉 whereNuo denotes the sub-

net ofN comprising the unobservable transitionsTuo and Muo
0 denotes the sub-vector ofM0 restricted

to places inNuo.

Consider the setLN (to) of minimal explanations of the first observed eventto executed in the plant

N . We say thatτ ∈ LN (to) is a strictly minimal explanation ofto if ∀τ ′ ∈ LN (to),
→
τ ′ ≤ →

τ ⇒
→
τ ′ =

→
τ .

Denote byLs
N (to) the set of strictly minimal explanations ofto. For a sequence of observed eventsOn

denote byLs
N (On) the set of strictly minimal explanations of the received observation. Denote byMs

N

the set of markings that result firing strictly minimal explanations from the initial marking:

Ms
N (On) =

{
M | M0

τ−→ M ∧ τ ∈ Ls
N (On)

}

Denote byDRs
N (On) the diagnosis result based on the set of strictly minimal explanationsLs

N (On).

Theorem 5:Consider a PN model that has the property that all the unobservable circuits in〈N ,M0〉
are traps and any observationOn that can be generated by the plant. We have that:

1) DRs
N (On) = {F} ⇔ DRN (On) = {F}

2) andUR(Ms
N (On)) = MN (On)

whereDRN (On) is the diagnosis result based on the entire set of explanations andMN (On) is the entire

set current estimated of markings.

Proof: The proof is straightforward using Proposition 2 and Assumption 2.

We can derive the set of strictly minimal explanations of the first observed eventLs
N (to) running the

algorithmAlg min exp with the additional termination condition:

if there exist two markingsMi, Mj that are reached backwards fromMfin by firing σi and σj

(Mfin
σiÃ Mi andMfin

σjÃ Mj) such that
→
σi ≥ →

σj thenMi is deleted

This condition implies that:

1) the computation does not continue backwards from asolution-endnode

2) if a markingMi is reached backwards fromMfin firing σi and there is a minimal explanationσk

that is already derived such that
→
σi ≥ →

σk thenMi is deleted
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The extension to a sequence of observed events is then straightforward.

Remark 4: Notice that the tabular algorithm proposed in [GCS05] to calculate the set of strictly

minimal explanations for a PN with acyclic unobservable sub-nets can be easily adapted for PN with

trap unobservable circuits.

t2
t1t0

t3

t4

t5
t7

p0

p2

p4

p1

p6

t6

p3

p7

p5

t2
t1t0

t3

t4

t5
t7

p0

p2

p4

p1

p6

t6

p3

p7

p5

Fig. 6. A a PN with trap unobservable circuits (left) and a general PN (right)

Example 4: Consider the PN model〈N ,M0〉 displayed in Fig. 6-left.N is a PN with unobservable

trap circuits sinceN has two unobservable circuitsp3t2p7t6 and p3t2p7t7 and both circuits contain the

set of places{p3, p7} that is a trap.t5 is the only observable transition.t1 and t6 are the fault transitions.

The set of minimal explanations of the first occurrence oft5 is:

LN (to) =
{

τ1 = t0t4t5; τ2 = t1t4t5; τ3 = t0t7t3t5; τ4 = t6t2t4t5; τ5 = t6t2t0t7t3t5; τ6 = t6t2t6t2t4t5

}

The set of strictly minimal explanations is:

Ls
N (to) =

{
τ1 = t0t4t5; τ2 = t1t4t5; τ3 = t0t7t3t5; τ4 = t6t2t4t5;

}

τ5 is not a strictly minimal explanation because
→
τ 3 ≤ →

τ 5. The strictly minimal explanationτ3 can be

extended by firing the stringσ = t2t6 and
→
τ 3 +

→
σ =

→
τ 5.

Similarly τ6 is not a strictly minimal explanation because
→
τ 4

→
τ 6. The strictly minimal extensionτ4 can

be extended by firing the stringσ = t2t6 and
→
τ 4 +

→
σ =

→
τ 6.

Consider now the PN model〈N ′,M0〉 displayed in Fig. 6-right which contains an unobservable circuit

that is not a trap.t5 is the only observable transition.t1 andt6 are the fault transitions. The set of minimal

explanations of the first occurrence oft5 is:

L′N (to) = {τ1 = t0t4t5; τ2 = t1t4t5; τ3 = t0t7t3t5; τ4 = t6t2t0t7t3t5; τ5 = t6t2t6t2t0t7t3t5}

The set of strictly minimal explanations is:

Ls
N (to) = {τ1 = t0t4t5; τ2 = t1t4t5; τ3 = t0t7t3t5}
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Fig. 7. The PN model of a component -left. Four components that interact via common places - right.

We have thatτ3 cannot be extendable neither by the stringσ′ = t2t6 nor by the stringσ = t6t2 and

consequentlyUR′(Ms) 6= M. This illustrates why Theorem 5 is not valid for PNs with unobservable

circuits that are not traps.

E. Final remarks

We have discussed in this section the detection for sure of a single fault. The extension to the detection

of the occurrence for sure of multiple faults is straightforward. Consider the set of fault events partitioned

as Tf = TF1 ∪ . . . TFm, where a subset of fault transitionsTFi i = 1, . . . , m model a fault of kindFi.

Given the observation generated by the plantOn, we say that a fault of kindFi happened for sure in the

plant at leastki times if any explanationτ ∈ LN (On) contains at leastki appearances of fault transitions

that belong toTFi, and equality holds for at least one explanationτ ′ ∈ LN (On), i.e.: ∀τ ∈ LN (On),
∑

t∈TFi (
→
τ (t)) ≥ ki and∃τ ′ ∈ LN (On) s.t.

∑
t∈TFi (

→
τ (t)) = ki. Then it is easy to show that if the classical

diagnoser detects e.g. that a fault of kindFi occurred for sure at leastki times, that a fault of kindFj

occurred for sure at leastkj times etc. then the reduced diagnoser detects the same thing.

In a companion paper [JBB] we will show why the backward search for minimal explanations of

local observations allows for a distributed implementation of the fault diagnosis algorithms. The main

property of the backward search that enables this decomposition is the fact that the initial marking does

not have to be known completely in order to apply the algorithm, unlike what is needed in the case

of the forward search and the centralized observer. In order to illustrate this distributed implementation,

consider the following simple scheme (see Fig. 7) where the overall plant description is given by a set of

components (each component modeled as a PN) and their interactions (modeled as shared places). This

example illustrates the application of the method that we presented in this paper to the modular/distributed

monitoring of a large plant.
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Fig. 7-right represents a plant comprising 4 interacting components. The components are similar except

for the partition of the set of observable and unobservable transitions of the components that may be

different. Consider an arbitrary component of the model (Fig. 7-left).

The normal sequence of operations of a component transfers a token received atpin to pout executing

t4t3t2t1. However due to some internal failures each component may fail to accomplish this task. E.g. the

fault eventt6 removes the token fromp3 and makes impossible the transfer of the input token via the

desired sequence of operations. Transitionst5 and t8 model recovery actions, whereast7 also models a

fault.

As already mentioned each component has its own partition of the transitions into observable and

unobservable transitions, as well as its own observation labeling function. Assume for the component

displayed in Fig. 7-left that the set of observable transitions isTo = {t1, t3} while all the other transitions

are unobservable. Assume that the local agent that monitorsCompj displayed in 7-left observes the label

of t1 and this is the first observation generated by the plant.

We have the set of minimal explanations oft1 in the local component given by{τ1 = t8t2t1; τ2 = t6t1}
whereτ1 requires that one token has enteredpin, but τ2 is a valid minimal explanation whatever happens

outside ofCompj.

Similarly if the label of t3 is observed first in the plant, the set of minimal explanations oft3 in the

local component is given by{τ3 = t4t3; τ4 = t6t5t3; τ5 = t8t2t5t3} whereτ3 andτ4 require that one token

was delivered from a neighbouring component whereasτ5 requires that two tokens were delivered from

neighbouring components.

We analyze then in the neighbouring components how the required token(s) can be delivered. For a

plant that comprises a large number of components there will be typically a small number of components

that need to be analyzed, i.e. only those components that contain places from which there are oriented

paths comprising only unobservable transitions that lead to the input places of the observable transition

whose label was emitted.

In a distributed setting where each component is supervised by a local agent [JB05], the agents exchange

information about the tokens that could have exited/entered different components, computing the set of

minimal explanations of the observation of the overall plant by consistent pairs of locally allowable

traces. E.g. for the local minimal explanations that require tokens viapin, the local agent that supervises

the component displayed in Fig. 7-left must ask the neighbouring agents about the possibility that these

neighbouring components sent the required tokens to placepin of the local componentCompj.

Notice that local computations are possible even though the marking of a component is only partially

known (e.g. the marking ofpin is not precisely known). Moreover under some technical conditions we
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have shown in [Jir06] that a local agent can derive in absence of any communication with its neighbours,

a local preliminary diagnosis that is an overdiagnosis of the diagnosis result derived by a centralized agent

for that component w.r.t. the detection of the faults that for sure happened in that component. This will

be the subject of a paper in preparation [JBB].

V. CONCLUSIONS

The research is motivated by the need to designing distributed fault diagnosis algorithms for large and

complex systems where inputs/output signals are sent/received by components placed in different locations

[GL03],[FBHJ05],[JB05]. The lack of observation of the interactions of a component with its neighbors,

the unreliability of the communication channels, as well as the requirement that the local agents should be

able to provide the diagnosis of their component in any situation make the distributed diagnosis problem

very difficult.

Beside its use for designing a distributed diagnosis algorithm the backward analysis obtained in this

paper can be deployed for the centralized monitoring of large PN models. It is well known that for large

plants a diagnoser-automaton may become too large to handle. This is because for a given sequence

of observed labels the centralized monitoring requires the calculation of the entire set of complete

explanations, involving the enumeration of very large sets of markings. The method for the centralized

monitoring of large PN models proposed in this paper relies on the construction of a reduced observer that

considers in a given state fewer markings than the classical observer. However, all the markings considered

by the classical observer can be obtained from the markings considered by a reduced observer, by firing

unobservable transitions. The size of the set of markings considered as states of the reduced observer is

in general a lot smaller than the size of the set of markings considered as states of the classical observer.

Moreover, it is possible at any time if required to derive the set of markings estimated by the classical

observer.

We have shown that backward search for deriving the set of minimal explanations of the received

observation leads to a plant diagnosis result that equals the centralized diagnosis result based on the set

of complete explanations at least for the detection of the faults that for sure happened in the plant. This

makes possible the centralized monitoring of very large plants since the complexity of the calculations

does not depend on the entire plant size but only on the size of the largest sub-net that contains only

unobservable events.

In this paper we have considered the case of untimed PN models where an abstract notion of time is

introduced via the partial order relation between the events in the net unfolding. As a future work we

plan to extend the methodology presented in this paper for PN models that explicitly consider the time

as a continuous and quantifiable parameter (e.g. Time Petri Nets).
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Another direction to extend this research is to consider the case of a large plant with uncertain

observation [LZ02], i.e. the plant observation may be corrupted, randomly delayed or lost.
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