
344 Journal of Digital Information Management   Volume 7 Number 6   December 2009

Journal of Digital
Information Management

AbstrAct: One of the key stages of the development of a
fault tolerant Service Oriented Architecture is the creation of
Diagnosers, which monitors the system’s behavior to identify
the occurrence of failure. This paper presents a Model Driven
Development (MDD) approach to the automated creation of the
Diagnosing Services and integrating them into the system. The
outline of the method is as follows. BPEL models of the services
are transformed to Deterministic Automaton with Unobservable
Event representations using the MDD transformations. Then,
relying on Discrete Event System techniques Diagnosers
Automaton for the Deterministic Automaton representations
are created automatically. Finally, the Diagnosers Automaton
is transformed into a new BPEL representation, which is inte-
grated into the original architecture. The proposed approach is
implemented as an Oracle JDevlopers plugin. To evaluate the
presented method, a case study involving a Right-First-Time
failure scenario motivated by telecom application is used.

Subject Categories and Descriptors
C.1.4 [Parallel Architectures]: C.2.4 [Performance and Reliability];
Reliability, Testing, and Fault-Tolerance

General Terms
Service Oriented Architecture, Fault tolerant systems, Discrete event
systems

Keywords: Oracle JDevlopers, Web Services, Business Process
Execution Language

Received on 12 January 2009; Revised 19 March 2009; Accepted 10
May 2009

1 Introduction

One of the crucial steps in building fault tolerant Service oriented
Architectures (SoA) is to diagnose the occurrence of failure
automatically. This is often achieved by the creation of the
Diagnoser which allows monitoring of services and interactions
between them to identify an occurrence of failure [1, 2]. Although
diagnosability is a new area of research in SOA, researchers in
Discrete Event System (DES) Community have been dealing
with similar challenges for the past two decades [3]. DES
community mostly uses representations such as automata [3] or
Petri net [4] for the modeling of the system and the Diagnoser.
On the other hand, SOA makes use of languages such as
BPML and BPEL [5] for the modeling of the system. There is
a clear need for adopting methods used in DES and applying
them to the SOA.

Model Driven Development (MDD) [6] promotes the role of
modeling and automated modeled generation to bridge the gab
between technical spaces [7]. This paper harnesses the capabil-
ity of MDD to automatically generate Diagnosing Services using

DES methods. A Diagnosing Service can be implemented as
BPEL representation and interacts with the existing services
within the architecture to identify occurrence of the failure. The
paper also presents an outline of a tool developed, as an Oracle
JDevlopers plugin, which makes use of a sequence of model
transformations to create

the Diagnosing Service for the system. Firstly, BPEL representa-
tions of the system are transformed into a variant of automata
called Deterministic Automaton. Then, applying DES techniques
produces an Observer Automaton, which is used to generate
the Diagnosing Service. The approach is applied to a case
study, which is based on a scenario involving a Service-based
Customer Support System for telecommunication applications.
The aim is to design a monitor to identify Right-First-Time fail-
ures, in which the Customer Support System fails to complete
a task First-Time and is forced to repeat part of the task again.
This type of failure may cause extra costs and delays in the
completion of the tasks, causing a violation of Service Level
Agreements (SLA).

The paper is organized as follows. Section 2 briefly reviews
the preliminary material used in the rest of the paper. Section
3 presents an outline of a running example, which will be used
in the rest of the paper. The approach adopted in the paper is
explained in section 4. Section 5 illustrates the architecture of
the tool developed on the basis of the presented approach.
Section 6 discusses the related work and section 7 includes
the concluding remarks.

2 Preliminaries

This section describes introductory notions used in this paper.
Firstly, a brief description of diagnosability of Discrete Event
Systems (DES) will be explained. Secondly, Model Driven
Architecture will be discussed. Finally, a brief review of Web
services and Business Process Execution Language (BPEL)
will be presented.

2.1 Diagnosability of Discrete-Event System
A Discrete Event System (DES) is a discrete-state, event-driven
system whose state depends on the occurrence of asynchronous
discrete events over time [8]. As result, DES embodies a wide
range of application domain including Web services[1, 2]. There
are a variety of languages used for capturing DES models such
as variants of automata and Petri net [8]. Although the approach
presented in this paper is independent of the language adopted,
a variant of Deterministic Automaton known as Deterministic
Automaton with Unobservable Events will be used in this
approach [3]. A Deterministic Automaton with Unobservable
Events is a four tuple G:=(X , Σ , δ , x0), where X is a finite set

On automated generation of Diagnosers in Fault tolerant Service oriented
Architectures

Mohammed Alodib1, Behzad Bordbar1, Basim Majeed2

1School of computer Science, University of Birmingham, UK
{M.I.Alodib,B.Bordbar}@cs.bham.ac.uk
2British Telecom, Adastral Park, Ipswich, UK
Basim.Majeed@bt.com

 345Journal of Digital Information Management   Volume 7 Number 6   December 2009

of states, Σ denotes a set of events, δ ⊆ X × Σ × X represents
the transition between the states and x0 ∈ X is called the initial
state. Some of the events in a DES are observable, for example
output of sensor or the events specified at the interfaces of the
Web services. An event which is not observable is called an
unobservable event. Internal action of service and events which
represent a failure are example of unobservable events. The
set of observable/ unobservable events is detonated by Σo /Σuo
respectively. As result, Σ =Σo ∪ Σuo. The set of events which
represent the occurrence of failure is denoted by Σf. Since a
failure is unobservable, i.e. Σf ⊆ Σuo. For the purpose of brevity
we will sometimes write "Deterministic Automaton" instead of
"Deterministic Automaton with Unobservable Events".

The purpose of the diagnosis is to use a model of the system,
which is for example captured in Deterministic Automaton, to
identify the occurrence of failure. Since a failure is unobserv-
able, it can not be detected at the time of its occurrence. As a
result, the model of the system is used to monitor its behavior
in order to reduce the uncertainty [8]. To achieve this, from a
Deterministic Automaton, a new model called an Observer
Automaton, or Observer for short, is created. The Observer of
the system describes the current state of the system after the
occurrence of observable events [3, 9]. From the Observer a
new Finite State Machine, called the Diagnoser Automaton is
created which is used to achieve the diagnosis when it observes
the behavior of the system. A Diagnoser Automaton is modeled
as Gd= (Qd, Σo, δd, q0) where Qd is the subset of the observable
state which includes all the states which can be reached from
the initial state under a specific transition δd [10]. Each state in
Qd is described by its name and a set of Labels which describe
the type of failure that has occurred. As result, a Label either,
represents a normal status, denoted by N, or a failure state
which can be identified by a subset of failure types (F1, F2, ….Fm)
to clarify what type of failure has happened. For example, the
initial state is declared to be {(x0,{N})} which means that the
behavior of the system is normal in state x0 but for example,
{(x1,{F1})} means that the system is at state x1 and a failure of
type "1" has occurred [3, 11]. Hence a Diagnoser is produced
to server two main purposes: firstly online detection and isola-
tion of failure ("Did a fault happen or not?", "What type of fault
happened?"). Secondly offline verification of diagnosability
properties of the system [8]. For further information about DES
and algorithms for creating the Diagnosers automaton we refer
the reader to [3, 12, 13]

2.2 Model Driven Architecture MDA
The method adopted in this paper relies on Model Driven
Architecture (MDA) [14] techniques for defining and implementing
the chain of transformations resulting in the creation of the
Diagnoser model. Each Model is based on a specific metamodel,
which defines the elements of a language, which can be used
to represent a model of the language [15]. In the MDA a model
transformation is defined by mapping the meta-elements,
constructs of the metamodel, of a source language into meta-
elements of the destination language. Then every model, which
is an instance of the source metamodel, can be automatically
transformed to an instance of the destination metamodel with
the help of a model transformation framework such as Kermieta
[16], OpenArchitectureWare [17] and SiTra [18].

2.3 Service Oriented Architecture and Web services
There is an ever-increasing pressure on modern enterprises
to adapt to the changes in their environment by evolving to
respond to any opportunity or threat [19]. Service Oriented
Architecture (SOA) provides the foundation for implementing

business processes via the composition of existing services.
Web services [5] are software systems which make use of
well-accepted standards and XML languages to support the
creation of SOAs. The interaction between services in this
paper is captured via Business Process Execution Language
(BPEL) [20]. BPEL can be used to express complex sequential,
parallel, iterative and conditional interactions. The type for all
messages and variables used in BPEL file are defined via
XML Schema Definition (XSD) [21], usually in WSDL file [5].
For further information about Web services, we referee the
reader to [5].

3 Example: Diagnosing Right-First-Time failure in
services

This section is the outline of a running example which will be used
in the rest of the paper. The example is based on a scenario1
involving a simplified interaction between a customer and a
number of services provided by a typical Telecommunication
Company. The services aim at providing technical support for
the customers’ Broadband connection.

As depicted in Figure1, the customer logs2 onto the company
website and enters details such as the account number.
Choosing the “Broadband problem” option, he submits his
form online. Next, the company’s Check Customer Account
(CCA) service determines whether the customer account is in
a satisfactory condition in order to progress the fault report. If
the current status of the account is not satisfactory the customer
is advised to phone the call centre and the process ends. If
the account status is satisfactory, the CCA invokes a request
to another service called General Evaluation Services (GES).
The GES examines the availability of service at the exchange
side and ensures that everything is up and running, in which
case the process moves to the next step. If GES identifies any
problem with the availability of the services at the exchange
side, the customer is informed of the status and a separate
process is invoked to deal with this problem (not shown as part
of this example). If everything is fine on the exchange side,
the Customer Services sends a request to Line Test Service
(LTS). This is an automated service to check line status up
to the customer premises, but can also indicate problems on
the exchange side which were not detected by the GES. As a
result the outcome to the check is one of the three possible
cases 1) the line has no problem move to next step, 2) the
line has some problems, advice the customer or 3) There is
no problem with the line, although there is a likely problem
with the exchange. Option 3, which is shown in bold arrow in
Figure 1, is reached only if the LTS has the ability of checking
if its exchange functioning correctly. Notice, the exchange is
carried out independently from the GES. As a result if the case

1This is an imaginary example, real life scenarios and processes
can differ substantially.
2We assume that the problem the Customer can log into the
company’s website, for example suppose the customer is not
happy with the speed of his Broadband connection.

Figure. 1. An overview of the interaction with the Customer Services

346 Journal of Digital Information Management   Volume 7 Number 6   December 2009

3 happens, a failure emerges which means that GES should
repeat its course of action violating Right-First-Time. Finally,
LTS sends a request to analyze data history in the customer
router. If it is possible to carry out analysis then get a decision
from the analysis algorithm (either all ok so the customer has
to call technical support, or the analysis finds the problem and
customer is advised what to do).

4 An MDA approach to the design of Diagnosing
Service in SOA

This paper aims to apply MDA techniques to automatically
create a Diagnosing Service which will be used to monitor
a group of interacting Web services. Consider a number of
services which interact with each other. The behavior of these
services and their interaction is captured by a number of BPEL
files.

In our approach, as depicted in Fig. 2, BPEL representations
should be annotated by identifying the observable and
unobservable events. A similar approach is adopted by Yan et
al. [2] for annotating BPEL files. Then, a model transformation
(BPEL2FSM) will be used to transform the annotated BPEL
models automatically to a Deterministic Automaton. Next,
applying classical theories of diagnosability [3] a Diagnoser will
be computed and created, this is denoted by the arrow marked
as Generating Diagnoser in Figure 2. Then the second model
transformation (Diag2BPEL) produces a new BPEL process
which represents the Diagnosing Service for the original BPEL
models. The Diagnosing Service is designed to receive the
current state of the system as input. Then, it responses with
diagnosing result which describes the system behavior whether
it is normal or a failure has occurred. If the system status had
a failure, the Diagnoser should specify which event caused
this failure.

BPEL model for the example of section 3: A real world
Customer Support system may make use of a large number
of services. Due to space restriction the scenario described in
Section 3 is modeled with the help of only two services: Cus-
tomer Service and General Evaluation Service.

Figure 3(i) shows the Customer Service BPEL modeled in
Oracle JDevcleoper. The scenario described in section 3 con-
sists of eight main activities which are marked by (*). The flow
of activity depicted in BPEL file describes the actions captured
in Figure 1. For example, after checking the customer account
(CheckCustomerAcoount) there is a switch depicted () which
result into alternating cases either GeneralEvaluationService
activity or cancellation of the request (Cancel_Request). The
variables and data used in BPEL file are captured as XML
Schema Definition (XSD). For example, CustomerServicePro-
cessRequest which represents input variable used to input the
customer ID (InputCustID). This is captured as XSD file in Figure
3. Figure 3(ii) represents the General Evaluation Service BPEL

which can be explained similarly. The BPEL files and related
XSD are available from [22].

In the remaining of this section, the annotating BPEL
representations will be explained. Then, the first model
transformation which represents the transformation from
annotating BPEL to a Deterministic Automaton will be de-
scribed. Finally, the second model transformation process
from the Diagnoser Automaton to a new BPEL representation
will be illustrated.

4.1 Annotating BPEL
In order to apply DES techniques, BPEL models representing
the services must be transformed into their equivalent
Deterministic Automaton with Unobservable Event. To do
so, the BPEL representations must be augmented to allow
identifying, for example which events are observable or which
events represent the occurrence of failure. Such information is
not included in a BPEL file; a common practice is to annotate
the BPEL file to include such information [2]. The rest of this
section, present outline of our method of annotation of BPEL
files.

Including information related to the States: In contrast
with DES, web services tend to adopt a process oriented
approach, focusing on the activities and their execution.
BPEL files do not include any inherent notion of States. As a
result, we will annotate BPEL file by including new attributes
tags representing the states. Following the lead of Yan et
al. [2] a new BPEL attribute State will be declared. This new
variable is added to the XML Schema Definition (XSD) part
of the BPEL file, where the input and output variables are
declared. For example, the following snippet of XML rep-
resents the input variables of states in General Evaluation
Service. It can be seen that there are total of three states
named as GES1, GES2 and GES3. Moreover, the state
GES1 is an initial state.

Figure. 2. Applying MDA to the design of Diagnoser Figure. 3. BPEL representations of Customer Support system example

 347Journal of Digital Information Management   Volume 7 Number 6   December 2009

<element name="states">
<complexType><sequence>
 <element name="GES1" type="string"
xml:marked="0"
 xml:initialstate="yes"/> (1)
 <element name="GES2" type="string"
xml:marked="0"/>
</sequence></complexType>
</element>

Annotating BPEL to include information about the ac-
tions: BPEL activities such as Invoke, Reply, Receive and
Assign change the state of the systems. To identify if such
activities are observable or controllable the BPEL file is an-
notated. Seven of the main activities captured in Figure 3(i)
are observable and controllable: Check Customer Account,
Cancel Request, General Evaluation Service, Line Test
Service, Check Line Exchange, Analyses Data History, and
Advice Customer. For example, Check Customer Account
(CheckCustomerAccount) is annotated in following snippet of
code. It can be seen that "c" is used to indicate that the action
CheckCustomerAccount is controllable and "o" to indicate
that it is observable.

<invoke name="CheckCustomerAccount"
partnerLink="CustomerProcess"
portType="ns1:CustomerProcess"
operation="CheckCustomerAccount" (2)
xml:controllable="c" xml:observable="o"
xml:nextstate="CUS2" xml:currentstate="CUS1"/>

In the above XML code, CheckCustomerAccount is inter-
acting with Customer Process service. This is denoted by
partnerLinks. The portType which represents the interface
of the web service is also declared. The interaction involves
execution of an operation of checkCustomerAccount of the
service.

Identifying the activities corresponding to failures: Since a
failure is uncontrollable and unobservable, annotating such an
activity is similar to annotating an observable event. Except in
the case of failures, two further attributes used to declare that
the activity is indeed a failure and also to represent the type of
the failure is required. In the BPEL model of Figure 3(i), General
Evaluation Service Right First Time (GES_RFT) is a failure. This
type of failure is a Right-First-Time failure, i.e. it occurs only
when the Line Test Service checks the Line Exchange, and if
it is not ok, the general evaluation service must be performed
again, as described in section 3. The following snippet of XML
code represents the annotation of the part of XSD of GES_RFT.
It can be seen that the activity is uncontrollable (uc) and unob-
servable (uo). The type of failure is declared as type 1.

<invoke name="GES_RFT" partnerLink="GeneralEva
luationService"
operation="process" (3)
xml:controllable="uc" xml:observable="uo"
xml:nextstate="CUS9" xml:currentstate="CUS7"
xml:failureEvent="yes" xml:typefailure="1"/>

4.2 Transformation from BPEL to Deterministic
Automaton
After annotating the BPEL model, the transformation from BPEL
into the Deterministic Automaton can be automated. To define
the transformation three items are required: metamodel for
the annotated BPEL, metamodel of Deterministic Automaton
and the transformation rules from the annotated BPEL to the
Deterministic Automaton. Figure 4 depicts a part of the BPEL
metamodel. To include the meta-elements related to the

annotations, the metamodel of [23] is extended. The added
elements, which correspond to the annotations, are marked
with (*) in Figure 4. In the rest of this section, samples of the
meta-elements represented in Figure 4 are explained briefly.
The main attributes related to a BPEL model are included in
Process metamodel-element. Partner Links identify how two
parties such as web services can interact with each other and
what processes are offered by each party relying on their role
and their port type. A port type represents the interface of web
services in the WSDL file [24]. Switch model-elements support
conditional behavior of the process. Receive starts the BPEL
process and sometimes is used to perform callbacks to other
services. A Reply returns the response to a synchronous BPEL
process. Invoke executes an operation on another service on
behalf of a given service. Executions are either synchronous
request/response or an asynchronous one-way operation.
Assign allocates the value of a variable into another variable.
For more detail on BPEL can be found in [20, 25, 26].

The metamodel of Figure 4 includes information regarding the
annotations which are marked by (*) in the picture. For example,
it can be seen that Invoke, Reply, Receive and Assign activi-
ties models have new attributes which are used to annotate
the BPEL file as described in section 4.1. These new set of
attributes are controllability, observability, current state, next
state, is Failure and typeFailure.

Figure 5(i) represents a metamodel for Deterministic Automaton
with Unobservable events, which is based on [27]. It can be
seen that a number of states, which with the help of Transitions
are connected to each other. Each Transition between two
States is Triggered by an Event, which has further attributes to
define the observability, controllability and whether this Event
is a failure or not. If the Event were defined as failure, the type
of this failure should be categorized.

Figure 5(ii) also represents the metamodel for the Diagnoser
Automaton which is an extension of the Deterministic Automa-
ton metamodel. The Diagnoser Automaton metamodel has two
more meta-elements which are StateDetail and StatusType. As
mentioned in section 2.1, each Diagnoser State has a subset
of the observable states represented by StateDetail in Figure
5(ii). For example, {(x1,{N})} is a system state, where the state
detail is at x1 and the status type is {N}.

Figure 4. A fragment of BPEL metamodel with added elements for
the annotations marked by (*)

348 Journal of Digital Information Management   Volume 7 Number 6   December 2009

4.2.1 Transformation rules for mapping BPEL to
Deterministic Automaton
The transformation rules specify the mapping from the annotated
BPEL metamodel of Figure 4 to the model elements of Figure
5(i). The State model element of BPEL is naturally mapped
into the State in Deterministic Automaton model. Activities
such as Invoke, Receive, Reply and Assign are mapped into a
combination of Deterministic Automaton Transition and Event.
For example consider an Invoke activity, the transformation
make use of the current state (Invoke.currentState) and the
next state (Invoke.nextState) of the Invoke activity to create the
source (Transition.source) and the target (Transition.target) of
a created transition.

As denoted in Figure 5(i) the Transition may be Triggered by
an Event. At the destination, such an event must be created.
Then, the attributes isObservable and isControllable must be
assigned to the correct value. For example, in case of Invoke
the value of these attributes can be set according to the values
of Invoke.isObservable and Invoke.IsControllable. If a BPEL
activity is a failure, the failure type attribute (typeFailure) is
transformed to a FailureType associated to the correspond-
ing Event. The following snippet of code describes such a
transformation:

Transformation Invoke2FailureEvent(BPEL,
DeterministicAutomaton)
params -- none
source
 invoke : BPEL::Invoke;
target
 event : DeterministicAutomaton::Event;
source condition
 invoke.isFailure=true;
target condition3
 event.isObservable =false and
event.IsControllable =false;
unidirectional:
mapping
 invoke.typeFailure <~> event.failure;

Example of Transformation from BPEL to Deterministic
Automaton: Figure 6 represents the Deterministic Automata
created as result of applying our transformation to the
annotated BPEL model of the Customer Technical Support
example shown in Figure 3. Consider CheckCustomerAccount
which is an Invoke activity. The XML code corresponding to
CheckCustomerAccount is presented in snippet of code 4.1.(2).
It can be seen that currentState of this Invoke activity is “CUS1”
and its nextState is “CUS2”. As a result, in Figure 6 the model

transformation has created a transition from CUS1 to CUS2
marked by CheckCustomerAccount.

4.3 Transformation of Diagnoser Automaton to
Diagnosing Service (Diag2BPEL)
After performing the model transformation on a BPEL model
a Deterministic Automaton is produced. Because the system
may be express in more than one BPEL model, as for example
in our running example, the transformation produces more
than on Deterministic Automaton, see Figure 6. The overall
behavior of the system is captured by the parallel composition
of created Automaton. For information one parallel composition
see [8]. From a parallel composition of the Deterministic
Automata with Unobservable Events, it is possible to create
a single automaton with equivalent behavior [8]. The second
transformation (Diag2BPEL) maps the automaton into a BPEL
model which we refer to as the Diagnosing Service. Next, the
outline of transformation that creates Diagnosing Service will
be described.

4.3.1 Transformation rules for mapping Diagnoser
Automaton to BPEL
A Diagnosing Service monitors the behavior of the services to
identify if they are in a normal state or, if a failure has occurred.
As a result, the Diagnosing Service includes conditional
statements in form of BPEL Switch activity with multiple Cases,
see metamodel of Figure 4. Each Case in the Switch activity
evaluates the current state of the system services and assigns
“N” for a normal state and the type of failure if a failure has
occurred. In case of a failure, the event which is causing the
failure will be included and the type of failure will be assigned to
an output variable representing the diagnosing result. To conduct
this model transformation, every model-element State of the
Diagnoser Automaton metamodel of Figure 5(ii) results in one
of the Cases in the Switch. In each Case a BPEL Assign activity
is created and StateDetail and StatusType, see Figure 5(ii), are
used to determine if the state is normal State or a failure. Next
we shall illustrate the transformation with help of an example.

Example of creating a Diagnosing Service: in the Customer
Technical Support example, the generated Deterministic Au-
tomaton in section 4.2 are passed to UMDES tool to compute
and generate the Diagnoser Automaton which depicted in Figure
7. The Diagnoser Automaton represents all the possible states
which can be reached after the execution of an event. For ex-
ample, (CUS7,GES2 N, CUS9,GES2 F1) represents two states
which may be created as a result of the execution of Check-
ServiceAvaialability. Firstly, the service Customer Service is at
state “CUS7” and the service General Service Evaluation (GES)
is at state “GES2” see 4.1(1). This is a normal state marked by
N. Secondly, the service Customer Service is at state “CUS9”

Figure 5. Metamodels of Deterministic Automaton and Diagnoser
Automaton

Figure 6. Deterministic Automata corresponding to the services in
the examples of section 3

3A failure event is considered as unobservable and uncontrollable.

 349Journal of Digital Information Management   Volume 7 Number 6   December 2009

and the service General Service Evaluation (GES) is at state
“GES2” which is a failure of type 1, see 4.1(3).

Due to space restriction, we have included a fragment of the
Diagnosing Service in Figure 8. Element of Figure 7 which are
transformed and included in Figure 8 are marked with (*) in
Figure 7. As depicted in the Figure 8 Diagnoser Service receives
the current state of services as input and presents the result of
the diagnosis as output variable.

5. An implementation of the presented approach

We have implemented the presented approach as a Plugin for
Oracle JDevlopers. The implementation follows the outline of
the method as depicted in Fig. 2. The tool requires passing all
annotated BPEL files and their XML Schema Definition (XSD)
as inputs. Each BPEL file and its XSD are combined together to
collect all required details, to transform the BPEL representation
into the Deterministic Automaton. The first transformation
(BPEL2FSM) is implemented via SiTra [18].

To create the Diagnoser Automaton the diagnosability algo-
rithms are applied, which is implemented in various tools GID-
DES and UMDES-LIB [28]. In our implementation, UMDES-LIB
is used, which creates a Diagnoser Automaton from a given
Deterministic Automaton. Finally, the created Diagnoser Au-
tomaton is transformed into a BPEL representation by using
the second transformation method (Diag2BPEL) which is also
implemented via SiTra. The models used in the case and all
samples of code are available at [22].

6. Discussion and related work

Yan et al. [2] formalize BPEL Web service model as Discrete
Event System (DES). In [29], Yan and Dague propose a Model-
Based approach to diagnosing of behavior of Web services
by extracting synchronized automata from the BPEL. The
synchronized automata are used to identify the dependency
between the variables and to identify the trajectories following
the detection of the exception. Our approach differs from [29]
in various ways. Firstly, we make use of MDD to automatically
generate the Diagnoser. Secondly, using MDD allows us to
reuse existing results in DES [3]and tools [28] reducing the cost
of implementation. Our approach can deal with a wide range of
failure including the type of failure which is discussed in [29]. It
seems that the approach presented in [2] can not handle failure
such as Right-First-Time. Finally, our approach fundamentally
differs from the above as our Diagnoser are modeled in Web
services languages.

Wang et al [1] have applied DES control theory to allow safe
execution of flawed workflows by avoiding runtime failure. Their
approach makes use of Automaton to identify forbidden states,
representing in desirable execution state, to generate the control
logic. Hence, the suggested procedure includes Diagnoser of
the failure. Our approach produces a separate Diagnoser which
can be used in conjunction with any controller.

In this paper, variants of automata are used to represent Dis-
crete Event Systems. Petri nets are another formalism used
in diagnosability [1, 4, 30]. Considering the wide adoption of
Petri nets for workflows modeling, there is a large scope for
using Petri net as formalism in this context. This is a direction
for future research.

A centralized Diagnoser may result in bottlenecks affecting the
performance. Various decentralized diagnosing scheme have
been proposed to address this issue[31, 32]. A decentralized
diagnosing method generates one Diagnoser per each module
of the system. Applying the method represented in this paper
along with decentralized diagnosing approach result in a Diag-
nosing Service for each service which is expected to result in
better performance. These Diagnosing Services can collaborate
with each other to fulfill the task of centralized Diagnoser. We
are currently extending our tool set to implement a Decentral-
ized approach.

Conclusion

This paper presents a Model Driven Development approach
to the design and implementation of Diagnosers for a group of
interacting services. The underlying idea is to apply Discrete
Event System techniques to produce a Diagnosing Service,
which will monitor the services. MDD is used to transform models
of Services, captured in BPEL, into Deterministic Automata
with Unobservable Events. Using DES algorithms, a Diagnoser
Automaton for the Deterministic Automaton is created. MDD
model transformations map the Diagnoser Automaton to produce
the Diagnosing Service. The presented approach is implemented
as an Oracle JDeveloper plugin and has been applied and
evaluated to a case study involving the monitoring of a Customer
Service application to identify Right-first-time failures.

References

1] Wang, Y., Kelly, T ., Lafortune, S (2007). Discrete control for
safe execution of IT automation workflows. In: EuroSys. 2007.

[2] Yan, Y., Pencole, Y. , Cordier, M.-O., Grastien, A (2005).
Monitoring Web Service Networks in a Model-based Approach.
In: ECOWS05. Sweden.

Figure. 7. Diagnoser Automaton

Figure. 8. A fragment of BPEL model for Diagnoser Service

350 Journal of Digital Information Management   Volume 7 Number 6   December 2009

[3] Sampath, M., R. Sengupta, and S. Lafortune: Diagnosability
of discrete-event systems. IEEE Transactions on Automatic
Control, Sept. 1995. 40: p. 1555-75.

[4] Jiroveanu, G. R., Bordbar, B.. (2008). On-line monitoring
of large Petri Net models under partial observation. Discrete
Event Dynamic Systems.

[5] Alonso, G., Casati, F., Kuno, H., Machiraju, V. (2004). Web
Services. Springer Berlin.

[6] Stahl, T., Volter, M (2006). Model Driven Software
Development; technology engineering management. Wiley.

[7] Bézivin, J., Gérard, S (2002). A preliminary identification of
MDA components. In: Workshop in Generative Techniques in
the context of Model Driven Architecture. USA.

[8] Cassandras, C., Lafortune, S (2007). Introduction to Discrete
Event Systems. Springer.

[9] Ozveren, C.M., Willsky, A.S (1990). Observability of discrete
event dynamic systems. Transactions on Automatic Control
1990. 35: p. 797-806.

[10] Lin, F. (1994). Diagnosability of discrete event systems and
its applications Discrete Event Dynamic Systems. 4 (2).

[11] Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen,
K., Teneketzis, D.C. (1996). Failure diagnosis using discrete-
event models. IEEE Transactions on Control Systems
Technology, 4 (2) 105-124.

[12] Ramadge, P.J.G., Wonham, W.M. (1989). The control of
discrete event systems. Digital Object Identifier, 77 (1) 81 - 98.

[13] Lunze, J. (2007). Fault Diagnosis of Discretely Controlled
Continuous Systems by Means of Discrete-Event Models
Discrete Event Dynamic Systems, 2007. 18 (2) 181-210.

[14] Kleppe, A., Warmer, J., Bast, W. (2003). MDA Explained:
The Model Driven Architecture--Practice and Promise. Addison-
Wesley.

[15] Gogolla, M., Lindow, A., Richters, M., Ziemann, P
(2002). Metamodel Transformation of Data Models. UML’2002
Workshop in Software Model Engineering.

[16] kermeta: http://www.kermeta.org/.

[17] openArchitectureWare: http://www.openarchitectureware.
org.

[18] Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J.,
McDonald-Maier, K.D (2006). SiTra: Simple Transformations in
Java. In: MoDELS.

[19] Arsanjani, A. (2005). Empowering the business analyst for on
demand computing IBM Systems Journal, 2005. 44 (1) 67-80.

[20] Juric, M.B., Mathew, B., Sarang, P (2004). Business Process
Execution Language for Web Services. Packt Publishing.

[21] Thompson, H.S., Beech, D., Maloney, M., Mendelsohn,
N.(2004). XML Schema Part 1: Structures. 2004, W3C

[22] http://www.cs.bham.ac.uk/~bxb/Alodib/RFTC.html.

[23] Bordbar, B., Staikopoulos, A. (2004). On Behavioural
Model Transformation in Web Services. In: eCOMO. China:
Springer Verlag.

[24] Chinnici, R., Moreau, J.-J. , Ryman, A., Weerawarana, S
(2006). Web Services Description Language (WSDL) Version
2.0, W3C.

[25] Friess, M., Fussi, E., König, D., Pfau, G., Rüttinger, S.,
Schwenkreis, F., Zentner, C (2006). WebSphere Process
Server V6 – Business Process Choreographer: Concepts and
Architecture. IBM Group Software Group.

[26] BEA, IBM, Microsoft, A. SAP, and S. Systems: Business
Process Execution Language for Web Services. Version 1.1.
2003.

[27] UML2.0: UML 2.0 Superstructure Specification, www.omg.
com. 2004.

[28] Ricker, L., Lafortune, S., Genc, S (2006). DESUMA. A Tool
Integrating GIDDES and UMDES. In: WODES.

[29] Yan, Y., Dague, P (2007). Modeling and Diagnosing
OrchestratedWeb Service Processes. In: ICWS. 2007.

[30] Giua, A., Seatzu, C (2002). Observability of place/transition
Nets, IEEE Transactions on Automatic Control, 49 (9) 1424-
1437.

[31] Wang, Y., Yoo, T.-S ., Lafortune, S. (2007). Diagnosis of
Discrete Event Systems Using Decentralized Architectures,
Discrete Event Dynamic Systems. 17(2).

[32] Genc, S., Lafortune, S (2007). Distributed Diagnosis of
Place-Bordered Petri Nets, IEEE Transactions on Automation
Science and Engineering. 4 (2) 206-219.

