
Clock Number Reduction Abstraction on CEGAR
Loop Approach to Timed Automaton

Kozo OKANO
Graduate School of

Information Science and Technology,
Osaka Univsesity

Suita, Osaka Japan
Email:okano@ist.osaka-u.ac.jp

Behzad BORDBAR
School of Computer Science,

Univsesity of Birmingham
Birmingham

UK
Email:b.bordbar@cs.bham.ac.uk

Takeshi NAGAOKA
Graduate School of

Information Science and Technology
Osaka Univsesity

Suita, Osaka Japan

Abstract—This paper presents an adaptation of the CEGAR
loop approach based on the reduction of the number of clocks
in timed automata. In the presented method, an abstraction of
the timed automata in which some of the clocks are removed is
used to search for a counter-example for a given temporal logic
statement. If the counter-example produced by the abstracted
timed automaton is not a counter-example of the original timed
automaton, the abstracted model is refined by restoring some of
the clocks so that the process can be repeated for the new ab-
stracted model. Reducing the number of the clock may result in a
substantial reduction in the amount of the computation required
for the model checking as the number states is exponential in
the number of clocks.

I. INTRODUCTION

Scalability is seen as one of the main challenges of the
Model Checking techniques in timed automata [3]. In the
past two decades various techniques for dealing with the
so-called State Explosion problems have been proposed. A
common approach is to reduce the size of the underlying timed
automata, resulting in smaller model. Methods of reducing
the size of timed automata include merging a number of
locations into a single location [16], eliminating some of the
clocks [12] or abstracting predicate to create smaller predicates
[8]. This paper aims to introduce a new method based on
Counter Example-Guided Abstraction Refinement (CEGAR)
[5]. CEGAR has been successfully applied [11], [4] to Markov
Decision Process (MDP) [13] and hybrid automata [10], as
well as timed automata.

The CEGAR approach, which is sometimes called “CEGAR
loop,” carried out iteratively starting from an abstracted timed
automata model produced from the original timed automata
model. Given a CTL statement [6] to be verified, firstly the ab-
stracted model is analyzed for a counter-example. If a counter-
example is found for the abstracted model, it is checked against
the original model. The process of checking is linear in the
size of the counter-example. If the counter-example is also
a counter-example of the main model, we have identified a
counter-example without directly analyzing the original model
which can be a very large. However, if the counter-example
of the abstracted model is not a counter-example of the large
model, i.e. the counter-example is spurious, the abstracted
model is refined to produce a new model in which the counter-

example of the abstracted model is no longer a counter-
example. In this way the spurious counter-example is removed
increasing the chance finding a “true” counter-example in the
newly abstracted model.

In [12], [8], the authors present a method of applying the
CEGAR loop approach aiming at reducing the number of
locations when the abstracted timed automata is produced.
In this paper, we shall adopt the CEGAR loop approach
by focusing on the reduction of the number of clock as
opposed to the number of locations. Since the number of
the states is exponential in the number of the clocks [3], any
reduction in the number of clocks might substantially reduce
the computational cost.

The paper is organized as follows. Section 2 presents a set
of introductory material about the timed automata, temporal
logic, UPPAAL [3] and CEGAR loop method. Section 3
describes the problem addressed in this paper. To illustrate
the presented approach, we rely on a running example bor-
rowed from [14]. The example is also used for the evaluation
purposes in Section 4. After the example, an outline of the
proposed method, which includes details of three algorithms, is
explained. Application of the suggested method to the running
example is illustrated in Section 4. Section 5 gives the proof
of the correctness of our algorithms.

II. PRELIMINARIES

This section presents a short introduction on Automata,
UPPAAL as well as a brief review of CEGAR.

A. Timed Automata

Timed automata are extensions of the conventional automata
with variable and constraints for expressing real-time dynam-
ics. They are widely used in the modelling and analysis of
real-timed systems [1].

Definition 1 (constraints): 1) C represents a finite set of
clocks

2) constraints related to time are expressed as inequality of
the following form
E ::= x ∼ a | x− y ∼ b | E1 ∧ E2,
where x, y ∈ C, ∼∈ {≤,≥, <,>,=}, and a, b ∈ Q≥0,

2011 Second International Conference on Networking and Computing

978-0-7695-4569-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICNC.2011.42

235

in which Q≥0 is the set of all non-negative Rational
numbers.

Let c(C) denote a set of constranits over C as described in
Definiton 1.

The above time constraints are used to mark edges and
nodes of the timed automata for describing the guards and
invariants.

Definition 2 (timed automaton): A timed automaton A is
a 7-tuple (A,L, l0, C, T, g, I, r), where
A: a finite set of actions;
L: a finite set of locations;
C: a finite set of clocks;
l0 ∈ L: an initial location; and
T ⊆ L × c(C) × A × 2C × L is a set of transitions. The
second and fourth items are called a guard and clock resets,
respectively.
I : L→ c(C) is a mapping from location to clock constraints,
called a location invariant.
A transition t = (l1, g, a, r, l2) ∈ T is denoted by l1

a,g,r→
l2. A map ν : C → Q≥0 is called a clock assignment (or
clock valuation). As a result, we have ν ∈ QC

≥0. We define
(ν + d)(x) = ν(x) + d for d ∈ Q≥0. For each reset r, where
r ∈ 2C we shall write r(ν) = ν[x 	→ 0], x ∈ r.

Dynamic of a timed automaton can be expressed via a set
of states and their evaluations. Changes of one state to a new
state can be as a result of firing of an action or elapse of time.

Definition 3 (state of timed automaton): For a given timed
automaton A = (A,L, l0, C, T, g, I, r), let S ⊆ L×V be a set
of whole states of A . The initial state of A can be given as
(l0, 0

C) ∈ S, where 0C stands for 0 valuation for each clock.
For a transition l1

a,g,r→ l2, the following two transitions
are semantically defined. The first one is called an action
transition, while the latter one is called a delay transition.

g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

Here, g(ν) and I(l)(ν) stand for the evaluation of clock
constrains g and I(l) under the evaluation of clock value ν.

Semantics of a timed automaton can be interpreted as a
Labelled Transition System.

Definition 4 (semantic of a timed automaton): For a timed
automaton A = (A,L, l0, C, T, g, I, r), an infinite transition
system is defined according to the semantics of A , where the
model begins with the initial state. By T (A) = (S, s0,⇒),
the semantic model of A is denoted.

In this paper, a state on a location l means an arbitrary
semantic state (l, ν) such that ν satisfies l’s invariant.

Definition 5 (run of a timed automaton): For a timed au-
tomaton A , a run σ is a finite or infinite sequence of
transitions of T (A).
σ = (l0, ν0)

α1⇒ (l1, ν1)
α2⇒ (l2, ν2)

α3⇒, . . . , where α ∈
A ∪Q≥0

Hereafter, we assume that A is not Zeno and is not
timelock. For further detail about time automata, we refer the
reader to [3], [17].

B. Temporal Logic

In timed automata the constraints which are verified are
often expressed in temporal logic. Subsets of TCTL [1] is
used for expressing the constraints to be verified.

The syntax definition of the logic is defined in Definition
6.

Definition 6: φ ::= ∃�∼pψ | ∀�∼pψ | ∃♦∼pψ | ∀♦∼pψ |
∃ψ1U∼pψ2 | ∀ψ1U∼pψ2.
ψ ::= ¬ψ | ψ1 ∨ ψ2 | (l, c), where c and p are a clock

constraint, and a positive rational number, respectively.
For a given constraint c a region is the set of all states whose

clock value satisfies the constraint c. This is formally defined
as follows.

Definition 7: (q, c) is a pair of location and a constraint
over the clocks, We also use the notation to represent a set of
pairs of a location clock regions as follows. (q, c) denotes a
set {(q, ν) | ∀ν |= c}.

Definition 8 gives the semantics of TCTL.
Definition 8: For a pair of (q, ν) and a TCTL expression:

(q, ν), c iff (q, ν) |= c,
where c is a constraint over C.

(q, ν),¬ψ iff (q, ν) �|= ψ.
(q, ν), ψ1 ∨ ψ2 iff (q, ν) |= ψ1 or (q, ν) |= ψ2 holds.
(q, ν), ∃�∼pψ iff

there is a run from (q, ν) such that for all states (q′, ν′) that
is t time units from (q, ν) in the run with t ∼ p, (q′, ν′) |= ψ.
∃ψ1U∼pψ2 iff there is a run from (q, ν) such that

• there is a state (q′, ν′ that is t time units from (q, ν) in
the run with t ∼ p and (q′, ν′) |= ψ2; and

• for all states (q′′, ν′′) before (q′, ν′) in the run, (q′′, ν′′) |=
ψ1).

Symbols tt and ff stand for true and false, respectively.
For given a timed automata A and a TCTL expression φ,

if (l0, 0), φ holds, then we say A satisfies φ, where (l0, 0) is
an initial state of A . Also we denote A |= φ, if A satisfies
φ.

The following expressions are also defined as abbreviations.
∀�∼pψ iff ¬∃♦∼p¬ψ
∃♦∼pψ iff ∃ tt U∼pψ
∀♦∼pψ iff |= ¬∃�∼p¬ψ

∀ψ1U∼pψ2 iff ¬∃¬ψ1U∼p(¬ψ1 ∧ ¬ψ2)
∨¬∃�∼p¬ψ2

(q, ν), (l, c) iff (q, ν) |= c and l = q,
where c is a constraint over C.

We focus on expressions of the form φ ::= ∀�∼pψ in
this paper. Such statements are particularly important as they
allow checking if the system is satisfying a property within a
period of time. For example we can check if a property holds
true within the first k unit of the start of the system. Such
expressions can be reduced to reachability problems, which are
verifiable via our model checkers. Extension of our method to
deal with other types of temporal logic expressions is a topic
for future research.

236

Fig. 1. General CEGAR Algorithm

C. UPPAAL

UPPAAL is a famous model checker for extended timed
automata by Yi-Wang et al. [3], [2]. It also supports model
checking for the conventional timed automata. UPPAAL al-
lows verification of expressions described in an extended
version of CTL. In addition, it supports local and global
integers and primitive operations on integers, such as addition,
subtract and multiplication with constants. Such expressions
are also allowed on the guards of transitions. The model of
the system can be created from multiple timed automata which
are synchronised together via a CCS-like synchronisation
mechanisms [15].

D. General CEGAR Algorithm

Model abstraction sometimes over-approximates an original
model, which may produce spurious counter-examples which
are not actually counter-examples in the original model. Clarke
et al. [5] present an algorithm called CEGAR (Counter-
Example-Guided Abstraction Refinement) (Fig.1).

In the algorithm, at the first step (called Initial Abstraction),
an abstracted model which over-approximates the original
model is produced. Next, we perform model checking on the
abstracted model. In this step, if the model checker reports
that the model satisfies a given specification, we can conclude
that the original model also satisfies the specification, because
the abstracted model is an over-approximation of the original
model. If the model checker reports that the model does not
satisfy the specification, however, we have to check whether
the counter-example detected is a spurious counter-example
or not in the next step (called Simulation). In the Simulation
step, if we find the counter-example is valid, we stop the
loop as a counter-example for the original model is found.
Otherwise, we have to refine the abstracted model to eliminate
the spurious counter-example, and repeat these steps until
valid counter-example is obtained or model checker outputs
the model satisfies the property.

Example 1: Fig. 2 shows a model of light user behaviour
in a network of UPPAAL Timed Automata, which uses some
extended notions of UPPAAL. The double discs and ordinal
discs show the initial locations and normal locations, respec-
tively.

The automaton shows the concurrent behaviour of a mug
light and a human. The light has three operation modes,

bright

dim

off

x > 10
press?

press?

x <= 10
press?

press?
x = 0

relax

studyt

y < 5

idle

y > 10

press!

press!
y = 0

press!
y = 0

press!

press!

Fig. 2. light-user model

namely off, dim, and bright.
A single click of a switch will change the mode of the light

to dim, while if the switch is pressed twice (double click) the
mode changes to bright. When the light is either dim or bright,
a single click will switch off the light. The difference between
the timing of two consecutive clicks is controlled by a clock
x and guards on it.

This network of timed automata, however, can be translated
into single normal timed automaton.

E. Related Work

Several approaches [9], [8], [16], [7] apply the abstraction
mechanism used in the CEGAR loop method to timed au-
tomata. The abstraction techniques fall into two main cate-
gories: timed abstraction and action abstraction. Paper [16]
uses a normal automaton as an abstracted automaton, while
this paper uses a timed aumtomaton. Papers [9], [8] present a
CEGAR approach by abstracting the variables and clocks. In
particular, He et al [9] introduce a compositional framework
for dealing with network of timed automata. Their method is
based on invariant shift paradigm, which is different from us;
we use direct projections. Another point of difference is that
our algorithm guides the choice of the next clock to be added.
The experimental comparison of our work with [9] is a topic
for future research. Our focus on time abstraction steams in
high gain of the approach in terms of the complexity. Paper
[7] proposes a tool, opaal, which uses CEGAR for a subset of
the UPPAAL timed automata language extended with lattice
features.

III. IMPLEMENTING CEGAR LOOP BY REDUCING CLOCK

NUMBERS

The key aim of CEGAR loop approach is to obtain smaller
timed automata as an abstraction of the model of the system
which can be used for the analysis instead of the large model.
The process of abstraction in the original CEGAR approach
is focused on the reduction of the number of the locations.
In contrast, our approach aims at the reduction of the clock
numbers used in the abstraction. We argue that reduction of the
clocks can result in smaller abstraction as the number of states
in the timed automaton is O(| L | · | C |! · 2|C| ·∏x∈C(2cx +
2)), where cx is the maximum constants appeared in clock
constraints on clock x used for the timed automaton[2], It can
be seen that the number of state is exponential in the number

237

of clocks, whereas the number of states is polynomial in the
number of locations, Form this point of view, reduction of the
clocks provides a substantial advantage.

The CEGAR loop approach is iterative. We shall follow an
approach similar to the one suggested in [5] and introduce the
following four steps. In what follows A is a timed automaton,
φ is a TCTL formula. Let assume Â is an abstraction of A .

A. Abstraction Methods

The underlying idea of our approach is to eliminate some
of the clocks and the constraints that they appear in. Then,
during the refinement step, some of the removed clocks are
restored.
Step1 Initial Abstraction: All clocks and their constraints
(guards, invariants) and resets are removed.
Step2 Model Checking: Given any abstracted timed automa-
ton, the statement φ is analysed. There are two outcomes
to the model checking: existence of the counter-example or
no counter-example. For the later case, we have no counter-
example for property φ on the over-approximated model. This
means that there are no counter-examples for the original
model too. As a result there is nothing more to do and the
CEGAR loop can stop. Otherwise, we move to step 3.
Step3 Simulation: The created counter-example for the ab-
stracted model must be checked against the automaton A .
This is carried out by an attempt to simulate the counter-
example on A . If the run cannot be successfully executed
on A , a counter-example for the validation of φ on A is a
spurious counter-example, thus, the abstracted model must be
refined. However, if the counter-example can be simulated on
A we have obtained a counter-example by analysing a smaller
model.
Step4 Refinement: In this step one of the clocks is restored, i.e.
the guards and invariants related are included in the abstracted
automaton to create a new abstracted automaton.

In the rest of this section, the above four steps are illustrated
in details.

B. Abstraction Function

The abstraction function in the original CEGAR [5] algo-
rithm modifies the structure of the involving timed automata by
removing locations and diverting transitions from one location
to another. This results in a modification of the underlying
graphical representation of the automata. In contrast, the
proposed method here makes no alternations to the location or
transitions except eliminating some of the constraints related
to the guards, invariants and reset clocks.

To be precise, suppose that A is a timed automaton and AC
is a subset of clocks of A which will appear in Â , i.e. all
other clocks will be eliminated. Definition 9 precisely define
Â , an abstraction of A that included the clocks of AC.

Definition 9: [Abstraction] Given a timed automaton A =
(A,L, l0, C, T, g, I, r) and a set AC ⊆ C of the clocks, Â =
A, L̂ = L, l̂0 = l0 and T̂ = T for a timed automaton Â =
(Â, L̂, l̂0, Ĉ, T̂ , ĝ, Î , r̂) which is an abstraction of A .

In addition,

• Ĉ = AC, i.e. clocks in the abstraction are only the clocks
in A ,

• ĝ = πAC(g) for each guard g,
• Î = πAC(I), and
• r̂ = r ∩AC for each reset set r,

where πAC is defined later.
To explain informally the project function πAC removes all

constraints related to variables which are not in AC, i.e. the
clocks that should not be included. Next we shall give the
definition of πAC .

Definition 10: [projection]

1) πAC({xi ∼ α}) = ∅, if xi �∈ AC
2) πAC({xi − xj ∼ α}) = ∅, if xi, xj �∈ AC
3) πAC({xi ∼ α}) = {xi ∼ α}, if xi, xj ∈ AC
4) πAC({xi − xj < α}) = tt, if xi ∈ AC and xj �∈ AC
5) πAC({xi − xj < α}) = {xj ≥ 0}, if xi �∈ AC and

xj ∈ AC
6) πAC(E1 ∪ E2) = πAC(E1) ∪ πAC(E2)
7) πAC(∅) = ∅
8) π∅(g) = (Q≥0)

n

9) π∅(I) = (Q≥0)
n

10) π∅(r) = ∅
To explain Definition 10, all constraints for clocks not in

AC are removed (see 1). In 3 and 4, a constant of the form
xi − xj < α where only one of the clocks in A is replaced
with a larger region involving the clock which is in A , because
the regions are getting larger, none of the trajectories are
eliminated. This means that in 4 the constraint is replaced by
a trivial constraint of the form −xj < α which is equivalent
with xj > −α replaced by xj > 0. As clocks have a positive
value. In 3 and 4 πAC for ≥, >,≤ can be defined similarly.
In 7-10, we deal with the case that AC is an empty set. In
this case, the projections result in no restrictions on the firing
of the transitions.

A crucial property of an abstraction is compatibility.
Definition 11 (compatibility): For a given TCTL property

φ and a timed automaton A , we shall referˆas the Concrete
Abstraction Map. If the following holds, we say that the
abstractionˆ is compatible to φ.

Â |= φ implies A |= φ.
Theorem 1 (compatibility): For a given φ and a timed au-

tomaton A , the concrete abstraction mappingˆwhich will be
given below is compatible to φ.
Proof: see Section 5.

C. Step1: Initial Abstraction

To start the CEGAR loop we shall use an Initial abstraction
with an empty clock set, i.e. AC = ∅. This means the
projection function πAC will remove all the involved guards
and reset sets. This results in an abstracted automaton with no
clock related restrictions. In other words for all guards g and
invariant I , ĝ = Î = (Q≥0)

n. In addition for each reset set r,
r̂ = ∅.

238

D. Step2: Model Checking

The model checking is carried out via UPPAAL model
checker. If no counter-example when checking φ on Â is
found, by Theorem 1, we have known that φ would be valid
for A . However, in case of finding a counter-example, the
counter-example must be checked against A .

E. Step3: Simulation

In Step3 a tool from UPPAAL, called Tracer can produce
a counter-example for an abstracted automaton A. Such a
counter-example is in the form σ = (l0, ˆcr0)

a1⇒ (l1, ˆcr1)
a2⇒

(l2, ˆcr2) · · ·, where each ai = (t, a) when t is the amount
of time spent in the location li−1 and a ∈ A is an action
causing a change of location from li−1 to li. Each ĉri is a
set of constraints representing the set of possible clock values
when the location is li. The time elapsing is not shown in the
counter-example produced by the tool. More precisely, form
of sequence (�l0, ˆcr0)

a1⇒ (�l1, ˆcr1)
a2⇒ (�l2, ˆcr2) · · ·, where ai

is just the information of an edge, and the time elapsing is
not shown 1. The sequence σ is an execution sequence of Â.
The aim of this step is to check if σ is also an execution
sequence of A . We make use of forwards simulation for
checking it. Forwards simulation is the same as the simulation
of the original CEGAR [5]. Step-by-step, starting at the state
(l0,�0) of A we check if actions a1, a2, . . . can execute. If all
actions can execute, then we have found a counter-example for
checking φ on A . Otherwise the counter-example is spurious.

Definition 12: [a bad location] Suppose that σ =
(l0, ˆcr0)

a1⇒ (l1, ˆcr1)
a2⇒ (l2, ˆcr2)

a3⇒ · · · am⇒ (lm, ˆcrm) is a
spurious counter-example. Suppose that lk(1 ≤ k ≤ m) is the
first location in A such that a1, a2, . . . , ak−1 cannot execute.
We refer lk as a bad location.

Fig. 3 shows an example of Simulation and counter-
example. In the example, location (d, Norm) is the bad
location.

F. Step4: Refinement

Let us denote by Ai a timed automaton produced in the
i-th iteration of CEGAR loop. Suppose that Ai has produced
a spurious counter-example. The aim of Step4 is to use the
counter-example and produce a new timed automaton Ai+1

which increases the number of the clocks in Ai so that the
spurious counter-example is removed. In other words to create
Ai+1, the set of clocks used in Ai are increased and the
abstraction process in Definition 9 is applied to Ai+1.

Suppose that σ = (l0, ˆcr0)
a1⇒ · · · am⇒ (lm, ˆcrm) is a spurious

counter-example. This means an attempt to run the sequence
of execution has resulted in identifying a bad location lk(0 ≤
k ≤ m) as defined in Definition 12. Our policy is choosing
the clock that has made the counter-example spurious. In other

1In this section, we shall assume that the (Network of) timed automata
consists of a single automaton as opposed to multiple automata which are
synchronised via half actions, see [2]. This assumption is to simplify our
notation. However, this assumption will not affect the validity of our argument.
For the general case, we need to only replace the location with a vector of
locations of the Automata involved in the Network of Timed Automata.

Original Timed Automaton

Abstract Model

UPPAALAG not TA2.Error

Property ``Invalid’’

Counter
Example
(binary)

Tracer

State: TA1.a TA2.Norm

Transition: TA1.a -> TA1.b {1; 0; 1;}

State: TA1.b TA2.Norm

Transition: TA1.b -> TA1.d {1; 0; 1;}

State: TA1.d TA2.Norm

Transition: TA1.d -> TA1.e {1; Err!; 1;}

TA2.Norm -> TA2.Error {1; Err?; 1;}

State: TA1.e TA2.Error

a b d

c e

x:=0
y > 3

x <=2x <=3 &
y <= 3

x:=0 x<5TA1

TA2 Norm Error

y > 10

Err!

Err?

a b d

c e

TA1

TA2 Norm Error

Err!

Err?

Input the Abstract Model Result

(a,Norm) ->(b,Norm)->

(d,Norm)->(e,Error)

τ τ

Err

Output of Tracer

The reachable state set along with the counter example

(a,Norm)

(x == y) & (x <= 3)

(b,Norm)

(x<=2)&(y-x>=0)&

(y–x<=3)

(d,Norm)

(x<5) & (y-x>3)&

(y-x<=5)

(e,Error)
ττ Err

(d, Norm) is a bad location

Fig. 3. Example: Simulation

words, assume that Ci and C are the set of clocks in Ai and
A , respectively. We will identify a clock in C \ Ci that has
made lk a bad location. As lk is a bad location none of the
transitions from lk to lk+1 can fire. This means that none of
the guards of the transitions from lk to lk+1 can fire. This
could be because of a variable from C \Ci that the guards of
such transitions are invalid. In such a case we choose one of
the variables from the invariants of lk, guards or set of resets
of transitions from lk to lk+1. However, there is a chance that
all variables used in the transition from lk to lk+1 and the
invariants of lk are already in Ci. In that case we look for the
variables of transitions from lk−1 to lk, the invariant of lk−1

or the set of resets of transitions from lk−1 to lk. This process
of searching can be repeated until a variable from C/Ci of
transitions from li to li+1(0 ≤ i ≤ k) is found. Lemma 1
ensures that such a variable exists.

Lemma 1: Suppose that Ai is an abstraction of the automa-
ton A . Suppose that Ci is the set of clocks in Ai Let us
assume that a sequence σ = (l̂0, ˆcr0)

a1⇒ · · · am⇒ (ˆlm, ˆcrm) is
an execution trace of Ai. Assume that all guards and reset of
edges from lj to lj+1 are using only the clocks from Ci. Then
σ is not spurious.

Proof: The proof is trivial as the part of the underlying
timed automata Ai which has generated the counter-example
is identical with the corresponding part of the automata.

IV. EXPERIMENTAL RESULTS

In this section we shall describe some experimental results
to evaluate the approach. To do so, we shall make use of
a modified version of the widely used example Gearbox
Controller example [14] by adding an engine monitor module,
which observes the torques and states of the gears.

We evaluate memory consumption and execution time for
the both of model checking with abstraction and no abstraction
in order to evaluate effectiveness of our proposed method.
We used verifyTA tool of UPPAAL. VerifyTA is the stand-

239

Init

tick <= 10

tick == 10

reportGear!

tick = 0

View

Init

reportGear?

currentGear = ToGear,
currentTorque = Torque

Display

Fig. 4. Modules to Modify Gear Controller

TABLE I
RESULT OF 1,000 UNITS OF TIME

query type time(sec) memory(KB) loops restored clocks

0 no abst 0.8 41000 - -

0 abst 1.54 48868 3 2
1 abst 1.53 48868 3 2
2 abst 1.45 47824 3 2
3 abst 1.47 47824 3 2
4 abst 1.49 47172 5 4
5 abst 1.06 49376 1 0

alone verifier of UPPAAL [2]. The original Gearbox Controller
consits of six timed automata. We add modules View and
Display. View periodically watches the status of the engine and
sends to Display. Display shows the current torques and state
of gears when it receives the signal. We also add a variable
which represents the states of gears (Fig. 4).

In the experiments, we obtain the results for the case of
1,000 units of time and 10,000 unit of time as the periodical
parameter for the sending signals from View to Display,
respectively.

We choose six properties which are able to apply our
method from the properties in [14]. The results for the case
of 1,000 units of time are shown in Table I.

In Table I., the rows with the second entry “no abst”
show the result obtained from conventional model checking,
i.e. without using our method, and the rows with the entry
“abst” are the result of the application of our approach.
Column query, time, memory and loop show the query (prop-
erty) we used, the execution time, the maximum of memory
consumption and the number of iteration of CEGAR loops,
respectively. Column restored clock shows the number of
restored clocks while the CEGAR loop. Though, time and
memory consumption are larger than the original, not all of the
clocks are restored, i,e, at least two clocks are yet abstracted.
The result shows that the approach is useful for abstraction of
more complicated examples.

We have performed the same experiment for the case of
10,000 units of times. It can be seen that using our method
show considerable reduction in the time required (Table II).
This shows a major advantage of our method. However, in
terms of the memory consumption, we observe only a slight
reduction in the memory consumption. We think, when using
1000 units of time, the range of clock variable ticks are larger,
as a result, the system consumes more memory. However,
further experiments must be carried out to establish this point.

TABLE II
RESULTS OF 10,000 UNITS OF TIME

query type time(sec) memory(KB) loops restored clocks

0 no abst 4.2 52716 - -

0 abst 1.57 48868 3 2
1 abst 1.92 48868 3 2
2 abst 1.45 47692 3 2
3 abst 1.46 47824 3 2
4 abst 1.49 42172 5 4
5 abst 1.06 49508 1 0

V. PROOF OF THEOREM 1

The aim of this section is to present the proof of Theorem
1. Suppose that A is a timed automaton with the abstraction
Â as obtained via Definition 9. Consider temporal logic
constraints of the form ψ = ¬ψ | ψ ∧ ψ | (q, c), where c
is conjunction of the clock constraints of the form x ∼ p or
x − y ∼ p which x and y are clocks and c is a non-negative
rational number. By (q, c), in which q is a location of the timed
automaton, we mean that in the location q the clocks satisfy
the constraint c. To prove Theorem 1, i.e. the compatibility
of abstraction, we must show that for each ψ, Â |= ∀�∼pψ
implies A |= ∀�∼pψ. To do we shall start with a lemma.

Lemma 2: An expression ¬(q, c) equals to (q,¬c)∨(¬q, tt),
where (¬q, tt) = ∨

q′∈L, s.t., q′ �=q(q
′, tt).

Proof: By Definition7, it is trivial.
This can be interpreted as follow. ¬(q, c) means negation of

being at location q while c holds. Such negation can be seen
as either we are not in q, no matter what condition (¬q, tt) or
we are in q but c is not valid i.e. (q,¬c).

Lemma 3: Each φ of the form of ∀�∼pψ can be written as
∀�∼p

∧
i

∨
j

∨
k ¬(qij , cijk), where cijk is x ∼ c or x−y ∼ c.

Proof: The proof is by considering all possible cases for
ψ = ¬ψ | ψ ∧ ψ | (q, c).
case 1 (ψ = (q, c))
(q, c) = ¬((q,¬c) ∨ (¬q, tt)) by Lemma 2
= ¬(q,¬c) ∧ ¬(¬q, tt)
= ¬(q,¬c) ∧ ¬∨

q′∈L, s.t., q′ �=q(q
′, tt)

= ¬(q,¬c) ∧∧
q′∈L, s.t., q′ �=q ¬(q′, tt)

case 2 (ψ = ψ1 ∧ ψ2)
We let ψ1 and ψ2 be

∧
i

∨
i

∨
k ¬(qij , cijk) and∧

h

∨
g

∨
f ¬(qhg, chgf), respectively.

ψ1∧ψ2 = (
∧

i

∨
j

∨
k ¬(qij , cijk))∧(

∧
h

∨
g

∨
f ¬(qhg, chgf)).

case 3 (¬ψ)
We let ψ be

∧
i

∨
j

∨
k ¬(qij , cijk).

¬ψ = ¬∧
i

∨
j

∨
k ¬(qij , cijk)

=
∨

i

∧
j

∧
k ¬¬(qij , cijk)

=
∨

i

∧
j

∧
k(qij , cijk).

Any logical expression of the disjunctive normal form can
be translated into an equivalent conjunctive normal form. The
translated form might include a sub-formula (q, c) which is
not the negation form. Such a sub-formula, however can be
translated into the form of conjunction of negations according
to the proof of the case 1. This completes the proof.

Definition 13 (Reachability Problem): Suppose that A is a
timed automaton. We say (q, c)is a reachable state if there is a

240

run of A , see Definition 5, starting from the initial state and
terminating in a state satisfying (q, c).

Theorem 2: The problem on Theorem 1 can be re-
duced into a Reachability Problem. In other words, Â |=
∀�∼p

∧
i

∨
j

∨
k ¬(qij , cij) iff

∧
j

∨
k(qij , cijk) is not reach-

able for each i within the period specified by ∼ p.
Proof: Â |= ∀�∼p

∧
i

∨
j ¬(qi, cij) iff

Â |= ∧
i ∀�∼p

∨
j ¬(qi, cij) iff

Â |= ∧
i ∀�∼p¬

∧
j(qi, cij) iff∧

j(qi, cij) is not reachable for every i within the period
specified by ∼ p.

Definition 14: Suppose that y is a clock variable. Let C\y
denote removing of all constraints involving y from C.

For example in Definition 14, if C equals to {x < 2, x−y ≥
5}, then C\y will be {x < 2}.

Lemma 4: For any valuation if C is valid then C\y is also
valid.

Proof: Let ν and c are an evaluation and a condition in
C. From the assumption ν |= c, if c involves a variable y then
it is not in C\y, otherwise ν |= c. Thus, Lemma 4 holds.

Lemma 5: For a given set AC of clocks and any expression
exp used in a guard or an invariant, πAC({exp}) ⊆ {exp}

Proof: Definition of πAC , see Definition 10, consists of
ten parts. For each parts it can be seen that πAC maps its
region to one of its subsets.

Lemma 6: Consider an action transition a of the form
(l, ν)

a⇒ (l′, ν′) or a delay transition d of the form (l, ν)
d⇒

(l, ν′) in the timed automata A . If the state (l, ν) is a reachable
state in the abstracted timed automata Â , then the transitions
(l, ν)

a⇒ (l′, ν′) and (l, ν)
d⇒ (l, ν′) can also occur in Â .

Proof: First, we consider an action transition. Let assume
that (l, ν)

a⇒ (l′, ν′) of A holds. Then there exists a transition
l

a,g,r→ l′ in A . Also g(ν) and I(l′)(r(ν)) hold. Let assume

the corresponding transition in Â be l
a,ĝ,r̂→ l′. By Lemma 4

and 5, ĝ(ν) and Î(l′)(r̂(ν)) also hold.
For a delay transition, a similar proof can be given. Let

assume that (l, ν)
d⇒ (l, ν′) of A holds. Then there exists

a location l in A and ∀d′ ≤ d I(l)(ν + d′) holds. The
corresponding location in Â is also l. By Lemma 4 and 5,
∀d′ ≤ d Î(l)(ν + d′) also holds.

Now, we can see the proof of Theorem 1. The expression∧
j(qi, cij) is not reachable for any i within any period

specified by ∼ p in Â if it is not reachable in A , by Lemma
6. By Theorem 2 with this fact, Theorem 1 is proved.

VI. CONCLUSION

This paper provided a new CEGAR loop method for a
timed automaton to address the state explosion problem. The
key idea is to use timed automata with smaller number of
clocks to reduce the complexity of the analysis. Drawing on
the conventional CEGAR approach, in our method some of
the clocks and their constraints are removed to produce an
abstraction of the model. If the abstracted model can result in
producing a counter-example, which is also a counter example
of the original timed automaton, then we have obtained a

counter-example for a larger model by analysing a smaller
model. Otherwise, the model is refined. At the refinement step,
some of the removed clocks are restored. The restored clocks
are determined on the basis of valuation errors. The paper also
give a proof for the presented result. Experimental results show
the proposed approach can be very effective.

ACKNOWLEDGMENT

We thank Prof. Teruo Higashino and Prof. Shinji Kusumoto
for financial assistance. This research is partially supported
by the research grant of Telecommunications Advance-
ment Foundation and Grant-in-Aid for Scientific Research
(C)(21500036).

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time
systems. In Proc. of the 5th Annual Symposium on Logic in Computer
Science, pages 414–425. IEEE, 1990.

[2] G. Behrmann, A. David, and K G. Larsen. A tutorial on uppaal. In Proc.
of the 4th Int. School on Formal Methods for the Design of Computer,
Communication, and Software Systems, volume 3185, pages 200–236,
2004.

[3] J. Bengtsson and W .Yi. Timed automata: Semantics, algorithms and
tools. In Lecture Notes on Concurrency and Petri Nets, volume 3098,
pages 87–124, 2004.

[4] E M. Clarke, A. Fehnker, Z. Han, J Ouaknine, O. Stursberg, and
M. Theobald. Abstraction and counterexample-guided refinement in
model checking of hybrid systems. Int. Journal of Foundations of
Computer Science, 14(4):583–604, 2003.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut.
Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, 2003.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 2000.

[7] A.E. Dalsgaard, R.R. Hansen, K.Y. Joergensen, K.G. Larsen, M.Chr.
Olesen, P. Olsen, and J. Srba. opaal: A lattice model checker. In
Proceedings of the 3rd NASA Formal Methods Symposium (NFM’11),
volume 6617 of LNCS, pages 487–493. Springer-Verlag, 2011.

[8] H. Dierks, S. Kupferschmid, and K G. Larsen. Automatic abstraction
refinement for timed automata. In Proc. of the 5th Int. Conf. on Formal
Modelling and Analysis of Timed Systems, volume 4763, pages 114–129,
2007.

[9] F. He, H. Zhu, W. N. N. Hung, X. Song, and M. Gu. Compositional
abstraction refinement for timed systems. In Proc. 2010 Fourth Inter-
national Symposium on Theoretical Aspects of Software Engineering,
pages 168–176, 2010.

[10] T.A. Henzinger. The theory of hybrid automata. In Symp. on Logic in
Computer Science, pages 278–292. IEEE Computer Society Press, 1996.

[11] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic cegar. In Com-
puter Aided Verification, Lecture Notes in Computer Science, volume
5123, pages 162–175. Springer, 2008.

[12] S. Kemper and A. Platzer. Sat-based abstraction refinement for real-
time systems. In Proc. of the Third Int. Workshop on Formal Aspects
of Component Software, volume 182, pages 107–122, 2006.

[13] M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction
for markov decision processes. In Proc. 3rd International Conference
on Quantitative Evaluation of Systems (QEST’06), pages 157–166. IEEE
CS Press, 2006.

[14] M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a
gear controller: An industrial case study using uppaal. In Lecture Notes
in Computer Science, volume 1384, pages 289–297, 1998.

[15] R. Milner. Communication and Concurrency. Prentice-Hall Interna-
tional, 1989.

[16] T. Nagaoka, K. Okano, and S. Kusumoto. An abstraction refinement
technique for timed automata based on counterexample-guided abstrac-
tion refinement loop. IEICE Transactions on Information and Systems,
E93-D(5):994–1005, 2010.

[17] F. Wang, K. Schmidt, G. D. Huang, F. Yu, and B. Y. Wang. Formal
verification of timed systems: A survey and perspective. In Proc. of the
IEEE, volume 92(8), pages 1283–1307, 2004.

241

